
7.5 x 9.25 spine = 1.625" 872 page count

All you need to succeed in Flash Professional CS5

Covers all of the new additions to Flash CS5 including the Text
Layout Framework, and new coding, animation, and video features

Master the fundamentals of Flash Professional CS5 from adding
and using media to creating games for Android devices

In this book, you’ll learn:
	 How	to	create	effective	animations	using	the	Motion	Editor	and	animation	tools

	 How	to	use	the	3D	features	to	animate	objects	in	3D	space

	 Best-practice	tips	and	techniques	from	some	of	the	top	Flash	practitioners	on	the	planet

Foundation Flash CS5 For Designers
If	you’re	a	Flash	designer	looking	for	a	solid	overview	of	Flash	Professional	CS5,	this	book	
is	for	you.	Through	the	use	of	solid	and	practical	exercises,	you	will	soon	master	the	
fundamentals	of	this	latest	edition	of	the	Adobe	Flash	authoring	tool.	Using	a	series	of	
carefully	developed	tutorials,	you	will	be	led	from	basic	Flash	Professional	CS5	techniques	
to	the	point	where	you	can	create	animations,	MP3	players,	and	movies	designed	for	
playback	across	multiple	devices	in	no	time.	Each	chapter	focuses	on	a	major	aspect	
of	Flash,	and	then	lets	you	take	the	reins	in	a	“Your	Turn”	exercise	to	create	something	
amazing	with	what	you’ve	learned.

This	book	focuses	on	the	core	skill	set	you	need	to	feel	at	home	with	Flash	Professional	
CS5,	and	also	introduces	you	to	some	of	the	biggest	names	in	today’s	Flash	community	
through	interviews	and	actual	“How	To”	examples,	so	you	can	learn	from	the	masters.	You	
will	start	by	studying	the	Flash	Professional	CS5	interface,	and	while	you’re	at	it,	you’ll	be	
guided	toward	mastery	of	the	fundamentals,	such	as	movieclips,	text,	and	graphics,	which	
will	lead	you	into	some	of	the	more	fascinating	aspects	of	Flash,	including	code,	audio,	
video,	animation,	and	3D	transformations.

By	the	time	you	finish,	you	will	have	created	an	MP3	player	and	a	Flash	video	player,	been	
introduced	to	the	basics	of	ActionScript	3.0,	learned	how	to	combine	Flash	with	XML,	
styled	Flash	text	with	CSS	and	the	new	Text	Layout	Framework,	created	animated	scenes,	
and	worked	your	way	through	a	host	of	additional	projects.	All	of	these	exercises	are	
designed	to	give	you	the	practical	knowledge	necessary	to	master	Flash	Professional	CS5	
from	the	ground	up.	If	you’re	already	a	seasoned	Flash	designer,	this	book	will	get	you	up	
to	speed	with	this	latest	version	in	relatively	short	order.

This	book	covers	all	of	the	new	Flash	Professional	CS5	features,	such	as	the	new	Text	
Layout	Framework,	the	new	way	of	working	with	video,	and	two	of	the	coolest	new	
additions	to	the	application:	the	Springy	bones	tool	and	a	vastly	improved	Deco	tool.

All	of	the	files	you	need	to	use	this	book	can	be	found	at www.friendsofed.com.
Download	the	files,	and	let’s	get	busy!

this print for reference only—size & color not accurate

US $39.99
Mac/PC compatible

www.friendsofed.com

ISBN 978-1-4302-2994-0

9 781430 229940

53999

SHELVING CATEGORY
1. FLASH

FLA
SH

 C
S5 FO

R D
ESIG

N
ER

S

Green
Dias

FOUNDATION

Also Available

www.zshareall.com

http://www.zshareall.com

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

Foundation Flash CS5
for Designers

Tom Green and Tiago Dias

www.zshareall.com

http://www.zshareall.com

Foundation Flash CS5 for Designers
Copyright © 2010 by Tom Green and Tiago Dias

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,

without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2994-0

ISBN-13 (electronic): 978-1-4302-2995-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logos, or image we use the names, logos, or images only in an

editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Distributed to the book trade worldwide by Springer Science+Business Media LLC., 233 Spring Street, 6th

Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–

eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person

or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

President and Publisher:
Paul Manning

Lead Editor:
Ben Renow-Clarke

Technical Reviewers:

Cheridan Kerr, Kristian Besley

Editorial Board:
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie,

Duncan Parkes, Jeffrey Pepper, Frank Pohlmann,

Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor:
Mary Tobin

Copy Editor:
Kim Wimpsett

Compositor:

Lynn LHeureux

Indexer:
Kevin Broccoli

Artist:
April Milne

Cover Designer:

Anna Ishchenko

www.zshareall.com

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.friendsofed.com
http://www.zshareall.com

To Sarah and Rory McGrath in Berne, Switzerland. May your marriage
be one of peace, love, and joy.

—Tom Green

www.zshareall.com

http://www.zshareall.com

iv

Contents at a Glance

About the Authors... xiv

About the Technical Reviewers .. xv

Acknowledgments .. xvi

Preface... xviii

Chapter 1: Learning the Flash CS5 Professional Interface 1

Chapter 2: Graphics in Flash CS5... 67

Chapter 3: Symbols and Libraries .. 151

Chapter 4: ActionScript Basics... 213

Chapter 5: Audio in Flash CS5 .. 279

Chapter 6: Text ... 315

Chapter 7: Animation, Part 1 ... 361

Chapter 8: Animation, Part 2 ... 427

Chapter 9: Flash Has a Third Dimension.. 495

Chapter 10: Video... 527

Chapter 11: Building Interfaces with the UI Components 601

Chapter 12: XML (Dynamic Data) .. 643

Chapter 13: CSS... 669

Chapter 14: Building Stuff ... 695

Chapter 15: Optimizing and Publishing Flash Movies... 757

Index ... 809

www.zshareall.com

http://www.zshareall.com

v

Contents

About the Authors... xiv

About the Technical Reviewers .. xv

Acknowledgments .. xvi

Preface... xviii

Chapter 1: Learning the Flash CS5 Professional Interface 1

Getting started ... 2

Creating a new Flash document... 5

Managing your workspace .. 6

Setting document preferences and properties .. 8

Document preferences ... 9

Document settings .. 10

Zooming the stage .. 11

Exploring the panels in the Flash interface.. 14

The timeline... 14

The Properties panel .. 23

The Tools panel .. 29

The Library panel .. 31

Using layers ... 32

Layer properties .. 33

Creating layers .. 34

Adding content to layers... 36

Showing/hiding and locking layers .. 38

Grouping layers... 40

Where to get help.. 40

Your turn: building a Flash movie ... 42

Nesting movie clips... 45

Drawing the fly .. 47

Creating the illusion of depth with Flash ... 48

Creating an animated fly .. 55

Adding audio ... 59

Testing and saving Flash files.. 61

You have learned... 65

www.zshareall.com

http://www.zshareall.com

vi

Chapter 2: Graphics in Flash CS5... 67

The Tools panel ... 70

The Selection and Subselection tools ... 72

The Free Transform tool... 75

The Gradient Transform tool .. 77

Object Drawing mode ... 80

Drawing in Flash CS5.. 83

The Pencil tool .. 83

The Brush tool... 85

The Deco tool .. 88

The Spray Brush tool .. 98

The Eraser tool.. 101

The Pen tool .. 102

Your turn: let’s have a campfire.. 104

Drawing the tree trunk .. 104

Drawing the pine tree ... 106

Adding pine needles ...107

Build the campfire movie ..108

Working with color in Flash ... 110

The Color palette and the Color Picker ... 112

Creating persistent custom colors ...115

The kuler Color Picker .. 117

Your turn: playing with color...119

Using bitmap images in Flash...123

Working with bitmaps in Flash ...125

Your turn: tracing bitmaps in Flash..127

JPEG files and Flash .. 131

Using GIF files in Flash CS5..134

Importing Fireworks CS5 documents into Flash CS5 .. 137

Importing Illustrator CS5 documents into Flash CS5 ... 140

Importing Photoshop CS5 documents into Flash CS5... 146

You have learned... 149

Chapter 3: Symbols and Libraries .. 151

Symbol essentials.. 152

Symbol types.. 155

Graphic symbols ...155

Button symbols.. 156

Movie clip symbols.. 158

Editing symbols ... 159

www.zshareall.com

http://www.zshareall.com

vii

9-slice scaling .. 160

How 9-slice scaling works ..161

Your turn: frames for an olive seller...163

The 9-slice “gotchas” .. 166

Sharing symbols .. 169

Sharing libraries .. 171

Filters and blend modes.. 174

Applying filters ... 174

Applying a Drop Shadow filter..175

Adding perspective ... 177

Playing with blends ... 180

Managing content on the stage ..184

Aligning objects on the stage ...186

Stacking order and using the Align panel ... 189

Masks and masking...194

A simple mask... 194

Using text as a mask .. 201

Your turn: a sunny day on Catalina Island... 205

Adding the clouds ...206

Getting the clouds in motion...208

What you’ve learned.. 211

Chapter 4: ActionScript Basics... 213

The power of ActionScript ... 214

Actions panel components ...216

The Actions panel vs. the Behaviors panel...219

Everything is an object .. 220

Classes .. 221

Properties ..222

Setting properties via ActionScript ... 225

Methods ... 226

Events.. 229

Coding fundamentals .. 233

Syntax.. 233

Capitalization matters ... 233

Semicolons mark the end of a line ..234

Commenting code... 235

Dot notation ... 237

Scope... 239

Variables.. 240

www.zshareall.com

http://www.zshareall.com

viii

Data types ... 241

Operators... 244

Conditional statements ...247

Class files and the document class ...251

Syntax checking ..253

How to read the ActionScript 3.0 Language and Components Reference.......................... 257

Getting help ... 258

Search tactics.. 259

Using ActionScript ... 260

Your turn: pause and loop with ActionScript..261

Pausing a timeline...261

Looping the Timeline ..265

Using movie clips to control the timeline ...266

Using Code Snippets..266

What you’ve learned.. 276

Chapter 5: Audio in Flash CS5 .. 279

Flash and the audio formats ... 280

Bit depth and sample rates ..281

Flash and MP3 ..283

Adding audio to Flash.. 284

Importing an audio file .. 284

Setting sound properties ..285

Using audio in Flash .. 288

Choosing a sound type: event or streaming ...288

Removing an audio file from the timeline .. 291

Getting loopy ... 291

Adjusting volume and pan ..293

Your turn: adding sound to a button ...296

Controlling audio with ActionScript 3.0 ..298

Playing a sound from the Library ...298

Using a button to play a sound ..300

Playing a sound from outside of Flash ..301

Turning a remote sound on and off ...302

Adjusting volume with code..304

Your turn: storm over Lake Superior ...305

Code snippet: visualize audio ..309

What you’ve learned.. 313

www.zshareall.com

http://www.zshareall.com

ix

Chapter 6: Text ... 315

Fonts and typefaces .. 316

Adobe CoolType ..319

Typefaces and fonts ... 321

Working with device fonts ... 322

Embedding fonts ..324

The two text engines: TLF and Classic ..328

Types of text... 330

Read-only text properties ...331

Container and flow .. 337

Selectable and editable text ...340

TLF and ActionScript .. 341

Using TLF text as a button ...345

Hyperlinks and TLF ... 349

Using ActionScript to add hyperlinks to TLF text..350

Checking spelling... 352

Your turn: scrollable text ... 355

Using the UIScrollBar component ...355

Rolling your own scroller ..356

What you have learned ... 360

Chapter 7: Animation, Part 1 ... 361

Shape tweening ...363

Scaling and stretching .. 363

Modifying shape tweens...368

Altering shapes ...369

Shape hints ...373

Altering gradients .. 377

Classic tweening..379

Rotation ... 379

Classic tween properties ..381

Scaling, stretching, and deforming ..382

Easing .. 384

Custom easing ..387

Using animation ... 395

A closer look at the Timeline panel..395

Onion skinning .. 397

Modifying multiple frames...400

Combining timelines ... 402

www.zshareall.com

http://www.zshareall.com

x

Motion guides.. 408

Tweening a mask..411

Tweening Filter Effects ...413

Programmatic animation ...415

Copying motion as ActionScript...416

Using the keyboard to control motion..419

Creating random motion using ActionScript ...421

What you have learned ... 426

Chapter 8: Animation, Part 2 ... 427

Animating with the Motion Editor panel..428

Getting acquainted: scaling and moving ... 430

Easing with graphs ...437

Managing property keyframes ..445

Motion paths... 450

Manipulating motion paths ...450

Motion tween properties ...454

Motion presets ... 455

Inverse kinematics (IK).. 458

Using the Bone tool ..459

Putting some “spring” in your bones ..468

Animating IK Poses .. 478

Using the Bind tool..480

Your turn: animate a fully rigged IK model.. 487

Inspiration is everywhere .. 492

What you have learned ... 493

Chapter 9: Flash Has a Third Dimension.. 495

What 3D really means in Flash (and what it doesn’t)..496

Understanding the vanishing point ...498

Using the 3D tools ... 501

The 3D Rotation tool... 501

The 3D Translation tool ..506

Strategies for positioning content in 3D space .. 512

The parallax effect: traveling through space...512

Use the 3D center point to your advantage .. 517

Be aware of depth limitations...520

Your turn: simulate a photo cube.. 522

What you have learned ... 526

9

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

xi

Chapter 10: Video... 527

Video on the Web .. 529

Video formats ... 530

Encoding an FLV ... 532

Using the Adobe Media Encoder ...532

Batch encoding ...541

Creating an F4V file .. 542

More Media Encoder Goodness ..544

Playing an FLV in Flash CS5.. 546

Using the wizard ...546

Using the FLVPlayback component ..552

Playing video using ActionScript..555

Using the FLVPlayback control components .. 560

Navigating through video using cue points ... 562

Adding captions with the FLVPlaybackCaptioning component 567

Preparing and using alpha channel video...572

Going full-screen with video ...574

When video is not video ..579

Embedding video ...579

Embedding video as a movie clip ..581

Interacting with video content ..582

Adding cue points .. 583

An alternate XML format for cue points... 584

Your turn: create XML captions for video.. 588

Your turn: play with alpha video ... 593

Your turn: think big, really big! .. 597

What you have learned ... 598

Chapter 11: Building Interfaces with the UI Components 601

Button component..603

Using the Button component..603

Changing the Button component’s appearance ...610

CheckBox component ...615

ColorPicker component ...617

ComboBox component..619

DataGrid component ...622

Label component ...624

List component... 624

NumericStepper component ...626

ProgressBar component ... 628

www.zshareall.com

http://www.zshareall.com

xii

RadioButton component..630

ScrollPane component ..632

Slider component...633

TextArea component ...635

TextInput component...636

TileList component ..637

UILoader component ...638

UIScrollBar component ... 641

What you have learned ... 641

Chapter 12: XML (Dynamic Data) .. 643

Writing XML.. 645

Loading an XML file ...648

Using E4X syntax .. 649

Dots and @s.. 650

Node types ..654

E4X filtering ... 656

Double dots and more ..657

Namespaces ...659

Your turn: time to explore XFL ...661

What you have learned ... 667

Chapter 13: CSS... 669

Styling with CSS .. 671

Loading external CSS ...676

Custom tags .. 684

Style inheritance ...686

Styling hyperlinks .. 688

Embedded fonts ..690

Selectors vs. the Properties panel...693

What you have learned ... 694

Chapter 14: Building Stuff ... 695

Loading content ...697

Are we there yet?..697

Somebody stole my preloader ...701

Building a slide show with components and XML ...703

A tour of the Beijing art district ...704

www.zshareall.com

http://www.zshareall.com

xiii

Building an MP3 player with XML...711

Setting up the external playlist ...712

Polishing up the symbols..713

Wiring up the MP3 player controls...720

Evaluating and improving the MP3 player .. 735

Going mobile .. 737

A quick tour of Device Central ...737

Package the game as an Android AIR app...750

Build more stuff ... 756

What you have learned ... 756

Chapter 15: Optimizing and Publishing Flash Movies... 757

Flash’s love-hate Internet relationship ...758

This “Internet” thing... 759

Enter the World Wide Web...760

Bandwidth..760

So, who are these folks we call users? ...762

Streaming ... 763

The Bandwidth Profiler .. 765

Simulating a download ...765

Pinpointing problem content...769

Can I get that in writing?... 770

Optimizing and fine-tuning your Flash movies ..771

Planning your project .. 771

Distributing the weight .. 776

Optimizing elements in the movie..778

Publishing and web formats.. 783

Flash .. 784

HTML ... 785

Animated GIFs ..786

QuickTime ... 790

It’s showtime! ... 791

Publish settings ... 792

Publishing the butterfly garden ..803

Publishing Flash movies containing linked files.. 805

What you have learned ... 807

Index ... 809

www.zshareall.com

http://www.zshareall.com

xiv

About the Authors

Tom Green is currently Professor, Interactive Media through the

School of Media Studies at the Humber Institute of Technology and

Advanced Learning in Toronto, Canada. He has written numerous

books on Adobe technologies and several hundred tutorials for

numerous magazines and websites including activetutsplus.com,

layersmagazine.com, Community MX, and Computer Arts. Tom is

also an Adobe Community Professional and an Adobe Education

Leader. He has spoken and lectured at more than 20 conferences

and post-secondary institutions internationally including Adobe Max,

FITC, SparkEurope, and the Central Academy of Fine Arts in Beijing,

China. In his spare time, you can catch him hiking a trail with the Cub

Scout group he has led for the past 15 years or paddling a lake in

Northern Ontario. You can contact Tom at tom@tomontheweb.ca.

Tiago Dias discovered Flash around the time of Flash 3, after

seeing a Flash site for the first time. He started off by doing

freelance work on the side from his day job as a network/systems

engineer. Today he works as a Senior Flash Platform Developer at

Publicis Modem, the digital unit of Publicis. Previously he worked as

a video producer and Flash developer at a Corporate Television

company in Zurich.

Besides working and writing, Tiago is an Adobe Community

Professional and one of the co-managers of the Swiss Flash User

Group (SFUG) and has spoken at such conferences as FITC and

FATL on various topics.

In his free time, he writes tutorials on Flash, Flex, AS3, and new

technologies/libraries for various communities. To relax, he tries to

go snowboarding every time the sun is shining in the Swiss Alps or

hops on a plane and flies to a sunny and warm destination to go scuba diving. He currently lives and works

in Zurich, Switzerland.

www.zshareall.com

mailto:tom@tomontheweb.ca
http://www.zshareall.com

xv

About the Technical Reviewers

Cheridan Kerr has been involved in web development and design since 1997 when she began working on

a research team for the Y2K Millennium Bug. It was here she learned about the Internet and promptly fell

in love with the medium. In her career, she has been responsible for websites in the early 2000s such as

Weight Watchers Australia and Quicken.com.au, and she has worked as a creative services manager of

Yahoo!7 in Australia on clients such as Toyota, 20th Century Fox, and Ford. Currently, she is working as

the head of digital for an Australian advertising agency.

Kristian Besley is a Flash and web developer currently working in education and specializing in

games/interactivity and dynamically driven content using Flash, PHP, and .NET (not all at the same time,

obviously!). He also lectures in interactive media.

Kristian has produced freelance work for numerous clients including the BBC, Heinemann, and BBC

Cymru. He has written a number of books for friends of ED, such as working on the Foundation Flash

series, Flash MX Video (ISBN-13: 978-1-59059-172-7), Flash ActionScript for Flash 8 (ISBN-13: 978-1-

59059-618-0), and Learn Design with Flash MX (ISBN-13: 978-1-59059-157-4). He was also a proud

contributor to the amazing Flash Math Creativity books and has written for Computer Arts magazine.

Kristian currently resides with his family in Swansea, Wales and is a fluent Welsh speaker.

www.zshareall.com

http://www.zshareall.com

xvi

Acknowledgments

In the acknowledgments for the CS3 version of this book, I said, “Working with a coauthor can be a tricky

business. In fact, it is a little like a marriage. Everything is wonderful when things are going well, but you

never really discover the strength of the relationship until you get deep into it.” You may notice there is a

new name, Tiago Dias, on the cover, which indicates that David Stiller, my previous coauthor, had to back

out of this project because his Flash development business took off, and he simply didn’t have the time

necessary to devote to this book.

Four years ago Tiago and I explored the intersection of After Effects and Flash when we worked together

on another friendsofED title From After Effects to Flash: Poetry in Motion Graphics. When Dave graciously

stepped aside, who better to step in than Tiago?

Having kept in close touch for the four years between our first book and this one, we had developed a

close personal and professional relationship, which made the transition between coauthors seamless. As

well, Tiago brought a fresh pair of eyes to the process, and there were several times when I would get e-

mails that started off with “Dude, let’s try this approach…” when I went sideways instead of forward. Like

David, Tiago gave me a good shake when I wasn’t understanding a code block or technique; these

inevitably started with, “It’s really very simple, Tom,” and he would lay out exactly what I was missing.

When we finished the book, I reflected on the process and discovered that Tiago and I had picked up

exactly where we left off four years ago, and that, my friends, is the mark of an amazing partnership.

Next up is our editor Ben Renow-Clark. There seems to be this generalized misconception that the

relationship between an editor and a writer is adversarial. Actually, the best work is done when the

relationship is the exact opposite, and I am so grateful to have just that relationship with Ben.

Another group of people that have had a profound influence on this book are my students at the college

where I teach and those of you I have met at conferences, online or through my tutorial efforts. I am deeply

grateful for your patience when I tried out some of the exercises in this book and you reacted negatively or

positively. It showed me where I was doing something right or where I needed to start over again. Also,

hearing from my education peers around the world who use this book in their classrooms didn’t hurt when

it came to actually writing the exercises and even determining their order.

Finally, writing a book means I disappear into my office and generally become moody and difficult to live

with as I mull over some aspect of an exercise or the order of a chapter. It takes a very unique individual to

put up with that, let alone understand why, and my wife, best friend, and life partner for more than 30

years, Keltie, has somehow put up with it.

Tom Green

In 2009, Tom and I got together at Adobe’s MAX 2009 for a rather “quick” chat at one of the lunch tables.

The whole conversation was relatively short—15 to 20 minutes—and over that space of time we reviewed

all the chapters of this book, their content, and who was doing what. The result of that conversation is the

book you are holding. Now you might think that is crazy—our having one brief chat. It might seem like that

to you, but for us it was normal. The real discussions happened when we switched on our webcams and

www.zshareall.com

http://www.zshareall.com

xvii

saw each other—one in his home office and me in my living room, garden, office, or wherever I was at that

time. It was fun, and we laughed a lot during our Skype conversations.

As Tom already mentioned, we worked on a book together four years ago, and since then we have

developed a great partnership. We understand each other quite well, and, when one side knows what the

other is thinking or wants to accomplish, that leads to an awesome workflow. But as it is, life is not a piece

of cake; sometimes things don’t go the way they should, and that’s where your good friends, and in this

case especially Tom, come in. He backed me up during the course of this book, something that I was a bit

scared of, and, because of my job, I couldn’t always be there for him. If I were asked again to write a book,

I think I would only do it with this old man! No one else managed to wake my creativity while writing books.

Tom, you are a great person and a great mentor.

Next up I would like to thank Mischa Plocek and Pascal [P] Baumann for donating some of their work to be

used in this book. Thank you guys for all your work and time invested doing what you guys can do best!

Marcel, thanks for giving me the spare time I needed and providing me with some ideas; I don’t know how

to thank you for this, but I think I can come up with something.

Last, but not least, writing books can be a challenge. You constantly think day and night of what you have

to deliver the next day. Thanks to the time zones, I always had a few more hours to work on until Tom

woke up. I normally close myself in a state of writing in the morning, writing during lunch, and writing any

time when I’m home. There is not really a break, and I become very impatient and difficult to be around. It

needs lots of nerves and time to handle me during that time, and I can’t thank my girlfriend, Anjanee,

enough for supporting me and trying to handle my difficult moods during the process of the book and all

the other situations in life. Thank you!

Tiago Dias

www.zshareall.com

http://www.zshareall.com

xviii

Preface

I can remember the day as clear is if it were just yesterday. I was walking by my boss’s office late one

winter afternoon at the college where I teach, and he called me into his office. Sitting on his desk was a

thin white box with some sort of weird swirl on it. He slid the box across to me and asked, “You know

anything about Flash?”

To be honest, as a Director user, what I knew was filtered through the eyes of a Director guy, which meant

I didn’t know much and what I did know convinced me it was a wind-up toy compared to Director. I replied,

“A bit.” The boss leaned back in his chair and said, “Well, learn a lot more because you are teaching it in

four weeks.” This was the start of one of the longest, strangest, and most exhilarating trips I have ever

been on. The version was Flash 3, and I have been using and teaching Flash ever since.

What I didn’t expect is to be writing books, articles, and tutorials around Flash for the past 10 years. I also

didn’t expect that my fascination with Flash would take me around the world speaking at conferences or

lecturing at universities from Amsterdam to Wu Han on the subject of Flash and web-based media. It has

been quite the experience, and Flash CS5 makes things even more fascinating.

Flash CS5 is one of the more important versions in the history of the product. Flash CS5 has evolved into

a serious design tool able to handle everything from simple motion graphics to broadcast-quality

animations. It also marks the point where Flash is fully integrated into the Adobe product line up. The

Motion Editor, a rejigged Media Encoder, the TextLayoutFramework, and a fist full of sophisticated

animation tools are evidence of that.

This book is also a bit different from any Flash book you may have read or considered purchasing. From

the very start of the process, we put ourselves in your shoes and asked a simple question: “What do you

need to know and why?” This question led us into territory that we didn’t quite expect. As we were

grappling with that question early in the process, we kept bothering our network of Flash friends to be sure

we were on the right track. At some point, both of us simultaneously came to the conclusion, “Why not just

let them explain it in their own words?” This is why, as you journey through this book, you will encounter

various experts in the field telling you why they do things and offering you insights into what they have

learned. The odd thing is, at some point in their careers, they were no different from you.

One other aspect of this book that we feel is important is we had a lot of fun developing the examples and

exercises in the book. The fun aspect is important because, if learning is fun, what you learn will be

retained. Anybody can show you how to apply the new Springs feature to a rectangle on the Flash stage. It

is more effective when you do exactly the same thing to bend trees. Anybody can dryly explain 9-slice

scaling, but it becomes less techie when you apply it to a Chinese olive seller. Nested movie clips are a

“yawner” at best, but, when they are related to a Hostess Twinkie, the concept becomes understandable.

Shared libraries are an important subject. Instead of filling a library with circles and text, the concept

becomes relevant when the library is populated with “Bunny Bits.” Interested in going out on the bleeding

edge of Flash and preparing a project for an Android-based device? Whack-A-Bunny makes it interesting

and fun.

As you may have guessed, we continue to exhibit a sense of joy and wonder with Flash, and we hope a

little bit of our enthusiasm rubs off on you as well.

www.zshareall.com

http://www.zshareall.com

xix

Book structure and flow
To start, this is not a typical Foundation book. There is no common project that runs throughout the book.

Instead, each chapter contains a number of exercises to help you develop some “Flash chops,” and then

we turn you loose in the “Your turn” section of each chapter.

We start by dropping you right into the application and creating a small Flash movie located in a “butterfly

garden” (told you we were having fun). This chapter familiarizes you with the Flash workspace and the

fundamentals of using Flash Professional CS5. Chapter 2 introduces you to working with the graphic tools

and with graphics files and finishes with your creating a banner ad for an ice hotel.

Chapter 3 introduces you to symbols and libraries in Flash CS3. In this chapter, you learn how to create

and use symbols, and we even let an olive seller explain how 9-slice scaling works. With those

fundamentals under your belt, we show you how to share symbols and libraries between movies and how

to manipulate symbols with filters and blend effects, and along the way you travel from a park bench in

Paris to a wall in Adobe’s San Jose headquarters, discovering how to create some rather powerful effects

in your Flash movies. The chapter finishes by showing you how to use masks to your advantage in Flash.

At this point in the book, you have pretty well mastered the fundamentals. The rest of the book builds upon

what you have learned. Chapter 4 picks you up and throws you into the ActionScript 3.0 pool. Chapter 5

starts by explaining how to use audio in Flash and finishes with your constructing an MP3 player. Chapter

6 reinforces the message that “text isn’t the gray stuff that surrounds your animations.” We show you how

it is both serious and fun by stepping through how to create scrolling text and how to use the

TextLayoutFramework to bring professional-level typography into your work.

Chapter 7 is one of the more important chapters in the book because Flash’s roots were as an animation

application. You are going to learn the basics here, but don’t expect to be shoving boxes and circles

around. You will be banging hammers, eating apples, dropping rabbits, fixing a neon sign and lighting it up,

and setting a butterfly in motion. Did we mention we believe in having fun? Chapter 8 continues the motion

theme by getting you deep into the new Motion Editor, and Chapter 9 walks you through the 3D tools

introduced in Flash CS4 and improved upon in Flash CS5.

From animation, we move into video in Flash. In Chapter 10, we show the entire process from encoding to

upload. In fact, the chapter finishes with your adding captions and a full-screen capability to a Superman

movie. Along the way, you will visit heaven and meet a “Girl with Stories in Her Hair.”

Chapters 11, 12, and 13 give you the chance to play with all of the Flash user interface components,

actually style a Flash movie using Cascading Style Sheets, and explore how XML gives you a huge

amount of flexibility when it comes to adding dynamic data to your movie.

Chapter 14 is where you get to pull it all together and build everything from a simple preloader to a full-

bore game designed to be played on an Android device.

The final chapter focuses on the end game of the design process. It shows you a number of the important

techniques you need to know that will keep your movies small and efficient, how to create the SWF that

will be embedded into a web page, and how to keep that process as smooth as possible.

Finally, Tiago and I are no different from you. We are learning about this application and what it can and

cannot do at the same time as you. Though we may be coming at it from a slightly more advanced level,

www.zshareall.com

http://www.zshareall.com

xx

there is a lot about this application we’re still learning. If there is something we have missed or something

you don’t quite understand, by all means contact us. We’ll be sure to add it to the book’s site.

Our final words of advice for you are these:

The amount of fun you can have with this application should be illegal. We’ll see you in jail!

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are used

throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudocode and variable input are written in italic ixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where we want to draw your attention to something, we’ve highlighted it like this:

Ahem, don’t saw we didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, we use an arrow like this:

This is a very, very long section of code that should be written all
on the same line without a break

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

1

Chapter 1

Learning the Flash CS5 Professional Interface

Welcome to Flash Professional CS5 Professional. We suspect you are here because you have seen a lot

of the great stuff Flash can do and it is now time for you to get into the game. We also suspect you are

here because you have discovered Flash is more complex than you originally thought. The other reason

you may be here is because you are an existing Flash user and CS5 is suddenly a lot different from Flash

8 or even Flash CS3 or CS4, and you need to get a handle on this new stuff in relatively short order.

Whatever your motivation, both of us have been in your shoes at some point in our careers, which means

we understand what you are feeling. So, instead of jumping right into the application, let’s go for walk.

What we’ll cover in this chapter:

 Exploring the Flash interface

 Using the Flash stage

 Working with panels

 The difference between a frame and a keyframe

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

2

 Using frames to arrange the content on the stage

 Using layers to manage content on the stage

 Adding objects to the Library

 Testing your movie

If you haven’t already, download the chapter files. You can find them www.friendsofED.com/download.html?
isbn=1430229940.

These are the files used in this chapter:

 Magnify.fla (Chapter01/Exercise Files_CH01/Exercise/Magnify.fla)

 Leaf.fla (Chapter01/Exercise Files_CH01/Exercise/Leaf.fla)

 Properties.fla (Chapter01/Exercise Files_CH01/Exercise/Properties.fla)

 Layerss.fla (Chapter01/Exercise Files_CH01/Exercise/Layers.fla)

 Garden.fla (Chapter01/ExerciseFiles_CH01/Exercise/Garden.fla)

 FliesBuzzing.mp3 (Chapter01/ExerciseFiles_CH01/Exercise/FliesBuzzing.mp3)

 XFL_Example (Chapter01/ExerciseFiles_CH01/Exercise/XFL_Example/)

What we are going to do in this chapter is take a walk through the authoring environment—called the

Flash interface—pointing out the sights and giving you an opportunity to play with some of the stuff we

will be pointing out. By the end of the stroll, you should be fairly comfortable with Flash and have a good

idea of what tools you can use and how to use them as you start creating a Flash movie.

As we go for our walk, we will also be having a conversation that will help you understand the

fundamentals of creating a Flash movie. Having this knowledge right at the start of the process gives you

the confidence to build upon what you have learned. So, let’s start our walk right at the beginning of the

process, the Start page.

Getting started
A couple of seconds after you double-click the application icon to launch Flash, the Start page, shown in

Figure 1-1, opens. This page, which is common to all the CS5 applications, is divided into six discrete

areas.

www.zshareall.com

http://www.friendsofED.com/download.html?
http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

3

Figure 1-1. The Start page

 Create from Template: This category is a bit misleading. Double-clicking one of the choices

actually opens the New from Template dialog box shown in Figure 1-2. If you have used

previous versions of Flash, you will immediately notice that the variety and utility of the offered

templates—more than 50 of them—has greatly expanded.

Figure 1-2. Flash Professional CS5 contains a new lineup of templates designed to help you become

more productive.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

4

 Open a Recent Item: The documents listed in this category are the ones you have opened

recently. Provided you haven’t moved them to another location or deleted them, clicking one will

open the document. The Open link at the bottom of the list lets you browse for files not contained

in this list

 Create New: The middle area of the page is where you can choose to create a variety of new

Flash documents. Your choices include a blank Flash document, which is the ActionScript 3.0

choice and is called a flah; a project aimed at a tablet, cell phone, or other mobile device; an AIR

file; a series of code-based documents; and a Flash project, which is used to organize multiple

.fla files in a given project.

The key to the Start page is the ability to select a new document based upon which

version of ActionScript will be used in the document. The current version of ActionScript

is 3.0, which was introduced in Flash CS3. The previous version of this language, used

in Flash MX 2004 and Flash 8, was ActionScript 2.0. We will be digging into ActionScript

3.0 in greater depth in Chapter 4. From this point on, unless otherwise stated, you will be

selecting the ActionScript 3.0 option when opening new documents throughout this

book.

 Extend: Click this, and, providing you have an Internet connection, you will be taken to the

Adobe Exchange. This is a location where Flash designers and developers offer a variety of small

applications, called extensions, that add to or improve upon Flash’s functionality. These

extensions can either be purchased or are offered for free.

 Learn: The right area of the page is reserved for a variety of links that are designed to help you

discover more about a specific aspect of Flash.

The items at the bottom allow you to explore the new features of Flash, explore the Flash Developer

Center where experts (including the authors of this book) write about the code side of Flash, and explore

the Design Center where the artistic aspects of the application are presented and discussed. The last link,

Adobe TV, is a rather extensive set of video tutorials.

We are willing to bet those of you who have used Flash in the past missed a sweet little

change when you launched Flash. In previous versions of Flash, when you launched the

app, the Welcome screen appeared and took over the computer. You couldn’t do

anything else while Flash was loading. That annoyance is a thing of the past, so feel free

to return to Twitter while Flash boots.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

5

Creating a new Flash document
Let’s continue our stroll through Flash by creating a new Flash document. To do this, simply click the

ActionScript 3.0 button in the Create New area of the Start page. This opens the interface shown

in Figure 1-3.

Figure 1-3. The Flash authoring environment

This interface is the feature-rich authoring environment that is the heart and soul of Flash. The Object

Windows Library (OWL) first introduced in the CS4 lineup is now common to practically all Adobe

applications in the CS5 lineup from Adobe. If you are a Mac user and, depending upon your “rabidity” of all

things Mac, you are going to either love this interface or hate it. The reason is that Adobe has dispensed

with the floating panels that tended to drive Flash developers and designers who worked “cross platform”

up the wall, across the ceiling, and down the other wall.

Let’s now step into that big white area on the screen and take a moment to look around. The stage, that

large white area in the center of the screen, is where the action happens. A good way of regarding the

stage in relation to Flash is this: if it isn’t on the stage, the user isn’t going to see it. There will be instances

where this last statement is not exactly true, but we’ll get into those later in this book.

On the far-right edge of the screen is a set of tools that will allow you to draw, color, and otherwise

manipulate objects on the stage. Just to the left of these tools is the Properties panel.

At the bottom of the interface is the Timeline panel, which longtime Flash users simply refer to as the

timeline. This is the place where action occurs. As you can see, the timeline is broken into a series of boxes

called frames. The best way of regarding frames is as individual frames of a film. When you put something

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

6

on the stage, it will appear in a frame. If you want it to move from here to there, it will start in one frame and

move to another position on the stage in another frame a little further along the timeline. The box with the

vertical red stem draped over the timeline is called the playhead. Its purpose is to show you the current

frame being displayed. When a Flash movie is playing through a browser, the playhead is in motion, and the

user is seeing the frame where the playhead is located. This is how things appear to move in Flash. Another

thing you can do with the playhead is drag it across the timeline while you are creating the Flash movie. This

technique is known as scrubbing the timeline and has its roots in film editing.

To the right of the stage are the panels. Panels are used to modify and manipulate whatever object you

may have selected on the stage or to even add an object to the stage. These objects can be text,

photographs, line art, short animations, video, or even interface elements called components. You can

use the panels and the menus to change not only the characteristics of the objects but also how the

objects behave on the stage. Panels can be connected to each other (docked), or they can float freely in

the interface (floating) and can be placed anywhere you like. To move a panel simply, click the Panel tab

and drag it to a new location. If you see a blue line, the panel will dock to that location.

From our perspective, one of the more indispensable panels is the Properties panel. We’ll talk about this a

little later, but as you become more comfortable with the application, this panel will become a very important

place for you. In fact, we can’t think of any chapter in this book where we don’t refer to this panel.

Managing your workspace
As you may have surmised, the Flash authoring environment is one busy place, and if you talk to a Flash

developer or designer, they will also tell you it can become one crowded place as well. As you start

creating Flash projects, you will discover that screen real estate is a valuable commodity because it fills up

with floating panels and other elements. This has all changed in Flash Professional CS5. Here’s how you

manage the panels:

 Collapse panels: At the top of the Tools panel and the Panels area on the right side of the

screen is an icon that looks like a double arrow (see Figure 1-4). Click it, and the panels will

collapse and become icons. If you click the arrow above the tools, the Tools panel changes from

a single strip to an icon. The process is called panel collapse, and it is designed to free up

screen space in Flash.

Figure 1-4. Panels can be collapsed to give you more screen space.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

7

 Show collapsed panels as icons only: Sometimes you need the extra interface room taken up

by the panel’s name. Roll the mouse pointer to the left or right edge of the panel strip. When the

mouse pointer changes to a double-sided arrow, click and drag to expand and show the panel’s

name, or shrink to the width of the icons in the strip.

 See tooltips for panel icons: When a panel is collapsed to nothing more than its icon, you only

need to place the mouse pointer over an icon, and a tooltip showing the panel name will appear.

This is especially handy when you see an icon and wonder, “What panel is that?”

 Open and close drawers: Click an icon, and the contents of that panel will fly out, as shown in

Figure 1-5. Click it again, and it will slide back. These panels that fly out and slide back are called

drawers.

Figure 1-5. Click a panel icon, and the contents slide out. Click the icon again, and they slide in.

 Minimize panels: Another method of buying screen real estate is to minimize panels you aren’t

using. Double-click the tab with the panel’s name, and the panel collapses upward. Double-click it

again, and it expands to its original dimensions.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

8

 Close panels: Right-click (Windows) or Control+click (Mac) a panel, and select Close from the

context menu. This not only closes the panel but also removes it from your workspace. To get it

back, simply open the Window menu, and click the name of the panel you closed to restore it.

 Add panels to sets: A collection of panel icons, as shown in Figure 1-6, is called a panel set. To

create a customized panel set, drag one panel icon onto another panel. When you release the

mouse, the panel will expand to include the new panel added. To remove a panel from a set, just

drag the panel icon to the bottom of the stack.

Figure 1-6. A typical panel set

Though not a technique, this tip falls squarely into the “Well, it’s about time” category of

new stuff. If you drag a floating panel over another interface element, the floating panel

will become somewhat transparent and let you see what is under the panel.

To save your customized workspace, select Window ➤ Workspace ➤ New Workspace, and enter a

name for your custom workspace into the New Workspace dialog box. Click OK to add the workspace. If

you want to delete one of your workspaces, select Window ➤ Workspace ➤ Manage Workspaces.

When the Manage Workspaces dialog box opens, select the space to be deleted, and click the Delete

button.

Speaking of workspaces, at the top right of the Flash interface is a drop-down list of “prerolled”

workspaces that came with the application. The default is Essentials. If you click and hold down that

button, a drop-down list of the choices appears. If you want to return the workspace to its “out-of-the-box”

look, select the Reset Essentials item in the menu.

Now that you have learned to become the master of the work environment, let’s take a look at how you

can also become the master of your Flash document and wander over to the Preferences and

Properties areas of Flash.

Setting document preferences and properties
Managing the workspace is a fundamental skill, but the most important decision you will make concerns

the size of the Flash stage and the space it will take up in the browser. That decision is based upon a

number of factors, including the type of content to be displayed and the items that will appear in the HTML

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

9

document beside the Flash movie. These decisions all affect the stage size and, in many respects, the

way the document is handled by Flash. These two factors are managed by the Preferences dialog box

and the Document Properties panel.

Document preferences

To access preferences, select Edit ➤ Preferences (Windows) or Flash Professional ➤

Preferences (Mac). This will open the Flash Preferences dialog box. There is a lot to this dialog box,

and we’ll explore it further at various points throughout this book. For now, we are concerned with the

general preferences in the Category area of the window. Click General, and the window will change to

show you the general preferences for Flash, as shown in Figure 1-7.

Figure 1-7. The general preferences can be used to manage not only the workspace but also items on

the stage.

If you examine the selections, you will realize they are fairly intuitive. You can choose to see the Welcome

screen when the application starts, to see tooltips when the mouse pointer is over a tool or object, and to have a

test movie appear in a tabbed window or float. You can determine how items are selected on the stage and the

timeline and even the colors that will be used to tell you what type of object has been selected on the stage.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

10

If you have been using Flash for a few years, the expansion of the Highlight color

list to include a variety of objects is a welcome addition.

Now that you know how to set your preferences, let’s take a look at managing a document’s properties.

Click the Cancel button to close the Preferences dialog box. When it closes, let’s wander back to the

stage and explore how a document’s properties are determined.

Document settings

To access the Document Settings dialog box, use one of the following techniques:

 In the Properties panel, click the Edit button in the Properties area—not the Publish

area. This will open the Document Settings dialog box shown in Figure 1-8.

 Select Modify ➤ Document.

 Press Ctrl+J (Windows) or Cmd+J (Mac).

 Right-click (Windows) or Control+click (Mac) the stage, and select Document Properties from

the context menu.

As you have just seen, there are a number of methods you can use in Flash to obtain

the same result. In this case, it is opening the Document Settings dialog box. Which

one is best? The answer is simple: whichever one you choose.

Figure 1-8. Set the stage size through the Document Settings dialog box.

Now that the Document Settings dialog box is open, let’s look around. The Dimensions input area is

where you can change the size of the stage. Enter the new dimensions, press the Enter (Return) key, or click

the OK button, and the stage will change. The Match area is commonly used to shrink the stage to the size of

the content on the stage. The Contents radio button is currently grayed out because the stage is empty.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

11

For those of you wondering about the Adjust 3D Perspective Angle … selection,

sit tight. This is better explained in Chapter 9.

For example, if you change the Dimensions setting to a width of 400 pixels and height of 300 pixels, set

the Background color option to #000099, and then click OK, the stage will shrink to those dimensions

and change color to the dark blue chosen. The changes, as shown in Figure 1-9, are also reflected in the

Properties panel.

Figure 1-9. Changes made to the document properties are shown in the Properties panel.

The only two document properties that can be directly changed through the

Properties panel are the frame rate (FPS) and the stage color (Stage).

Zooming the stage

There will be occasions when you discover the stage is a pretty crowded place. In these situations, you’ll

want to be sure that each item on the stage is in its correct position and is properly sized. Depending on

the size of the stage, this could be difficult because the stage may fill the screen area. Fortunately, Flash

allows you to reduce or increase the magnification of the stage through a technique called zooming. (Note

that zooming the stage has no effect upon the actual stage size that you set in the Document Settings

dialog box.)

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

12

To zoom the stage, click the Magnification drop-down menu near the upper-right corner of the stage.

The drop-down menu shown in Figure 1-10 contains a variety of sizes ranging from Fit in Window to

800% magnification. For example, click the 400% option, and the stage will most likely fill your screen, as

shown in Figure 1-11. Just keep in mind you are not scaling the image on the stage. You are actually

magnifying the stage and its contents. Click the 25% option, and you will see not only the stage but the

entire pasteboard, that grey area surrounding the stage, as well.

Figure 1-10. Select a zoom level using the Magnification drop-down menu.

If you want more zoom, you can get a lot closer than 800 percent. Select View ➤ Zoom In or View ➤

Zoom Out to increase the zoom level to 2000 percent. If you want a real bird’s-eye view of the stage,

Zoom Out allows you to reduce the magnification level to 8 percent. For you keyboard junkies, Zoom In

is Ctrl+= and Zoom Out is Ctrl+ -. If you are a control freak, you can enter your own value. Just keep in

mind the maximum zoom level is 2000 percent, and the minimum zoom level is 8 percent.

Figure 1-11. Selecting a 400 percent zoom level brings you close to the action.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

13

If you want a side-by-side comparison in which one image is at 100 percent view and the other is at 400

percent or 800 percent, follow these steps:

1. Open the Magnify.fla file in the Chapter 1 Exercise folder.

2. Select Window ➤ Duplicate Window. The current document will appear in a separate tab.

3. Set the new window’s magnification level to 400%.

4. Undock the 100 percent window, as shown in Figure 1-12, and let it float.

5. Select the image in the floating window by clicking the image and dragging it around the stage.

You will see the zoomed-in version in the docked window also moves. This is a really handy

feature if precise positioning of elements on the stage is critical.

6. Click each window’s close button to close the window. Don’t save the changes.

Figure 1-12. Duplicating a window gives you a bird’s-eye view and a detailed view of your work

simultaneously.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

14

Exploring the panels in the Flash interface
At this point in our stroll through the Flash interface, you have had the chance to play with a few of the

panels. We also suspect that by this point you have discovered that the Flash interface is modular. By that

we mean that it’s an interface composed of a series of panels that contain the tools and features you will

use on a regular basis, rather than an interface that’s locked in place and fills the screen. You have also

discovered that these panels can be moved around and opened or closed depending upon your workflow

needs. In this section, we are going to take a closer look at the more important panels that you will use

every day. They include the following:

 The timeline

 The Library panel

 The Properties panel

 The Motion Editor

 The Tools panel

 The Help panel

The timeline

Here’s the secret behind how one becomes a proficient Flash designer: master the timeline, and you will

master Flash.

When somebody visits your site and an animation plays, Flash treats that animation as a series of still

images. In many respects, those images are comparable to the images in a roll of film or one of those flip

books you may have played with when you were younger. The ordering of those images on the film or in

the book is determined by their placement on the film or in the book. In Flash, the order of images in an

animation is determined by the timeline.

The timeline, therefore, controls what the user sees and, more importantly, when they see it. To

understand this concept, let’s go for a walk in a Canadian forest while the leaves are falling from the trees.

At its most basic, all animation is movement over time, and all animation has a start point and an end point.

The length of your timeline will determine when animations start and end, and the number of frames between

those two points will determine the length of the animation. As the author, you control those factors.

For example, Figure 1-13 shows you a simple animation. It is a maple leaf that falls from the top of the

stage to the bottom of the stage. From this, you can gather that the leaf will move downward when the

sequence starts and will continue to its finish position at the bottom of the stage once it has twisted in the

middle of the sequence.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

15

Figure 1-13. A simple animation sequence

Figure 1-14. Animation is a series of frames on the timeline.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

16

So, where does time come into play? Time is the number of frames between the start and middle or middle

and end points in the animation. The default timing in a Flash movie—called frame rate—is 24 frames per

second (fps). In the animation shown previously, the duration of the animation is 48 frames, which means

it will play for 2 seconds. You can assume from this that the leaf’s middle location, where it twists, is the

24th frame of the timeline. If, for example, you wanted to speed up the animation, you would reduce the

length of the timeline to 12 frames; if you wanted to slow it down, you would increase the number of

frames to 72 or decrease the frame rate. If you would like to see this animation, open the Timeline.swf

file in the O1_Complete folder.

So much for a walk in the woods; let’s wander over to the timeline and look at a frame.

Frames

If you unroll a spool of movie film, you will see that it is composed of a series of individual still images.

Each image is called a frame, and this analogy applies to Flash.

When you open Flash, your timeline will be empty, but you will see a series of rectangles—these are the

frames. You may also notice that these frames are divided into groups. Most frames are white, and every

fifth frame is gray (see Figure 1-15), just to help you keep your place. Flash movies can range in length

from 1 to 16,000 frames, although a Flash movie that is 16,000 frames in length is highly unusual.

Figure 1-15. The timeline is nothing more than a series of frames.

A frame shows you the content that is on the stage at any point in time. The content in a frame can range

from one object to hundreds of objects, and a frame can include audio, video, code, images, text, and

drawings either singly or in combination with each other.

When you first open a new Flash document, you will notice that frame 1 contains a hollow circle. This

visual clue tells you that frame 1 is waiting for you to add something to it. Let’s look at a movie that actually

has something in the frames and examine some of the features of frames:

1. Open the Leaf.fla file located in the Chapter 1 Exercise folder. When the file opens, you will

see a yellow leaf, in frame 1, sitting on the stage. You should also note the solid dot in the Leaf

layer. This indicates that there is content in the frame. The empty layer above it has a hollow dot,

which indicates there is no content in that frame.

2. Place the mouse pointer on any frame of the timeline, and right-click (Windows) or Control+click

(Mac) to open the context menu that applies to frames (see Figure 1-16).

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

17

Figure 1-16. The context menu that applies to frames on the timeline

As you can see, quite a few options are available to you. They range from adding motion to the

timeline to adding actions (code blocks) that control the objects in the frame. We aren’t going to

dig into what each menu item does just yet, but be assured, by the time you finish this book, you

will have used each menu item.

3. Place the mouse pointer at frame 36 of the Leaf layer, open the context menu, and select

Insert Keyframe. Repeat this step at frame 72 as well. What you will notice is that the

timeline changes to the series of gray frames and three black dots, as shown in Figure 1-17.

These gray rectangles represent a span of frames separated by keyframes.

If you prefer to use the keyboard, place the mouse pointer at frame 36, and press F5.

With that frame selected, press F6. The F5 command adds a frame, and F6 converts the

selected frame to a keyframe. If you just want to add a keyframe, select frame 36, and

press F6.

An obvious question at this point is, “So, guys, what’s a keyframe?” Remember when we talked earlier

about animations and how they had a start point and an end point? In Flash, those two points are called

keyframes; any movement or changes can occur only between keyframes. In Flash, there are two types

of keyframes: those with stuff in them (indicated by the solid dot shown in frame 1 of Figure 1-17) and

those with nothing in them. The latter are called blank keyframes, and they are shown as frames with a

hollow dot. The first frame in any layer, until you add something to that frame, is always indicated by a

blank keyframe.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

18

Figure 1-17. The timeline contains three keyframes.

To navigate to specific frames in the timeline, you drag the playhead to the frame. It is the red rectangle

with the line coming out of it.

4. Drag the playhead to frame 36, use the Selection tool to click the leaf on the stage, and move

the leaf down to the middle of the stage. As you moved the leaf, you may have noticed there was

a “ghosted” version of the leaf on the screen. This feature was introduced in Flash CS4. What it

does is to give you a reference to the starting position of the motion.

As mentioned earlier in the chapter, the technique of dragging the playhead across the

timeline is called scrubbing. As you scrub across the timeline, you will also see the

values in the Current Frame and Elapsed Time areas at the bottom of the timeline

change. This is quite useful in locating a precise frame number or time in the animation.

5. Drag the playhead to the keyframe in frame 72, and drag the leaf off the bottom edge of the stage.

6. Scrub the playhead across the stage. The leaf doesn’t do much other than to snap to its new

positions as you encounter the keyframes. Let’s fix that right now.

7. Right-click (Windows) or Control+click (Mac) between the first two keyframes of the leaf layer,

and select Create Classic Tween from the context menu. An arrow will appear between the

two keyframes. Scrub across the timeline again, and the leaf’s movement is much smoother.

Repeat this step for the next two keyframes

A motion tween is how simple animations are created in Flash. Flash looks at the locations of the objects

between two keyframes, creates copies of those objects, and puts them in their positions in the frame. If you

scrub through your timeline, you will see that Flash has placed copies of the leaf in frames 2 through 35 and

in frames 36 through 71 and put them in their final positions to give the illusion that the leaf is falling.

That was interesting, but we suspect you may be wondering, “OK, guys, do tweens work only for stuff that

moves?” Nope. You can also use tweens to change the shapes of objects, their color, their opacity, and a

number of other properties. We’ll get to them later on in the book.

8. Drag the playhead to frame 36, and click the leaf on the stage. Drag the leaf toward the center of

the stage to the bottom of the stage. If you scrub through the timeline, you will see the leaf move

quite a distance to the right. This tells you that you can change an animation by simply changing

the location of an object in a keyframe.

9. Close the file without saving it.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

19

Using the Motion Editor panel

As you get deeper into working with Flash, you will find there is a reason why the Timeline and Motion

Editor panels are docked beside each other in the interface; motion is created in the timeline and

manipulated in the Motion Editor. Make a change in one panel, and it is instantly reflected in the other.

In previous versions of Flash, the Property Inspector, which is now the Properties panel, could be

used to change the properties of an animation. This would include techniques such as “ramping” the speed

of an animation, called easing, or even changing how an animation occurs such as adding or removing

rotation. This is still true for shape tweens and classic tweens, but the true power of motion is realized in

the Motion Editor.

Though we are going to get deeper into using this panel’s features in Chapters 7 and 8, now would be a

good time to stroll over to it and take a peek at it. Open the MotionPath.fla file. When the file opens, the

first thing you will notice is there is an icon, as shown in Figure 1-18, beside the layer name. This “zooming

square” icon indicates the layer is a tween layer. The term tween indicates that something is changing at

some point in the layer—we’ll get into tweening in more detail later. The other thing you may have noticed,

especially if you have used Flash, is there are no arrows between the keyframes. The tween span is

indicated in blue, and because of the icon, the use of the arrow is not necessary. The dotted line you see

on the stage indicates a tween path.

If you are an After Effects user, you may be looking at that tween path and thinking,

“Nah, it can’t be!” Yes, it is a motion path, and just like an After Effects motion path, you

can adjust that path by clicking and dragging one of the dots. Each dot represents a

frame of the animation.

Drag the playhead across the timeline, and you will see the leaf tumble, grow, and shrink as you move the

playhead from left to right. Select the Leaf layer name on the timeline, and click the Motion Editor tab

to open the Motion Editor, as shown in Figure 1-18.

You may have noticed us mentioning After Effects when we talk about tweens and this panel. This is

deliberate because this feature of Flash can trace its roots in a straight line back to After Effects. In that

application, objects put in motion or otherwise manipulated over time have a full set of properties and

guides for each layer of content in an After Effects project. The major property is motion. Flash users who

use After Effects to create motion graphics for their Flash projects find the “After Effects way of doing

things” to be relatively compact and simple. The result over the years has been Flash designers wondering

why Flash didn’t have this feature. Obviously enough of you asked the question because it was introduced

in Flash CS4 and has been broadly accepted by the Flash community.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

20

Figure 1-18. A motion layer, tween path, and the Motion Editor panel

Time for a history lesson. Back in 2000, one of us attended FlashForward 2000. That

event is regarded by many of the old Flash hands as being Flash’s “Woodstock.” It was

at this conference that Adobe introduced its “Flash killer”: LiveMotion. LiveMotion used

the same timeline as the Motion Editor. At the time, we (and many people at the

conference) thought the timeline was a “sweet” idea, and eight years later, three years

after it purchased Macromedia (which owned Flash), Adobe added this feature to Flash.

If you have never used After Effects, now would be a good time to start easing you into the application,

and we’ll start with terminology. See those triangles beside the property names in Figure 1-18? If you click

one, it rotates down, and the area is revealed. After Effects users call those triangles twirlies, and the term

used to describe clicking one of them to reveal the contents of the area uses is to twirl down. We will be

using these terms quite extensively when we talk about the Motion Editor panel.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

21

The Motion Editor panel is broken into five distinct areas:

 Basic Motion: If you twirl down Basic Motion, you will see that it controls the movement of the

object on the x- and y-axes and rotation on the z-axis.

 Transformation: Think of this panel as a “by-the-numbers” version of the Free Transform

tool, which allows you to slant (skew) and resize (scale) the selected object.

 Color Effect: This panel—click the + sign to open it—allows you to manipulate alpha

(transparency), color, brightness, and tint.

 Filters: This is where you apply one of the filters—Drop Shadow, Blur, Glow, Bevel, Gradient

Glow, Gradient Bevel, Adjust Color—to the object on the stage.

 Eases: This area is where you affect the starting or stopping motion of an animation.

When you twirl down an area of the panel, all of the properties it can affect are revealed.

The Color Effect and Filters areas are also available in the Properties panel.

Why? These are the properties of an object that can be changed, but they can also be

“tweened.” For example, you could have the leaf change from yellow to red if you tween

its Tint property.

At the bottom of the panel there are three icons, and each one, as shown in Figure 1-19, has a blue

number beside it. These values allow you to control how the graph and frames will appear in the Motion

Editor.

Figure 1-19. You can manage the look of the Motion Editor panel.

If you place the mouse pointer over one of the numbers, notice how the mouse pointer changes to a

double arrow. This tells you the number can be changed because it is “hot text.” One way to change the

value is to double-click the number and enter a new value. Another is to click and drag across the number;

as you do so, the value changes. This click-and-drag method is called scrubbing. Hold down the Shift key

when you scrub, and the values will increase by increments of 10; or, simply scrub the numbers to

increment by single digits. Scrubbing in this area of the Motion Editor works as follows:

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

22

 Scrub across the Graph Size value, and the side of the graph in the panel gets larger or

smaller.

 Scrub across the Expanded Graph Size value, and just the graph for the selected property

gets larger or smaller. This one, at first, is a bit tricky. Changing the value doesn’t result in an

immediate change. What you need to do to see the graph is to click the solid color area of the

strip. When you do this, the property strip expands to full size, and you can now make the

change.

 Scrub across the Viewable Frames value, and you will see the frames in the graph get larger

or smaller. The maximum value for this feature is the current number of frames in the tween span,

not the Flash movie. Notice how you can’t get a number larger than the 72 frames in the

animation.

Twirl down the Basic motion section. If you scrub across any of the values, the object in that particular

frame will change.

Be careful with that blue back arrow on the title strip. This is the Reset Values button,

and it doesn’t simply reset the values to their original values. Click it, and the tween is

removed.

Click the twirlie in the Eases area to open it, and you see that you can remove any “eases” or apply a

Simple (Slow) ease to the entire area or to individual properties. We aren’t going to explain a Simple

(Slow) ease because you are, for now, just passing by. We’ll cover this in greater depth in the animation

chapters.

You will notice that you have a timeline in this panel. Obviously, if you have a timeline, you should be able

to add a keyframe. Drag the playhead to frame 15 of the timeline in the Motion Editor. In the keyframe

area are two arrows on either side of a diamond. Click the diamond to add a new keyframe, which is now

visible as a dot on the graph, and if you look up at the main timeline, you will see a keyframe has also

been added in frame 15 of the main timeline. The diamond also turns golden. If you move the playhead to

another position, the keyframe changes back to gray. This should tell you a golden diamond, as shown in

Figure 1-20, means there is a keyframe in the frame. If you click the arrows on either side of the diamond,

you will jump to the previous keyframe or the next keyframe. When one of those arrows is grayed out, you

are essentially being told there are no further keyframes beyond the current position of the playhead.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

23

Figure 1-20. Key frames added in the Motion Editor also appear on the main timeline.

The Colors, Filters, and Eases strips are treated a bit differently. Instead of an arrow, they have plus

and minus signs. Click the + in the Filters area. A drop-down menu containing a list of the filters, as

shown in Figure 1-21, appears. To remove a filter, click and hold the – sign. A drop-down list of the filters

applied to that object will appear. Click a filter in that list, and it will be removed.

Figure 1-21. Filters can also be added and tweened.

The Properties panel

We have been mentioning the Properties panel quite a bit to this point, so now would be a good time to

stroll over to it and take a closer look. Before we do that, let’s go sit down on the bench over there and

discuss a fundamental concept in Flash: everything has properties.

What are properties? These are the things objects have in common with each other. Tiago and Tom share

the Author property of this book. We are both males. We both have a common language property, English,

but we also have properties we don’t share. For example, our location properties are Zurich and Toronto.

Tiago is a bit taller than Tom. At our most basic, we are humans on the planet Earth. In Flash terms,

though, we are objects on the stage. Click the Tiago object, and you will instantly see that, even though he

and Tom share similar properties, they also have properties that are different. The properties of any object

on the Flash stage will appear in the Properties panel, and best of all, any properties appearing on the

panel can be changed.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

24

The panel, as shown in Figure 1-22, is positioned, by default, to the right of the screen. You can move it

elsewhere on the screen by simply dragging it into position and releasing the mouse. There are locations

on the screen where you will see a shadow or darkening of the location when the panel is over it. This

color change indicates that the panel can be docked into that location. Otherwise, the panel will “float”

above the screen.

Figure 1-22. The Properties panel

New to the Properties panels in Flash Professional CS5 is the SWF History area. This handy little

feature tracks the changes in SWF size and the date and times when the SWF was tested. In Figure 1-23,

you can see how this feature works. The latest changes or tests are shown in the Properties panel. If

you click the Log button, the full history appears in the Output panel. Tracing changes really isn’t

necessary with this project. In this case, click the Clear button, and the entries in the Properties and

Output panels will be deleted.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

25

Figure 1-23. SWF History is a useful addition to the application.

When an object is placed on the stage and selected, the Properties panel will change to reflect the

properties of the selected object that can be manipulated. For example, in Figure 1-24, a box has been

drawn on the stage. The Properties panel shows you the type of object that has been selected and tells

you the stroke and fill colors of the object can also be changed. In addition, you can change how scaling

will be applied to the object and the treatment of the red stroke around the box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

26

Figure 1-24. The Properties panel changes to show you the properties of a selected object that can be

manipulated (in this case, the size, location, and stroke and fill properties of the box on the stage).

Let’s experiment with some of the settings in the Properties panel:

1. Open the file named Properties.fla in the Exercise folder. When the file opens, you will see

an image of the Summer Palace in Beijing over a black background and the words Summer

Palace, Beijing at the bottom of the stage.

2. In the Tools panel, click the Selection tool, which is the solid black arrow at the top of the

Tools panel (see Figure 1-25).

Clicking tools is one way of selecting them. Another way is to use the keyboard. When

you roll the mouse pointer over a tool, you will see a tooltip containing the name of the

tool and a letter. For example, the letter beside the Selection tool is V. Press the V

key, and the Selection tool will be highlighted in the Tools panel.

Figure 1-25. Click a tool or use the keyboard to select it.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

27

3. Using the Selection tool, click once white area of the stage. The Properties panel will

change to show you that you have selected the stage and can change its color.

4. In the Properties panel, click the Background Color chip to open the Color Picker, as

shown in Figure 1-26. Click the medium gray on the left (#999999), and the stage will turn gray.

You have just changed the color property of the stage.

Figure 1-26. Color and stage dimensions are properties of the stage.

5. Click the text. The Properties panel will change to show you the text properties, as shown in

Figure 1-27, that can be changed. Click the color chip to open the Color Picker. When it

opens, click the white chip once. The text turns white.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

28

Figure 1-27. Color is just one of many text properties that can be manipulated.

6. Click the black box surrounding the image. The Properties panel will change to tell you that

you have selected a shape and that the fill color for this shape is black. It also lets you know that

there is no stroke around the shape. In the Position and Size areas are four numbers that

tell you the width, height, and x and y coordinates of the shape on the stage. Select the Width

value, and change it from 500 to 525. Change the Height number from 380 to 400.

Finally, change the X and Y values for the selection to 5 and 23, as shown

in Figure 1-28. Each time you make a change, the selected object will get wider or higher.

If you are an After Effects user, then seeing properties as links (or, as they are known in

Flash, hot text) is not new. If you want to quickly change any value, simply click and

drag a value to the left or the right. As you drag, the numbers will change, and the

selected object on the stage will reflect these new values as you drag.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

29

Figure 1-28. The size and the location of selections can also be changed in the Properties panel.

The Tools panel

The Tools panel, as shown in Figure 1-29, is divided into four major areas:

 Tools: These allow you to create, select, and manipulate text and graphics placed on the stage.

 View: These allow you to pan across the stage or to zoom in on specific areas of the stage.

 Colors: These tools allow you to select and change fill, stroke, and gradient colors.

 Options: This is a context-sensitive area of the panel. In many ways, it is not unlike the

Properties panel. It will change depending upon which tool you have selected.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

30

Figure 1-29. The Tools panel

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

31

If there is a small down arrow in the bottom-right corner of a tool, this indicates additional tool options.

Click and hold that arrow, and the options will appear in a drop-down menu, as shown in Figure 1-30.

Figure 1-30. Some tools contain extra tools, which are shown in a drop-down list.

The Library panel

The Library panel is one of those features of the application that is so indispensable to Flash developers

and designers that we simply can’t think of anybody who doesn’t use it . . . religiously.

In very simple terms, it is the place where content, including video and audio, that is used in the movie is

stored for reuse later in the movie. It is also the place where symbols and copies of components that you

may use are automatically placed when the symbols are created or the components are added to the

stage.

Let’s wander over to the Library and take a look. If the Properties.fla file isn’t open, open it now.

Click the Library icon on the right side of the screen, or click the Library tab if the panel isn’t

collapsed. The Library will fly out, as shown in Figure 1-31. Inside the Library, you will see the

Summer Palace image is actually a library asset. Drag a copy of the image from the Library to the

stage. Leave it selected, and press the Delete key. Notice that the image on the stage disappears, but the

Library item is retained. This is an important concept. Items placed on the stage are, more often than

not, instances of the item and point directly to the original in the Library.

To collapse the Library panel, click the stage. Panels, opened from icons, are configured to collapse

automatically. If, for some reason, you want to turn off autocollapse, select Edit ➤ Preferences

(Windows) or (Flash ➤ Preferences) to open Preferences. Click General, and deselect Auto-

Collapse Icon Panels when the preferences open. Another way of opening and closing the Library

is to press Ctrl+L (Windows) or Cmd+L (Mac).

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

32

Figure 1-31. The Library panel

Using layers
The next stop on our walkabout is found under the stage: the layers feature of the timeline. There are a

few things you need to know regarding layers:

 You can have as many layers in a Flash movie as you need. They have no effect upon the file

size.

 Use layers to manage your movie. Flash movies are composed of objects, media, and code, and

it is a standard industry practice to give everything its own layer. This way, you can easily find

content on a crowded stage. In fact, any object that is tweened must be on its own layer.

 Layers can be grouped. Layers can be placed inside a folder, which means you can, for example,

have a complex animation and have all the objects in the animation contained in their own layers

inside a folder.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

33

 Layers stack on top of each other. For example, you can have a layer with a box in it and another

with a ball in it. If the ball layer is above the box layer, the ball will appear to be above the box.

 Name your layers. This is another standard industry practice that makes finding content in the

movie very easy.

Screen real estate is always at a premium. If you need to see more of the stage, double-

click the Timeline tab to collapse the layers. Double-click the Timeline tab again,

and the layers are brought back.

Layer properties

Layers can also be put to very specific uses, and this is accomplished by assigning one of five layer

properties, as shown in Figure 1-32, to a layer. Though they are called properties, they really should be

regarded more as layer modes than anything else. We will be covering these in great depth in Chapter 3

and Chapters 7 and 8, which focus on animation, but this is a good place to start learning where they are

and what they do. The modes, accessed by right-clicking (Windows) or Control+clicking (Mac) a layer

name and clicking Properties, are as follows:

 Normal layer: This is the layer you have been working with to this point in the book. Objects on

these layers are always visible, and motion is more or less governed by the Motion Editor.

You can always identify a normal layer; its icon looks like a folded sheet of paper.

 Mask layer: The shape of an object on a masking layer is used to hide anything outside the

shape and reveals only whatever is under the object. For example, place an image on the stage

and add a box in the layer above it. If that layer is a masking layer, only the pixels of the part of

the image directly under the box will be seen. The icon for a mask layer is a square with an oval

in the middle of it.

 Masked layer: If you have a mask layer, you will also have one of these. Like Siamese twins,

mask layers and masked layers—any layer under a mask—are joined together. The icon for a

masked layer looks like a folded sheet of paper facing the opposite direction as the icon for a

normal layer. In addition, the layer name for a masked layer is indented.

 Folder layer: The best way of thinking of this mode is as a folder containing layers. They also

provide quick access to layer groupings you may create. The icon for a folder layer is a file folder

with a twirlie. Click the twirlie, and the layers in the folder are revealed. Click the twirlie again, and

the layers collapse.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

34

 Guide layer: A guide layer contains shapes, symbols, images, and so on, that you can use to

align elements on other layers in a movie. These things are really handy if you have a complex

design and want a standard reference for the entire movie. What makes guide layers so important

is that they aren’t rendered when you publish the SWF. This means, for example, that you could

create a comprehensive design (or comp) of the Flash stage in either Fireworks CS5 or

Photoshop CS5, place that image in a guide layer, and not have to worry about an overly large

SWF being published and bloating the SWF with unnecessary file size and download time. The

icon for a guide layer is a T-square.

Figure 1-32. The Library panel

Flash Professional CS5, by default, omits layers that are hidden—we get into hiding

layers in a couple of minutes—when the SWF is eventually published. The result is a

reduction in the size of the SWF.

Creating layers

Let’s start using layers. Here’s how:

1. Open the Layers.fla document. When it opens, you will see the garden and a couple of

butterflies, as shown in Figure 1- 33. If you look at the timeline, you could logically assume this is

a simple photograph sitting on a single layer named Garden.

2. Open the Library. You will notice that there is an object named Butterfly contained in the

Library. That object is a movie clip. We’ll get into movie clips in a big way in Chapter 3.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

35

Figure 1-33. We start with what appears to be a photograph of flowers and butterflies.

3. Click the keyframe in the Garden layer. Three objects—the two Monarch butterflies and the

image—are selected. What you have just learned is how to select everything on a layer. Click the

pasteboard to deselect the objects.

4. Each object should be placed on its own layer. Click the New Layer button—it looks like a page

with a turned-up corner—directly under the Garden layer strip. A new layer, named Layer1, is

added to the timeline.

5. Select the Garden layer by clicking it, and add a new layer. Notice how the new

layer is placed between Garden and Layer 1. This should tell you that all new layers added to

the timeline are added directly above the currently selected layer. Obviously, Layer 2 is out of

position. Let’s fix that.

6. Drag Layer 2 above Layer 1, and release the mouse. Now you know how to reorder layers

and move them around in the timeline. Layers can be dragged above or below each other.

7. Add a new layer, Layer 3. Hold on—we have four layers and three objects. The math doesn’t

work. That new layer has to go.

8. Select Layer 3, and click the Trash Can icon under the Garden strip. Layer 3 will now be

deleted, and now you know how to get rid of an extra layer.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

36

9. Double-click the Layer 1 layer name to select it. Rename the layer Butterfly. Now that you

know how to rename a layer, select File ➤ Revert to revert the file to its original state. It’s now

time to learn how to put content on layers.

Adding content to layers

Content can be added to layers in one of two ways:

 Directly to the layer by moving an object from the Library to the layer

 From one layer to another layer

Let’s explore how to use the two methods to place content into layers:

1. Create a new layer, name it Butterfly01, and drag the Butterfly movie clip from the

Library to cover the flower, as shown in Figure 1-34, in the bottom-right corner of the stage.

The hollow dot in the layer will change to a solid dot to indicate that there is content in the frame.

When moving objects from the Library to the stage, be sure to select the layer, sometimes

called a target layer, before you drag and drop. This way, you can prevent the content from

going in the wrong layer. Let’s now turn our attention to getting the two other butterflies into their

own layers.

Figure 1-34. Objects can be dragged directly from the Library and added to specific layers.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

37

2. With the Shift key held down, click the two butterflies in the center and upper-left corner of the

stage. This will select them, and the blue box around each one indicates they are movie clips.

3. Select Modify ➤ Timeline ➤ Distribute to Layers, or press Ctrl+Shift+D (Windows) or

Cmd+Shift+D (Mac). The butterflies will appear in the new Butterfly layers that appear under

the Garden layer. Rename these layers Butterfly02 and Butterfly03, and move them, as

shown in Figure 1-35, above the Butterly01 layer.

Figure 1-35. Multiple selections can be placed in their own layers using the Distribute to Layers

command.

The next technique is one that addresses a very common issue encountered by Flash designers: taking

content from one layer and placing it in the exact same position in another layer. This is an issue because

you can’t drag content from one layer to another.

1. Click the Butterfly movie clip in the center of the stage, and press Ctrl+X (Windows) or

Cmd+X (Mac) to cut the selection out of the layer.

2. With the layer still selected in the timeline, select Edit ➤ Paste in Place (see Figure 1-36). A

copy of the butterfly will appear in the precise location at which you cut it.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

38

Figure 1-36. Paste in Place pastes objects in the precise location of the original object that was either

cut or copied to the clipboard.

Whatever happened to a simple paste command in the Edit menu? The Paste in

Center command replaces it. It has always been a fact of Flash life that any content on

the clipboard is pasted into the center of the stage. The name simply acknowledges this.

Showing/hiding and locking layers

We are sure the three icons—an eyeball, a lock, and a hollow square (shown in Figure 1-37)—above the

layers caught your attention. Let’s see what they do.

Figure 1-37. The Layer Visibility, Lock, and Show All Layers As Outlines icons. Note the

Pencil icon in the Butterfly02 layer, which tells you that you can add content to that layer.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

39

Click the eyeball icon. Notice that everything on the stage disappears, and the dots under the eyeball in

each layer change to a red x. This eyeball is the Layer Visibility icon, and clicking it turns off the

visibility of all the content in the layers. Click the icon again, and everything reappears. This time, select

the Butterfly02 layer, and click the dot under the eyeball. Just the butterfly in the center of the stage

disappears. What this tells you is that you can turn off the visibility for a specific layer by clicking the dot in

the visibility column.

When you click a layer, you may notice that a pencil icon appears on the layer strip. This tells you that you

can add content to the layer. Click the Butterfly02 layer, and you’ll see the pencil icon. Now, click the

dot under the lock in the Butterfly02 layer. The lock icon will replace the dot. When you lock a layer,

you can’t draw on it or add content to it. You can see this because the pencil has a stroke through it. If you

try to drag the Butterfly movie clip from the Library to the Butterfly02 layer, you will also see that

the layer has been locked because the mouse pointer changes from a tan arrow to a circle with a line

through it. Also, if you try to click the butterfly on the stage, you won’t be able to select it. This is handy to

know in situations where precision is paramount and you don’t want to accidentally move something or,

god forbid, delete something from the stage.

OK, we sort of “stretched the truth” there by telling you that content can’t be added to a

locked layer. ActionScript is the only thing that can be added to a locked layer. This

explains why many Flash designers and developers create an ActionScript-only layer—

usually named scripts or actions—and then lock the layer. This prevents anything

other than code from being placed in the layer.

The final icon is the Show All Layers As Outlines icon. Click it, and the content on the stage turns

into outlines. This is somewhat akin to the wireframe display mode available in many 3D modeling

applications. In Flash, it can be useful in cases where dozens of objects overlap and you simply want a

quick “X-ray view” of how your content is arranged. With animation, in particular, it can be helpful to

evaluate the motion of objects without having to consider the distraction of color and shading. Like visibility

and locking, the outlines icon is also available on a per-layer basis.

You can change the color used for the outline in a layer by double-clicking the color chip

in the layer strip. This will open the Layer Properties dialog box. Double-click the

color chip in dialog box to open the Color Picker; then click a color, and that color will be

used.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

40

Grouping layers

You can also group layers using folders. Here’s how:

1. Click the Folder icon in the Layers panel. A new unnamed folder—Folder 1—will appear on

the timeline. You can rename a folder by double-clicking its name and entering a new name.

2. Drag the three Butterfly layers into the folder. As each one is placed in the folder, notice how

the name indents. This tells you that the layer is in a folder.

3. Next, remove the layers from the folder. To do so, simply drag the layer above the folder on the

timeline. You can also drag it to the left to unindent it.

4. To delete a folder, select it, and click the Trash Can icon.

Step away from the mouse, and put your hands where we can see them. Don’t think you

can simply select a folder and click the Trash Can icon to remove it. Make sure that

the folder is empty. If you delete a folder that contains layers, those layers will also be

deleted. If this happens to you, Adobe has sent a life raft in your direction. An alert box

telling you that you will also be deleting the layers in the folder will appear. Click Cancel

instead of OK.

Where to get help

In the early days of desktop computing, software was a major purchase, and nothing made you feel more

comfortable than the manuals that were tucked into the box. If you had a problem, you opened the manual

and searched for the solution. Those days have long passed. This is especially true with Flash, because

as its complexity has grown, the size of the manuals that would need to be packaged with the application

would also need to have grown. In this version of Flash, the user manuals are found in the Help menu.

Here’s how to access Help:

1. Select Help ➤ Flash Help, or press the F1 key. The Help panel that opens (see Figure 1-38)

is one of the most comprehensive sources of Flash knowledge on the planet; best of all, it’s free.

The Help panel is driven by an Adobe AIR application—Adobe Help—that is installed when you

install the CS5 applications. The Help menu is more generically known as Adobe Community

Help.

The panel is divided into two areas. On the left side you can enter your criteria for very specific

topics and choose to have the result drawn from Adobe Help on your computer—Local—or from

a variety of web sources, Online. The right side of the window allows you to choose a more

general topic.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

41

Figure 1-38. The Flash Help panel is extensive.

2. Click the What’s new in Adobe Flash professional link to open it. As you can see,

the Help topics are actually collections of individual documents designed to help you learn what

you need to know, along with practical examples of specific techniques.

3. To go to a specific topic, just type the word into the text input box at the top of the interface, and

click the Search button. For example, enter video into this area, and press the Return (Enter)

key. The results are presented directly under your search criteria.

4. Click the first link, Create video for use in Flash, and the right pane will fill with the

selected page (as shown in Figure 1-39).

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

42

Figure 1-39. Searching a term in the Flash Help documents

So much for the walkabout. It is time for you to put into practice what you have learned.

Your turn: building a Flash movie
In this exercise, you are going to expand on your knowledge. We have shown you where many of the

interface features can be found and how they can be used, so we are now going to give you the

opportunity to see how all these features combine to create a Flash movie.

You will be undertaking such tasks as the following:

 Using the Properties panel to precisely position and resize objects on the stage

 Creating layers and adding content from the Library to the layers

 Using the drawing tools to create a shape

 Creating a simple animation through the use of a tween

 Saving a Flash movie

 Testing a Flash movie

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

43

By the end of this exercise, you will have a fairly good understanding of how a Flash movie is assembled

and the workflow involved in the process.

1. Open the Garden.fla file.

2. When the file opens, if it isn’t already open, open the Library by selecting Window ➤ Library

or pressing Ctrl+L (Windows) or Cmd+L (Mac). As you can see in Figure 1-40, you are starting

with a background image and a few movie clips.

Figure 1-40. The assets are in place. It is your job to turn them into a movie.

3. The Library is still a bit messy. Let’s do a little tidying. Click the New Folder icon—it looks like

a file folder—at the bottom of the Library panel. A new, untitled folder will appear in the

Library. Double-click the folder name, not the icon, to select the name. Change the folder’s

name to MovieClips.

4. Drag all the movie clips—the blue files with the “gear” in the upper-right corner of the icon—into

the new folder. A movie clip is an animation with its own timeline. We get into that topic in

Chapter 3.

5. Create a new folder, and name it Audio.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

44

6. Let’s bring the audio file for this movie into the Library. To start, select File ➤ Import ➤

Import to Library. Navigate to this chapter’s Exercise folder, and select the

FliesBuzzing.mp3 file, as shown in Figure 1-41. Click the Import to Library button, and

when the file appears in the Library, move it to the Audio folder.

Figure 1-41. Importing a file to the Library

Though you are given the choice of importing content into the timeline or the Library,

it is considered a best practice in Flash to import everything directly into the Library.

The only file without the option of importing its content to the stage is an audio file.

With the assets in place, we can now turn our attention to the project.

The plan is to have a fly merrily buzz through the flowers and around the butterflies in the garden. The key

words are buzz and through. “Buzz” indicates there is an audio file, and you have brought that into the

Library. You will be adding that file to the project near the end of the process.

The “through” part may at first appear to be a no-brainer. Of course, a fly is going to buzz through the

flowers in the image. No, it isn’t. As the movie is currently set up, the fly will buzz above the flat image of

the flowers on the stage. It won’t go behind the flowers and butterflies because it can’t. What this should

tell you is that we are going to create the illusion of depth by using the layers in the Flash timeline and

creating a butterfly and some flowers for the fly to fly behind.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

45

To accomplish this, we need to first create the butterfly by using movie clips inside a movie clip to create

an object. That, of course, was a mouthful, and there is a term for it: nesting. Here’s how to create a

nested movie clip.

Nesting movie clips

Before we start, it is important for you to know we are not going to get into a long discussion on the subject

of movie clips, animation, and so on. We are saving those discussions for Chapters 3 and 7. What we

want to do here is to get you used to working with the interface, so to start, let’s build a butterfly.

1. With the Library panel open, click the New Symbol button—the turned-up piece of paper—at

the bottom of the Library panel. The Create New Symbol dialog box shown in Figure 1-42

will open.

2. Select the text in the Name area, and enter the word Butterfly. Select Movie Clip from the

Type drop-down menu. Click OK. The dialog box will close, and what looks like a blank stage will

open.

Figure 1-42. Creating a new Flash symbol

The blank stage you are looking at is called the Symbol Editor. If you look at the top-left corner of the

interface, you will see buttons for Scene 1 and Butterfly. The last symbol you see is the one currently

open. In many respects, these are breadcrumbs that enable you to follow your path back to the main

timeline, which is always Scene 1. The + sign you see in the center of the stage is actually the upper-left

corner of the main stage in your Flash movie.

3. Select Layer 1, and add two more layers. Starting with the bottom layer, name the layers

Body, RightWing, and Leftwing.

4. Select the LeftWing layer, open the MovieClips folder in the Library, and drag the WingL

movie clip to the selected layer.

5. Select the RightWing layer, and drag the WingR movie clip to the stage. These last two steps

did exactly the same thing; they put something on the stage in a specific layer. Use whichever

technique works for you.

6. Select the Body layer, and drag the Body movie clip to the stage. You have just placed (nested)

three movie clips by placing them on separate layers (Figure 1-43) inside a single movie clip.

Let’s get the Butterfly assembled.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

46

Figure 1-43. Nesting is the practice of placing symbols within other symbols.

7. Select the WingL movie clip on the stage, and open the Properties panel. Twirl down the

Position and Size strip, and set the X and Y positions for the selection to 0,0, as shown in

Figure 1-44.

Figure 1-44. Use the hot text feature to accurately position selections on the stage.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

47

8. Click the Body movie clip, and drag it into position against the right edge of the left wing. Drag the

right wing to the right edge of the Body movie clip, as shown in Figure 1-45.

9. Click the Scene 1 link to save the Butterfly movie clip and to return to the main timeline.

Here’s a little “teacher trick” you might find useful. Use the Magnifying Glass tool to

zoom in on an object like the butterfly, as shown in Figure 1-45. Then select an object,

and use the arrow keys on your keyboard to nudge the selected object into place.

Figure 1-45. The butterfly you will be using in the movie has been assembled.

Drawing the fly

Having discovered how to create a movie clip using existing objects, let’s now create one from “scratch.”

We need a fly to buzz through the garden, and if you poke through the MovieClips folder in the Library,

you will notice the fly is missing.

Before we start, we aren’t going to ask you to draw a fly or create a cartoon version of one. Instead, you

are going to create a shape that is somewhat “flylike” and have it buzz through the flowers. Follow these

steps to create the fly:

1. Select Insert ➤ New Symbol, or press the Ctrl+F8 (Windows) or Cmd+F8 (Mac) keys to open

the Create New Symbol dialog box. In the previous exercise, you used the New Symbol

button in the Library to create a new symbol. This is another method of creating a symbol.

Which is best? Who cares? Use what works for you.

2. Name the symbol Fly, and select Movie Clip as its Type. Click OK to open the Symbol

Editor.

3. When the Symbol Editor opens, select 400% from the Zoom drop-down menu. This lets you

create a rather small object but still be able to see what you are doing.

4. Select the Pencil tool, and in the Stroke color area of the Tools, select Black as the stroke

color. Draw a shape that looks somewhat flylike.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

48

5. In the tools, set Fill Color to Black. Select the Paint Bucket tool, and click once inside

your shape to fill it (Figure 1-46) with black.

6. Click the Scene 1 link to return to the main timeline. When the main timeline appears, put your

Fly movie clip into the MovieClips folder in the Library.

Figure 1-46. The fly shape is filled with a color using the Paint Bucket tool.

Creating the illusion of depth with Flash

If you spend any time creating Flash movies, you will inevitably be asked, “How did you do that?” Though

you can give a long explanation of how you created the movie to develop the technique, the short answer

is always, “Magic!”

In this exercise, the “magic” involves manipulating a flat space in such a way that the “illusion” of depth is

created. This illusion can be created in a few ways:

 Use layers to your advantage: Objects in layers are either above or below the objects contained

in the layers above them or below them.

 A Blur filter can be used to show depth: Use blurs to provide depth of field much like you do

with your camera.

 The z-axis can be used as the depth axis: Objects on the Flash stage can be moved or

positioned either up and down (y-axis), to the left or right (x-axis), or closer or farther away (z-

axis).

 Tweens are great for creating depth: Resizing objects over time can create the illusion of

objects receding into the distance or moving toward the viewer.

In this part of the exercise, we are going to use all four methods to create depth. Let’s start this process by

using the first one: layers. Here’s how:

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

49

1. Add three new layers to the Garden.fla file. Name the layers FrontGarden, MiddleGarden,

and Butterfly. Make sure the FrontGarden layer is above the MiddleGarden layer.

2. Select the MiddleGarden layer, open the Library, and drag the BottomFlower movie clip

from the MovieClips folder to the stage.

3. With the BottomFlower movie clip selected on the stage, move it into position in the bottom-

right corner of the stage.

4. Select the Butterfly layer, and drag the Butterfly movie clip to the stage.

5. Select the FrontGarden layer, and drag the Front movie clip to the stage. Place it at the

bottom-left corner of the stage, as shown in Figure 1-47.

Figure 1-47. Layers are a quick way of adding depth to a movie.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

50

Now that the objects are in place, let’s further add to the illusion of depth by adding some depth of field

and blurring the background image. Here’s how:

1. Drag the playhead to frame 50 of the timeline, and unlock the Background layer.

2. Right-click (Windows) or Control+click (Mac) frame 50 of the Background layer to open the

context menu. Select Insert Keyframe from the menu. The black dot that appears in the

frame, as shown in Figure 1-48, tells you this is a keyframe.

Figure 1-48. Adding a keyframe to a layer

3. Move the playhead to frame 1 of the timeline, and click the background image on the stage to

select it.

4. Open the Properties panel, and twirl down the Filters strip.

5. Click the Add Filter button—it looks like a turned-up piece of paper—at the bottom of the

panel, and select Blur from the pop-up menu. The Blur filter’s parameters, as shown in Figure

1-49, appear in the panel. Set the Blur X and Blur Y values to 10, and select High from the

Quality drop-down menu. The image blurs, and the three layers above it remain in sharp focus.

6. Save the file.

What’s with the keyframe? We are eventually going to require the background to return

to sharp focus. Adding the keyframe gives us the flexibility to have the image slowly

come into focus through the use of a motion tween.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

51

Figure 1-49. Use of a Blur filter can provide depth of field.

The next technique uses the z-axis to provide depth. Introduced in Flash CS4, the z-axis is becoming a

vital 3D tool in the hands of Flash designers and animators. What the z-axis does is to essentially move a

camera closer to or farther away from an object. As the camera moves closer to the object, it appears to

grow, and as it moves farther away from the object, it shrinks. Let’s try it:

1. Lock the Background layer. Move the playhead to frame 50, and with the Shift key pressed,

click in frame 50 of the layers on the timeline. Press the F6 key to add a keyframe to each of the

selected frames.

In the previous exercise, you used the context menu to add a key frame, and in this one

you pressed F6. Which is the best way? Who cares? You have created a keyframe.

Having said that, use of the F6 key is more common throughout the Flash community.

2. Select the Front movie clip on the stage, and click the Properties tab to open the

Properties panel.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

52

3. Twirl down the 3D Position and View strip, and set the Z value to -100. The selection, as

shown in Figure 1-50, appears to get larger.

4. Use the following 3D position values for the flower and the butterfly in the other two layers:

 Flower: X = 475, Y = 428, Z = -50

 Butterfly: Z = -20

5. Save the file.

Figure 1-50. Negative values on the z-axis make selections look bigger.

Did the image get larger when we applied the negative z-axis value? Not quite. When thinking of the z-

axis, regard the surface of the computer’s screen as being the 0 value. Moving away from the screen

toward you, using negative z-axis values, actually pulls the object closer to the camera. In this case, the

camera is located at a position of about -500 pixels away from the screen. If you change the Z value of the

selection to -503, the image seems to disappear. In fact, the image is now behind the camera, and

because you can’t swivel the camera, it is essentially out of the movie.

Don’t go crazy with this effect. It is processor-intensive, and there are limits to how far you can go without

an error message. The reason is this effect is achieved through scaling.

As you change the Z values in the Property panel, notice how there is a corresponding change in the W

and H values. This is because, as shown in Figure 1-51, as you move along the positive values on the z-

axis, you start approaching the object’s vanishing point.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

53

Figure 1-51. Move along positive side of the z-axis, and you approach the vanishing point.

Now that we have the first three methods of creating depth in place, the time has arrived to put those

keyframes in frame 50 to good use. What we are going to do is to have the three layers with z-axis values

move back to a value of 0, and at the same time, the blurred image will come back into focus.

This can all be done because each of the objects to be affected is a movie clip. Here’s how:

1. Right-click (Windows) or Control+click (Mac) between the two key frames in the FrontGarden

layer. Select Create Motion Tween from the context menu. Two things will happen. The first

is that the span of frames between the two keyframes turns blue, and the icon for the layer

changes from a piece of paper with a turned-up corner to a piece of paper with a comet tail. Both,

as shown in Figure 1-52, are graphic indications that you have created a motion layer.

2. Unlock the Background layer, and add motion tweens to the remaining layers.

Figure 1-52. The layer icon and the powder blue color indicate a motion layer.

3. Click anywhere on the tween in the FrontGarden layer to select the span. Click the Motion

Editor tab to open the Motion Editor, as shown in Figure 1-53.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

54

4. Drag the playhead to the end of the timeline in the Motion Editor. Twirl down Basic

Motion, and change the Z value from -100 to 0. Notice how the graph changes from a straight

line to one that moves upward across the span.

Figure 1-53. Tweens are created by changing property values in the Motion Editor.

5. Repeat step 4 for the MiddleGarden and Butterfly layers. When finished, click the

Timeline tab to close the Motion Editor.

6. Select the object in the Background layer, and move the playhead to the last frame of the

motion tween.

7. In the Properties panel, change the Blur amount to 0. Notice the addition of a keyframe to

the layer.

8. The flower in the MiddleGarden layer, thanks to the 3D positioning, may be out of position. To

fix that, move the playhead to the last frame of the motion tween, select the flower, and move it

into position.

9. Scrub the playhead across the tweens, as shown in Figure 1-54, to preview the effect.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

55

10. Save the project.

Figure 1-54. Z-axis and blur properties can be tweened to create the illusion of depth.

Creating an animated fly

If you look at the project so far, you should feel pretty good about what you have been able to accomplish

with a few mouse clicks. The animation in the garden looks pretty good, and the blur tween is a pretty nifty

technique. Naturally, Flash designers are rarely satisfied with their projects when there is something else

that could be added to make it even more effective. In this case, the fly needs to buzz among the flowers,

butterflies, and bees in the images on the stage. The fly will reinforce the illusion of depth and provide

some visual interest to the viewer.

Before we start, let’s take a moment and have a brief chat about those last two sentences.

When people first start using this application, there is a real tendency to load up projects with all manner of

effects. In many cases, there is no rationale for the inclusion of these effects apart from the designer telling

his friends, “Aren’t I clever?”

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

56

Flash is a powerful tool, and some of the most interesting Flash movies out there are ones where the

effects are subtle. They quietly support the design rather than overpower it. In this case, the effect will be a

small fly buzzing around the stage. The purpose of the fly is to reinforce the illusion of depth and to provide

a subtle animation in an otherwise static image. To create a fly buzzing among the flowers, follow these

steps:

1. Select the Background layer, and click the New Layer button to add a layer directly above the

Background layer. Name this layer Fly.

2. With the Fly layer selected, drag the Fly movie clip to the stage. Obviously, as shown in Figure

1-55, the fly is a bit large for the garden.

Figure 1-55. The fly is in its own layer and on the stage.

3. Click the fly on the stage, and select the Free Transform tool from the Tools panel. Click a

corner handle, and drag the handle inward to shrink the fly.

4. The fly is still a bit too distinct. With the fly still selected on the stage, apply a Blur filter to the

selection. Set the Blur X and Blur Y values to 3 px and the Quality value to High. Now

that the fly’s physical characteristics have been dealt with, let’s put the fly in motion.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

57

Using a motion guide

Putting the fly in motion is easy. The hard part is determining how to do it. That may seem a bit odd, but there

are several methods for putting the fly in motion. These methods range from frame-by-frame animation to a

purely code-driven approach. Picking the one best suited to the task at hand will make or break the project.

If you have ever watched flies, you will see that they move around in an erratic manner. Mimicking this

using a frame-by-frame approach would be too time-consuming to be worth it, and coding the movement

with changes in directions, loopbacks, and so on, would require some hard-core coding chops. The

solution is to draw the path for the fly to follow. Here’s how:

1. Lock all of the layers except the Fly layer, and move the Fly movie clip to the left of the stage

on the pasteboard. Scrub over to frame 721, and add a key frame on the Fly layer. Return the

playhead to frame 1.

2. Right-click (Windows) or Control+click (Mac) the label of the Fly layer. When the context menu

opens, select Add Classic Motion Guide, as shown in Figure 1-56. When you release the

mouse, a new layer named Guide:Fly appears above the Fly layer, and the Fly layer indents.

Figure 1-56. Adding a motion guide layer

3. Select the first frame of the Guide:Fly layer.

4. Select the Pencil tool, and starting where your fly is located, draw a meandering path, as shown

in Figure 1-57, around the stage and finishing on the pasteboard on the other side of the stage.

Don’t forget that you can smooth out the path after you have drawn it. Simply switch to

the Selection tool, and double-click the path to select it. With the path selected, click

the Smoothing button at the bottom of the Tools panel to make angular changes a bit

more rounded.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

58

Figure 1-57. The path is drawn in the Guide:Fly layer. Note that the path starts on the pasteboard to the

left and finishes on the pasteboard to the right of the stage.

5. Select the Fly movie clip in frame 1, and snap it to the start of the path by dragging it to the start

of the path and releasing the mouse. Move the playhead to the end of the timeline, and snap the

Fly movie clip to the end of the path.

6. Right-click (Windows) or Control+click (Mac) anywhere between the key frames on the Fly layer,

and select Create Classic Tween from the context menu. An arrow, as shown in Figure 1-

58, will appear on the Fly layer, and if you scrub the playhead, the Fly movie clip will travel

along the path you drew with the Pencil tool.

7. Save the movie.

If your fly doesn’t follow the path, it may not have snapped to the end points of the guide.

If this is the case, zoom in on the fly with the magnifying glass tool, and select it. With

the fly selected, place the mouse pointer over the fly’s registration point—the hollow dot

in the selection—and drag the fly to the tip of the line. It should snap into place when you

release the mouse.

1www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

59

Figure 1-58. The classic tween snaps the movie clip to the path in the Guide:Fly layer.

Adding audio

Nothing mystifies us more than Flash designers who regard audio as an afterthought. In many respects,

this a huge mistake because audio can actually “seal the deal” when it comes to Flash movies. In this

case, it’s nice to have a fly buzzing around the movie, but the sound of the fly is what makes this whole

thing even more believable. Let’s add some audio:

1. Add a new layer above the FrontGarden layer, and name it Audio.

2. Open the library, and locate the FliesBuzzing.mp3 file in the Audio folder. Double-click it to

open the Sound Properties dialog box.

3. Click the Advanced button to reveal all the features of this dialog box, as shown in Figure 1-59.

Click the Test button to preview the audio file. The fly is buzzing, but you can also hear birds and

the wind blowing through the garden.

We would like to thank dobroide at freesound.org for permission to use this clip—

20060620.ambiance.forest.summer01.flac—in this project. This clip and others are

available at http://www.freesound.org/samplesViewSingle.php?id=20026.

For those of you who are interested, the file was downloaded from freesound.org as a

.flac (Free Lossless Audio Codec) file. It was renamed and converted to an .mp3 file

using xAct for Macintosh. We are telling you this just in case you are a Mac user and

you can’t get .flac files from freesound.org to convert to another format.

www.zshareall.com

http://www.freesound.org/samplesViewSingle.php?id=20026
http://www.zshareall.com

CHAPTER 1

60

Figure 1-59. Audio can be previewed by clicking the Test button.

4. With the Audio layer selected, drag the audio file from the Library to the stage. When you

release the mouse, the audio waveform appears in the layer.

Dragging audio from the library and sticking it on the stage is not a good habit to

develop. Audio files can be rather large, and when they are in the Library, they

increase the size of the SWF, which increases the download time, and it gets ugly from

there. We have a whole chapter on audio, Chapter 5, devoted to best practices, so for

now let’s just content ourselves with simply being able to get sound into a presentation

and getting it to play.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

61

5. Click anywhere on the waveform, and you will see the Properties panel change to show you

the sound properties. If you don’t see them, click the Sound twirlie.

6. Click the Sync drop-down menu, and select Stream, as shown in Figure 1-60.

Figure 1-60. Audio waveform on the timeline and the Sound properties in the Properties panel

7. Scrub across the timeline, and you will hear the audio playing. This is possible because of the

use of the Stream syncing in the Sound properties. Return the playhead to frame 1, and press

the Return (Enter) key. The sound will start playing and stop only when the playhead reaches the

end of the timeline.

8. Save the file.

Noticing a pattern here? Get into the habit of saving your work every time you do

something major with your movie. Do this, and it isn’t a big deal should your computer

crash. Don’t get into the habit, and prepare to reconstruct entire files from the point of

your last save when the computer crashes.

Testing and saving Flash files

The fly is merrily buzzing among the flowers. The audio are playing, and the birds are singing. Maybe.

Even though you have created this animation and scrubbed through bits and pieces of it, you still haven’t

seen the whole project play from start to finish much as it would on a Web page. Now would be a really

good time to test the movie in Flash Player. We can’t stress enough the importance of test, test, test, and

test again! The procedure is, as one of us tells their students, rather simple: “Do a bit. Test it. Do a bit

more. Test it.” As you have seen, Flash movies can be complex. Each element or feature you add also

increases the complexity of the movie. This is why it is so important that you develop the habit of regularly

testing your work because, regardless of how simple it may appear to you, this is the place to identify and

fix any errors, mistakes, or problems you may see. What it comes down to is this: do you really want to

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

62

examine the entrails of each frame of a completed movie along with hundreds of lines of code, or do you

want to catch simple errors early in the process? Your call.

To test a Flash movie, all you need to do is to press Ctrl+Enter (Windows) or Cmd+Return (Mac), and the

movie will start playing in Flash Player. If you prefer to use a menu, select Control ➤ Test Movie. You

will see an alert box telling you the movie is being exported and, when that finishes, the movie, as shown

in Figure 1-61, will open in Flash Player. What you should see is the flowers move into place, the fly

buzzing around the garden, and you will hear the audio track.

If you open the folder where the file has been saved, you will see that a SWF has been added to the

folder. A SWF (pronounced “swiff”) is the compact version of your animation that will be placed in a Web

page.

Figure 1-61. Testing the movie in Flash Player

The final part is a look at a feature that is new to Flash CS5: the end of the .fla format.

A couple of years ago, Richard Galvan, the Flash product manager, made it pretty clear to one of us over

lunch that the FLA format was being placed on the “Threatened Species” list. This wasn’t too much of a

shock because Adobe was starting to concentrate on the fact that data and presentation were two

separate entities and data was pretty sexy.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

63

The FLA format moved onto the “Endangered Species” list in the CS4 release of the product. A new output

format—XFL—was introduced to After Effects, and Flash CS4 could read an XFL file but couldn’t write

one. The release of Flash CS5 marks the start of the old FLA format on its progress toward extinction as

the new XFL format takes over. In Flash CS5, the default FLA file you’ll save is now created in the XFL

format, with the old style of FLA file being relegated to an option for backward compatibility—¡Viva la

revolución!

XFL? We know it sounds like an American Football league, but think of the XFL container format as a

folder that contains an XML file and all the assets referred to in the XML file. The assets and the XML are

the files used to build the FLA. Until this release of Flash, that container has, essentially, been sealed. Not

anymore.

1. With your Garden.fla file open, select File ➤ Save As to open the Save As dialog box.

Navigate to the XFL_Example folder in your Chapter 1 Exercise folder.

2. Click the Format drop-down menu, as shown in Figure 1-62, to open it. You now have three

choices:

 Flash CS5 Document (*.fla): Select this, and you create the usual document that can be
opened only by Flash CS5.

 Flash CS4 Document (*.fla): Select this, and the file will be saved in a format that can be
read by Flash CS4. Just be aware that any features available only in Flash CS5 won’t be
available.

 Flash CS5 Uncompressed Document (*xfl): Select this, and you create an “exploded” view
of the file or what many are calling a folder of files.

Figure 1-62. The XFL format is the new kid on the block.

www.zshareall.com

http://www.zshareall.com

CHAPTER 1

64

3. Name the file Garden, and select the .XFL format. Click the Save As button. A progress bar will

appear as the files are created, and when finished, the progress bar and the Save As dialog box

will close. Minimize Flash, and open the XML_Example folder.

When the folder opens, you will see that your simple Flash project is now a folder named Garden. When

you open that folder, you will see your simple file consists of a number of separate XML and Flash files, as

shown in Figure 1-63. Now you understand what we meant by the terms exploded and folder of files.

Figure 1-63. The contents of an uncompressed XFL document folder

We are not going to get any deeper into this subject until Chapter 12. Having said that, you need to know

the important files are Garden.xfl and the DOMDocument.xml files. If you double-click the .xfl file, the

project will open in Flash, and the only difference will be the .xfl, not .fla, file extension in the document

tab.

www.zshareall.com

http://www.zshareall.com

LEARNING THE FLASH CS5 PROFESSIONAL INTERFACE

65

The XML document is where all the information about the project is kept. This includes pointers to

embedded fonts, audio, images, and anything else pertaining to the project including the layering order

and the contents of the layers.

If you create an uncompressed XFL file or are handed the XFL folder, make sure that

you always work in that folder and that you don’t, for obvious reasons, delete or remove

any files used in the project from the folder.

You have learned
 How to customize your Flash workspace

 A number of methods of manipulating objects on the Flash stage

 How to dock, undock, and minimize panels

 The importance of the Properties panel in your daily workflow

 The difference between a frame and a keyframe

 The process involved in using frames to arrange and animate content and the properties of

content on the stage using the Motion Editor

 How to add, delete, nest, and rearrange layers

 How to test a Flash movie

 How to create an uncompressed XFL document

That’s a lot of stuff you’ve learned by taking a casual stroll through Flash Professional CS5. In the next

chapter, you’ll learn how to use the tools to create content in your movies and how Fireworks CS5,

Photoshop C4, and Illustrator CS5 are important elements in your workflow.

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

67

Chapter 2

Graphics in Flash CS5

In the previous chapter, we handed you a bunch of images and essentially said, “Here, you toss them on

the stage.” In this chapter, you’ll dig into how those objects were created, and in fact, you are going to be

drawing trees, drawing the moon, creating Venetian blinds, and playing with Chinese dancers and T-shirts,

among other things. You will be looking at the new Illustrator and Photoshop file importers and also playing

with JPEG and GIF images. There’s a lot to cover. Let’s get started.

What we’ll cover in this chapter:

 Flash graphic fundamentals

 Using the drawing tools

 Managing and working with color

 Working with fills, strokes, and gradients

 Tracing bitmap images

 Image file formats and Flash

 Importing Illustrator documents into Flash

 Importing Photoshop documents into Flash

If you haven’t already, download the chapter files. You can find them at www.friendsofED.com/
download.html?isbn=1430229940.

www.zshareall.com

http://www.friendsofED.com
http://www.zshareall.com

CHAPTER 2

68

Files used in this chapter:

 FreeTransform.fla (Chapter02/Exercise Files_CH02/Exercise/FreeTransform.fla)

 ObjectDrawing.fla (Chapter02/Exercise Files_CH02/Exercise/ObjectDrawing.fla)

 Deco.fla (Chapter02/ExerciseFiles_CH02/Exercise/Deco.fla)

 DecoCow.fla (Chapter02/ExerciseFiles_Ch02/Complete/ DecoCow.fla)

 DecoCow.swf (Chapter02/ExerciseFiles_Ch02/Complete/ DecoCow.swf)

 Deco02.fla (Chapter02/ExerciseFiles_Ch02/Exercise/ Deco02.fla)

 SprayBrush.fla (Chapter02/ExerciseFiles_Ch02/Exercise/ SprayBrush.fla)

 Campfire.fla (Chapter02/ExerciseFiles_Ch02/Complete/Campfire.fla)

 ImageFill.fla (Chapter02/ExerciseFiles_Ch02/Exercise/ ImageFill.fla)

 CanoeBurnside.jpg (Chapter02/ExerciseFiles_Ch02/Exercise/ CanoeBurnside.jpg)

 Trace.fla (Chapter02/ExerciseFiles_Ch02/Exercise/Trace.fla)

 JPGCompression.fla (Chapter 02/ExerciseFiles_CH02/Exercise/JPGCompression.fla)

 JPGCompression.swf (Chapter 02/ExerciseFiles_CH02/Exercise/JPGCompression.swf)

 GIF.fla (Chapter 02/ExerciseFiles_CH02/Exercise/GIF.fla)

 Counterforce.gif (Chapter 02/ExerciseFiles_CH02/Exercise/Counterforce.gif)

 Banner.png (Chapter 02/ExerciseFiles_CH02/Exercise/Banner.png)

 Mascot.ai (Chapter 02/ExerciseFiles_CH02/Exercise/Mascot.ai)

 IglooVillage.psd (Chapter 02/ExerciseFiles_CH02/Exercise/IglooVillage.psdi)

Before we start, let’s take a look at what you have to work with.

Graphics in Flash CS5 come in two flavors: vector or bitmap. Vector images are usually created in a

drawing application such as Illustrator CS5 or Fireworks CS5. When you draw an object on the Flash

stage, you are using the drawing tools to create a vector image. Bitmap images are created in such

applications as Photoshop CS5 and Fireworks CS5.

At its heart, Flash is a vector drawing and animation tool. The great thing about vectors is their relatively

small file size compared to their bitmap cousins. The other thing to keep in mind is that Flash’s roots were

as a vector animation tool (FutureSplash) for the Web. When it was introduced, broadband was just

establishing itself, and the ubiquitous 56KBps modem was how many people connected to the Internet. In

those days, size was paramount, and vectors, being extremely small, loaded very quickly.

What makes vectors so appealing is they require very little information and computing power to draw. In

very simplistic terms, a circle of 100 pixels in diameter contains five points—four on the circle and one in

the center—and those points are used in a mathematical calculation that results in the diameter of the

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

69

circle. The computer might also need to know whether there is a stroke around the circle and whether the

circle is being filled with a solid color. If you assume the circle is yellow and the stroke is 1 point wide and

colored black, this circle needs only a small amount of data: the five points, fill color, stroke width, and

stroke color. This explains why vectors are best used in situations requiring clean lines and areas of color.

Its bitmap counterpart is treated a lot differently. Instead of requiring a limited amount of information to

draw the circle, each pixel’s location in the circle is charted and remembered. Not only that, but each pixel

will require three units of color information to produce the red, green, and blue values for that pixel. On top

of that, the computer also needs to map and draw each pixel in the background the circle is sitting on.

Let’s assume the circle has a diameter of 100 pixels and is sitting on a white background. The entire image

measures 200 by 200, which means each one of the white pixels in the background needs to be mapped

as well. This means that producing a simple yellow circle requires thousands of bits of information, which

explains why bitmap images add weight to a SWF’s file size. This weight is critical because bitmaps best

preserve the fine details of an image such as a photograph.

All is not “sweetness and light” with vector images. Some of this art can be

phenomenally complex with thousands if not millions of points. The best way of deciding

whether to go vector or bitmap is to test the movie. Create a test SWF with the original

vector artwork and nothing else. Then create a test SWF with the vector art in other

formats, such as JPEG, PNG, TIFF, or the like. Go with the one that gives you the

smallest SWF.

Vectors are also device independent. This means they can be scaled to 200 percent and still maintain their

crisp edges. Scale a bitmap by that percentage, and the pixels become twice their original size. The image

degrades because the pixels are “tied” to the device displaying them, which in this case is a computer

monitor. If you’ve ever printed a photograph and seen a series of blocks in it, as if a mesh had been laid

over the image, you’ve experienced what can happen when a device-dependent format is handled by

another device.

What types of graphic objects can Flash use? Flash uses four types of graphic objects:

 Shapes: These are usually vector drawings created using the Flash drawing tools or files

imported into Flash from Illustrator CS5 or Fireworks CS5.

 Drawing objects: These are another sort of shape you draw using the Flash drawing tools. They

behave differently from shapes when combined in the same layer, thanks to Object Drawing

mode, which you will learn about later in this chapter.

 Primitives: These are created by using the Rectangle Primitive and Oval Primitive

tools in the Tools panel. These are vector shapes with a difference: they can be modified in

nondestructive ways even after they are drawn.

 Bitmaps: These are pixel-based images usually created in Photoshop CS5 or Fireworks CS5 an

imported into Flash.

So much for the raw material—let’s dig into Flash’s drawing tools.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

70

The Tools panel
The Tools panel, shown in Figure 2-1, is where all your drawing tools are located. Used along with

Flash’s Properties panel, effects, blends, and Color panels, Flash’s drawing tools put a pretty powerful

and high-end graphics package at your disposal.

Figure 2-1. The Flash Tools panel

The tools can be roughly grouped into six distinct categories. The groupings, from top to bottom, are

Selecting, Drawing, Modification, Viewing, Color Modification, and Options.

 Selecting: The first two tools and the Lasso tool allow you select objects, select points within

objects, and even select a piece of an object. The 3D Rotation and Free Transform tools,

thematically, fit better into the Modification grouping.

 Drawing: The seven tools in this section—Pen to Deco—can be used to draw images, create

graphics and text elements, and draw shapes and lines.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

71

 Modification: These four tools—Bone to Eraser along with the Free Transform and the 3D

Rotation tools—allow you to select strokes and fills, manipulate shapes and angles, choose a

specific color, or even remove a color or piece of an object. For example, you use the Ink

Bottle tool to change the color of a stroke around a circle and the Paint Bucket tool to fill the

circle or change its color. These four tools are traditionally used in conjunction with the Color

Modification tools.

 Viewing: The Grabber Hand and Zoom tools allow you to move around the stage or zoom in on

it while you are working.

 Color Modification: The four tools in this section—Stroke Color to Swap Color—allow you

to change the colors of selected shapes or set the colors used by other modification tools.

 Options: These options change based upon the tool selected. For example, select the Lasso

tool and the options, as shown in Figure 2-2, change to a Magic Wand and Polygon Lasso.

If you have used previous versions of Flash, you may notice that not only have the tools

been regrouped, but also the names for the grouping sections have been removed.

Certain tools—Free Transform, 3D Rotation, Pen, Rectangle, Paint Bucket,

and the Stroke and Fill color chips—have a small triangle that looks like an arrow at

the bottom right. Clicking this opens a drop-down menu that offers you a subselection of

related tool choices. Color chips open the Color Picker.

Figure 2-2. Select the Lasso tool, and the tool options change.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

72

The Selection and Subselection tools

The odds are that the Selection and Subselection tools are the ones you will use most frequently in

your everyday workflow. Along with the Free Transform and Gradient Transform tools, you will use

these tools, at least once, in practically any Flash design situation.

1. Open a new Flash ActionScript 3.0 document. Click the Rectangle tool, and make sure the

Object Drawing button (the circle in the Options area at the bottom of the toolbar) is

deselected. (We aren’t going explain why at this point because we have devoted a section of this

chapter to that very subject.) Draw a rectangle on the stage. Choosing a color for the stroke and

fill is not important right now.

2. Switch to the Selection tool, as shown in Figure 2-3, by either clicking it or pressing the V key.

When you roll the tool over the square, a cross with arrows appears under the mouse pointer.

This means you are hovering over an object that can be moved by clicking and dragging.

All tools can be selected using the keyboard. If you roll the mouse pointer over a tool, a

tooltip, as shown in Figure 2-3, will appear, and the letter between the brackets is the

key that can be pressed to select the tool. If you find tooltips annoying, open

Preferences ➤ General and deselect Show tooltips in the Selection section of

the Preferences dialog box.

Figure 2-3. Select a tool, and a tooltip will appear.

3. Click the square, and drag to the right. Holy smokes, you just pulled the fill out of the square (see

Figure 2-4)! Press Ctrl+Z (Windows) or Cmd+Z (Mac) to undo that last action.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

73

Figure 2-4. Selections in Flash aren’t always what they seem.

You have just discovered that Flash regards all objects you draw as being composed of two things: a

stroke and a fill. If you are an Illustrator, Photoshop, or Fireworks user, this may strike you as being a bit

odd because in a vector universe separating the stroke from its fill is not a common behavior. Give us a

minute, and we’ll ease you back into more familiar territory. We have a square to move.

4. To select the entire square, you have two choices. The first is to double-click the item. The

second is to “marquee” the stroke and the fill by drawing a selection box around the object. To

draw your selection box, click outside the rectangle near one of its corners, and then drag toward

the opposite corner. Go ahead—try both methods of selection, and drag the square. You’ll see

the whole square move this time.

5. Now that you know objects drawn on the stage are actually composed of a stroke and a fill, we’d

like to mention a third approach to selecting and moving them as a unit. Marquee the object, and

select Modify ➤ Group. Now, when you click the object, it is regarded as a single entity and can

be dragged at will.

You can use the Selection tool for more than simply dragging objects around the stage. You can also

use it to modify the shape of an object. The square on the stage, as you know, is composed of two vector

objects—a stroke and a fill. This means not only can they be moved around the stage, but they also be

reshaped and still retain their crisp strokes and fills.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

74

6. Select your object on the stage, and select Modify ➤ Ungroup. Deselect the objects, and place

the tip of the mouse pointer on one of the strokes around the square. Do you see the little quarter

circle, as in Figure 2-5, below the arrow? That symbol indicates you can reshape the stroke.

Figure 2-5. The shape under the mouse pointer means the stroke can be reshaped.

7. Click and drag the stroke. When you drag the stroke, it actually bends. This tells you that the

stroke is anchored, and, as in Illustrator CS5 or Fireworks CS5, if you drag a point on a line

between two anchor points, the line changes its shape. The stroke uses the location of the point

where you released the mouse as the apex of the curve. The other thing you may have noticed is,

as shown in Figure 2-6, the fill also updates to reflect the new shape.

Figure 2-6. Both the stroke and the fill will change to reflect the new shape.

8. Select the Subselection tool, or press the A key to switch to this tool. Double-click one of the

corner points for the curve you have just created. The points and the handles, as shown in Figure

2-7, become visible. You can further adjust the curve by moving either the handles or the points.

These handles are available only on curves.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

75

Figure 2-7. Change a shape by dragging a handle or corner point.

Another tool that allows you to manipulate objects on the stage is the Free Transform tool, which you

will learn about next.

The Free Transform tool

If there is such a thing as an indispensable drawing tool in Flash, this one may just be it. It scales, skews,

and rotates objects on the stage. Here is how to use it:

1. Open the FreeTransform.fla file in the Chapter02/Exercises folder. When it opens, you will

see an image of some apple blossoms. They are in a movie clip named Blossoms. If you test the

movie by pressing Ctrl+Enter (Windows) or Cmd+Return (Mac), you will see the image fade in

and out.

2. Select the movie clip on the Flash stage, and select the Free Transform tool by either clicking

it or pressing the Q key. The selected object sprouts a bounding box with eight handles and a

white dot in the center.

3. Move the mouse pointer near each of the corner handles. Notice how, as in Figure 2-8, the

mouse pointer develops a rotate icon. This tells you that if you click and drag a corner, you can

rotate the object. Try it—you should also see a ghosted representation of the original position of

the movie clip, which is a handy feature to ensure the rotation is correct.

4. Test the movie. The movie clip has rotated and fades in and out. This tells you that it isn’t only

objects that can be transformed. Symbols with tweens and motion and other movie elements can

also be transformed with this tool. Close the SWF to be returned to the Flash stage, and let’s try

something else.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

76

Figure 2-8. Rotating an object using the Free Transform tool

5. This time place the mouse pointer on the bounding box. The mouse pointer changes to split

arrows. This tells you that clicking and dragging will skew (or slant) the object in the direction in

which you drag. Go ahead, give it a try.

6. Now place the mouse pointer directly over one of the handles. It changes to a double-headed

arrow, meaning you can scale the object from that point.

The key to mastering the Free Transform tool is to master that white dot in the middle. It is the

transformation point of the object. Rotations use that dot as a pivot, and any of the other transformations

applied using this tool are based on the location of that dot when you hold down the Alt key. Holding down

the Alt (Windows) or Option (Mac) key while using the Free Transform tool changes the location of the

transformation point. For example, if you rotate a corner, the transformation will rotate around the white

dot. Hold down the Alt (Windows) or Option (Mac) key, and the rotation will occur around the corner

diagonally across from the corner being dragged.

7. Click the white dot, and drag it over the upper-left corner handle. Rotate the object using the

handle in the lower-right corner. The rotation occurs around that white dot. Undo the change, and

this time scale the object using the bottom-right corner. Again, as shown in Figure 2-9, the upper-

left corner is used as the anchor for the transformation.

8. Now try another skew. With the white dot close to one of the corners, place the mouse pointer on

the bounding box to see the split arrows icon. Click and drag, and then hold down the Alt

(Windows) or Option (Mac) key and drag again. See the difference? Do the same with a scale

transform.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

77

To constrain the proportions of an object when using the mouse to scale the object, hold down the Shift

key before you drag the handle. You can use Shift at the same time as the Alt (Windows) or Option (Mac)

key, as described previously, to both constrain and use the white dot as a pivot.

Figure 2-9. The transformation point is moved to the upper-left corner of the image.

Applied a couple of transformations and don’t want to use them? To remove

transformations, select Modify ➤ Transform ➤ Remove Transform or press

Ctrl+Shift+Z (Windows) or Cmd+Shift+Z (Mac). All transform actions applied to the

object will be removed.

The Gradient Transform tool

To the novice, gradients in Flash can be a little tricky. The reason is you can create the colors in the

gradient, but moving them around and changing their direction is not done at the time the gradient is

created. This is done using a separate tool.

Let’s try a couple of gradient exercises:

1. Open a new ActionScript 3.0 document. Select the Oval tool found in the Rectangle drop-down,

and deselect the stroke by opening the Stroke color swatch panel and selecting the top-right

swatch with a diagonal red line through it. Draw a circle on the stage now, and you’ll see it has

only a fill.

2. With the circle selected, change the width and height values of the circle to 120 and 120 in the

Properties panel.

3. Click the Fill Color chip to open the Color Chip panel, and select the blue gradient, shown in

Figure 2-10, at the bottom of the panel.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

78

Figure 2-10. Selecting a preset gradient using the Fill color in the Tools panel

There are a couple of ways of changing this gradient in order to position the centered highlight elsewhere

in the graphic. The first is to use the Paint Bucket tool. This tool simply fills a selected shape with the

color in the Fill color chip, but it does something really interesting when the color is a gradient. Follow

these steps:

4. Choose a gradient, and click the Paint Bucket tool to select it (or press the K key to switch to

this tool).

5. Click in the upper-left corner of the circle. The center of the gradient moves to the point, where

you clicked the mouse, as you can see in Figure 2-11. How this occurred is that the paint pouring

out of the tool’s icon is the hot spot for the tool. The center of the gradient will be the point where

the “pour” is located.

6. Click again somewhere else on the shape to move the center point of the gradient.

The other technique for changing a gradient is to use the Gradient Transform tool, which is more

precise than using the Paint Bucket.

7. Click and hold on the Free Transform tool to open the drop-down menu. Select the Gradient

Transform tool from the menu. Alternatively, simply press the F key to switch from the current

tool to the Gradient Transform tool.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

79

Figure 2-11. The tip or “pour” point of the Paint Bucket’s icon is its hot spot.

8. Click the object on the stage. When you do, it will be surrounded by circle, a line will bisect the

selection, and three handles will appear, as shown in Figure 2-12. The circle represents the area

of the gradient fill.

Figure 2-12. The Gradient Transform tool allows you to precisely control a gradient.

Let’s look at each of these controls:

 Center point: This is actually composed of two features. The white dot is the center point of the

gradient and can be moved around in the usual manner. The triangle, which can only move along

the line, determines the focus of the center point, which is where the first color, the bright blue, in

the gradient first appears.

 Resize handle: Dragging this handle resizes and distorts the gradient without affecting the shape

of the filled object.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

80

 Radius handle: Moving this one inward or outward resizes the gradient proportionally.

 Rotate handle: Drag this handle, and the gradient rotates around the center point. The effect can

be quite subtle with a radial gradient, but you’ll see a difference if you squeeze the gradient into a

lozenge shape with the resize handle.

Now that you know how to use the tool on a radial gradient, give it a try on a linear gradient. Here’s how:

1. Select one of the linear gradients from the Fill color chip in the Tools panel.

2. Select the Rectangle tool, and draw a square. Click the square with the Gradient

Transform tool.

3. As you can see in Figure 2-13, the same controls are in place. This time two lines, which indicate

the range of the gradient, appear. If you click the resize handle and drag it downward toward the

top of the box, the colors in the gradient become more compressed. The rotate and center point

handles work in the same manner as their radial gradient counterparts.

Figure 2-13. The Gradient Transform tool can be used on linear gradients as well.

Object Drawing mode

Introduced in Flash 8, the addition of the Object Drawing mode feature was greeted with wild cheering and

dancing in the streets. Well, it didn’t exactly happen that way, but a lot designers became seriously “happy

campers” when they discovered this feature.

Prior to the release of Flash 8, shapes that overlapped each other on the stage were, for many, a

frustrating experience. If one shape was over another—in the same layer—and you selected and moved it,

it would cut a chunk out of the shape below it. This is not to say it was flaw in the application. This behavior

is quite common with painting applications. In Flash, once you understand the “one piece eats the other”

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

81

phenomenon, it becomes a great construction tool. It can be much simpler to throw down a base shape

and purposefully “take bites” out of it to achieve a complex figure than to draw the same figure from

scratch. Object Drawing mode uses the opposite concept. You get the best of both worlds, and the choice

is yours.

When you select a drawing tool, the Object Drawing icon, shown in Figure 2-14, appears in the Tools

panel. Click it, and the oval you are about to draw will be drawn as a separate object on the stage and will

not automatically merge with any object under it, even on the same layer. Let’s see how it works.

Figure 2-14. Click the Object Drawing icon to turn on this feature.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

82

1. Open the ObjectDrawing.fla file in your Chapter 2 Exercise folder.

2. Select the Oval tool, turn off the stroke in the Tools panel, and draw a circle over the shape on

the stage.

3. Select the circle, and drag it off of the shape. When you release the mouse, you will see that your

circle has bitten off a chunk of the shape.

4. Select the Oval tool, click the Object Drawing mode button in the Tools panel, and draw

another circle over the shape. Drag it away and nothing happens, as shown in Figure 2-15.

Hooray for Object Drawing mode!

When you drew that second circle, Flash offered you a visual clue that you were in Object Drawing mode.

When you selected the shape, it was surrounded by a bounding box.

Figure 2-15. The effects of having Object Drawing mode turned on or turned off

Here’s a little trick you can use to edit a single object in Object Drawing mode: double-

click the second circle you just drew. Everything but the object you just double-clicked

fades, and the words Drawing Object appear beside the Scene 1 link. This allows

you to edit the object in place without disturbing anything else on the stage. To return to

the stage, click the Scene 1 link or double-click outside the shape to go back a layer.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

83

Drawing in Flash CS5
In this section, you will review the four primary drawing tools:

 Pencil: Use this tool to draw free-form lines and shapes. It is also draws strokes.

 Brush: Use this tool to paint in fill colors. A variant of this tool will appeal to the inner delinquent

in all of us: the Spray Brush.

 Eraser: The opposite of the Brush tool. It erases and removes rather than fills.

 Pen: Use this one to draw Bezier curves.

The Pencil tool

Think of the Pencil tool as being a mechanical pencil with a huge number of leads and colors, all of

which are available with a simple click. Select the Pencil tool, and the Properties panel changes

(Figure 2-16) to allow you to set properties for the lines you will draw such as line thickness, style, and

color.

Figure 2-16. The Pencil tool and its properties

This tool also has a modifier that appears at the bottom of the Tools panel. Click it, and a drop-down

menu, as shown in Figure 2-17, gives you three modes to choose from. These modes are important

because they control how the line behaves when you draw. Also, when you select this tool, you can

choose to use the Object Drawing mode.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

84

Figure 2-17. The Pencil tool has three drawing modes.

Let’s try the modes:

1. Open a new Flash document, and select the Pencil tool or press the Y key.

2. Using the Pencil tool, draw three squiggly lines. Use one of the following three modes for each

line. The results, as shown in Figure 2-18, will be slightly different for each. Here’s what the

modes do:

 Straighten: Use this if you want curves to flatten.

 Smooth: Use this mode to round out kinks or otherwise smooth awkward curves.

 Ink: This is the mode that gives you exactly what you draw. If you use this mode, make sure

that Hinting in the Properties panel is selected. This will ensure crisp, nonblurry lines.

Figure 2-18. The Smooth and Straighten modes can remove awkward angles.

3. Switch to the Selection tool, and click the top line. Notice how you selected just a piece of it.

The lines you draw with the Pencil tool are vectors.

4. Deselect the line segment, and this time roll the mouse over the line. When you see a small curve

appear under the mouse, click and drag. This tells you that you can change the shape of the lines

you draw by simply moving their segments.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

85

5. Double-click one of the lines, and change the thickness and line type from the drop-down menu in

the Properties panel. As shown in Figure 2-19, your choices are solid, dashed, dotted,

ragged, stippled, and hatched.

Figure 2-19. Choose a line style in the Properties panel.

6. Draw a circle using the Pencil tool in Smooth mode. Select the shape with the Selection tool,

and in the Tools panel click the Smooth button. Notice how the awkward edges of your circle

become rounded. Now click the adjacent Straighten button a couple of times. Your awkward

circle actually becomes a round circle. Double-click one of your lines. The Pencil options

change to show you separate Straighten and Smooth buttons. Click the Smooth and

Straighten buttons to see how they work on nonclosed shapes. As you can see, these buttons

work independently of the Straighten and Smooth options available through the Pencil tool’s

drop-down menu.

Flash has preferences that will help you with your drawing chores. If you select Edit ➤

Preferences (Windows) or Flash ➤ Preferences (Mac), you will open the

Preferences panel. Click the Drawing category, and the panel will change to show

you how Flash handles the drawing tools, lines, and shapes. The Recognize shapes

drop-down list can be set to take your hand-drawn approximations of circles, squares,

triangles, and the like, and replace them with truer shapes, as if drawn by the Oval or

Rectangle tool.

The Brush tool

You have discovered that all objects drawn on the stage are separated into strokes and fills. The Pencil

and Brush tools follow that separation. The Brush tool feels quite similar to the Pencil tool in how it is

used. The difference between the two is that the Brush tool works with fills while the Pencil tool works

with strokes, which is a subtle but also quite profound difference.

When you select the Brush tool or press the B key to select the tool, a number of options will appear at

the bottom of the Tools panel, and the Properties panel will change, as shown in Figure 2-20.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

86

Figure 2-20. The Brush tool options and properties

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

87

 Object Drawing: You saw this earlier in the chapter. It’s the button that toggles Object Drawing

mode on and off.

 Lock Fill: Select this to fill multiple objects with a single gradient or some other fill. This can be

useful in cases where the gradient implies a highlight, because the “lighting” will be applied

evenly across all selected objects.

 Brush Mode: This controls how the strokes are painted, and the drop-down menu contains the

following five modifiers:

 Paint Normal: Paints over anything on the screen providing they are on the same layer

and not in Object Drawing mode. These caveats apply to the other mode options as well. If

your content is a drawing object, use Modify ➤ Break Apart to turn it into a shape. When

you finish, you can put it all back together as a single object by selecting Modify ➤

Combine Objects.

 Paint Fills: Paints the fills and leaves the stroke alone.

 Paint Behind: Paints only on the empty areas of the layer.

 Paint Selection: Paints only on the selected areas of the object.

 Paint Inside: Paints only inside the area surrounded by a stroke. This mode works only if

the Brush tool starts inside the stroke; otherwise, it acts like Paint Behind.

 Brush Size: Use this to change the width and spread of the brush strokes.

 Brush Shape: This drop-down menu offers a number of brush shapes ranging from round to

square.

 Use Pressure and Use Tilt: These two appear only if a tablet is attached to the computer.

They allow you to use the pressure and angle settings of a graphics tablet’s pen. This is a piece

of hardware with a special drawing surface and “pen” that translates your actual hand motions

into drawings on the screen.

The final control is the Smoothing option on the Properties panel. This option determines the amount

of smoothing and sharpness applied to an object drawn with the Brush tool. In many respects, it is the

same as the Smooth mode of the Pencil tool. Try it:

1. Select the Brush tool, and select a fill color.

2. Turn off Object Drawing mode, and make sure the Brush mode is set to Paint Normal.

3. In the Properties panel, set the Smooth value to 0, and draw a squiggle on the screen.

4. Set the Smooth value to 50, and draw another squiggle on the screen. Repeat this step with a

value of 100. As you can see in Figure 2-21, the edges move from rough to smooth and flowing.

If these strokes don’t look all that different from each other, take a look at Figure 2-22. The number of

vector points used to create the object reduces significantly as the Smoothing value increases. To see for

yourself, select the Subselection tool, and click the edge of each scribble. The vector points become

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

88

visible. Remember, vector points require processing power to draw on the screen at runtime. Which will

appear quicker: the squiggle on the left or the one on the right?

Figure 2-21. Smoothing brush strokes

Figure 2-22. Smoothing reduces a haze of points on the left to a manageable number toward the right.

The Deco tool

When it was first introduced in Flash CS4, Flash designers greeted the Deco tool with a resounding, “I

don’t get it.” This was quite understandable because all it seemed to do was draw vines, and their clients

weren’t exactly overwhelming them with requests for vines. If you think we are kidding, try it for yourself:

1. Open a new Flash document, and select the Deco tool.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

89

2. Click anywhere in the upper-left corner of the stage to watch Flash draw a bunch of vines and

flowers, as shown in Figure 2-23.

Figure 2-23. The Deco tool’s default value is a tangle of vines and flowers.

If you need a stage full of vines, now you know where to go. Unfortunately, this is where many Flash

designers stop. This tool’s value isn’t in its default setting but in its purpose: it is a JavaScript-based

drawing tool that allows you to create new drawing tools. This tool, and its counterpart the Spray Brush

tool, were introduced in Flash CS4 as part of a new infrastructure called procedural modeling, which is

“techie talk” for using the computer code to draw.

For those of you just itching to see the code that drives these things, they can be found

in the following location from where you installed Flash: Adobe Flash
CS5/Common/First Run/ ProcScripts. The .jsx files you see drive the brushes, and

the visual assets used by those files can be found in the svg folder. If you do want to

make changes, we can’t stress strongly enough how important it is to make any changes

to a copy of the file. At the time this book was being written, there wasn’t any

documentation regarding the Deco scripting APIs. Adobe tells us it is in the process of

creating this documentation, but there is no date for its release.

So, how can you properly use this tool? Read on:

1. Open the Deco.fla file in the Chapter 2 Exercise folder. When it opens, you will see a blank

stage, and in the Library there is a movie clip named Box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

90

2. Reselect the Deco tool, and take a look at the Drawing Effect area in the Properties

panel. There is a drop-down menu. That’s your ticket to fun and a chance for you to explore a

major change to this tool in Flash CS5. Change the drop-down from Vine Fill to Grid Fill.

At this point, you could play around with the Deco tool, but it really becomes interesting when it has

something to play with. When you selected Grid Fill, the Properties panel changed to show four tile

strips with Edit buttons and a color fill, as shown in Figure 2-24.

Figure 2-24. The Deco tool’s Grid Fill properties

3. Change the Tile 2 color to yellow, and click the stage once. The stage fills with a bunch of

black and yellow boxes spaced according to the Horizontal and Vertical spacing values

in the Advanced Options. Double-click the Eraser tool to clear the stage.

4. Deselect Tiles 2, 3, and 4. Click the Edit button in Tile 1 strip to open the Select

Symbol dialog box. Click the Box symbol once, and click the OK button to close the dialog box.

5. Twirl down the Advanced Options, and set the Horizontal and Vertical spacing values to

0. This will tighten up the spacing between the repeated Box symbols you are about to see.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

91

6. Click once near the upper-left corner of the stage, and you will get the pattern shown in Figure 2-25.

If you switch to the Selection tool and click the pattern, you will discover the pattern is a single

object, which means it can be moved around the stage. This tool doesn’t just cover the stage with a

pattern; it can be used as a fill brush.

Figure 2-25. The Deco tool’s Grid Fill options can be used to create grids.

7. Double-click the Eraser tool to clear the stage. Select the Rectangle tool, and set its fill to

none. Draw a rectangle on the stage.

8. Click the Deco tool once, and in the Advanced Options, select Floor Pattern from the new

Pattern drop-down menu. Click once inside the rectangle, and, as shown in Figure 2-26, the

object looks like it is filled with floor tiles.

Keep in mind the important aspect of this section is not the tool. It is the fact you can use

a movie clip to create the drawing. One of the authors demonstrated this in a seminar.

Rather than use squares, he used a movie clip of a cow that was scaled and rotated. If

you open the DecoCow.fla or DecoCow.swf file in the Completed folder, you can see

the example used in the presentation.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

92

Figure 2-26. Deco tool patterns can be used to fill objects you draw in Flash.

As you can see, you can use the tool to create interesting backgrounds, flags, quilts, or whatever else you

may create that requires a grid layout. Using the Deco tool is a lot less work than placing these elements

by hand.

Ready for a truly versatile Deco tool option?

1. Open the Deco02.fla file in you Chapter 2 Exercise folder. You will see, in the Library, a

movie clip containing an image of a lake in northern Ontario.

2. Click the Deco tool, and select Symmetry Brush from the drop-down list in the Drawing

Effect area of the Properties panel.

3. Using the Edit button, make sure that Lake is the selected symbol.

4. In the Advanced Options, select Reflect Across Line in the drop-down list.

5. Start clicking the stage with the Deco tool. When you click, don’t immediately release the mouse.

Instead, click and hold and drag around a bit to see how that affects the Lake symbol. Being in

Reflect Across Line mode means you see a mirror image, as shown in Figure 2-27, on the

other side of the line of where you placed the Lake movie clip.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

93

Figure 2-27. The Reflect Across Line option lets you create mirrored artwork.

6. Place the mouse pointer over the pivot handle (it is the one with curved double-headed arrow),

and drag it in an arc. As you drag, two things happen: the pattern rotates, and each movie clip

rotates. Drag the handle back to the start position.

7. In the Properties panel, switch the Advanced Option to Reflect Across Point. One of

the arms will disappear because the mirroring is now up and down as well as left and right.

8. In the Properties panel, switch to Rotate Around. This time, the content looks like a

kaleidoscope because of the mirroring increase.

9. If you move the double-curved arrow, the artwork rotates, and the circle in the center lets you

move the whole shebang around the stage. The handle with the + sign lets you change the

number of arms in the “pinwheel.” Click and drag that handle clockwise or counterclockwise, and

you can, as shown in Figure 2-28, have quite a few copies of the movie clip appear on the stage.

10. Let’s finish this part up with a look at the Grid Translation option. Double-click the Eraser

tool to clear the stage, and select the Deco tool. Make sure the Symmetry Brush is chosen

from the Drawing Effect drop-down menu, and select Grid Translation from the

Advanced Options drop-down menu.

11. Click once in the graph area and a couple of copies of the movie clip will appear on the stage.

Drag the handles with the + sign up and out to add more copies of the movie clip and to fill the

stage with a pattern, as shown in Figure 2-29.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

94

Figure 2-28. The Rotate Around option lets you create kaleidoscopic artwork.

Figure 2-29. The Grid Translation option gives you dynamically modifiable grids.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

95

The major difference between this and the Grid Fill option is the fact that, with Grid Translation,

you can actually modify the grid’s characteristics dynamically. By this we mean you can drag and rotate

the handles to change the look of the grid.

We are going to finish our exploration of the Deco tool by trying a couple of the new brushes in the

Drawing Effect drop-down. Before we start, it is important for you to understand that these brushes

demonstrate the concept of procedural modeling; they aren’t professional-grade drawing brushes, but they

are fun to use. Here’s how:

1. Open the Deco03.fla file from your Chapter 2 Exercise folder, and select the Deco tool.

2. In the Drawing Effect drop-down, select the 3D brush. Click the Edit button in the Object 1

strip, and select the Lake movie clip. This tool works best if you use a movie clip with the brush.

3. Twirl down the Advanced Options, and use these settings:

 Max objects: 1000

 Spray area: 50 px

 Perspective: Selected

 Distance scale: 10%

 Random scale range : 50%

 Random rotation range: 45 deg

4. Click and drag the brush around stage. When you stop, you will see, as shown in Figure 2-30,

that quite a few copies of the movie clip are on the stage and that they recede, thanks to the

Perspective selection, into the distance as you drag away from your starting point.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

96

Figure 2-30. The 3D brush uses perspective to give the effect of distance.

What is not commonly known is that the “official” name for the group of tools comprising the Deco and

Spray Brush tools is Decorative drawing tools. Their description in the Adobe Flash CS5

documentation is quite succinct: “The Decorative drawing tools let you turn graphic shapes that you create

into complex, geometric patterns. The Decorative drawing tools use algorithmic calculations—known as

procedural drawing. These calculations are applied to a movie clip or graphic symbol in the Library that

you create. In this way, you can create a complex pattern using any graphic shape or object.” Follow these

steps to use the Deco tool to create a cityscape.

1. Open a new Flash document.

2. Select the Deco tool, and click the Properties panel. In the Drawing Effect drop-down,

select the Building Brush, and in the Advanced Options, select Random Building and

set Building Size to 5.

3. Don’t simply click the mouse to draw a building. Click where you want the building to start and

drag upward. When you release the mouse, a building will appear. Draw a few more buildings, as

shown in Figure 2-31. If you want a bit more variety, change the Building Size value before

drawing a building.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

97

Figure 2-31. Using procedural drawing to create a block of skyscrapers

Let’s add some trees. Here’s how:

4. Add a new layer to the document.

5. Select the Deco tool, and select Tree Brush from the Drawing Effect drop-down. In the

Advanced Options, select Poplar Tree from the drop-down.

6. Place the brush where you want the tree to grow, and click and drag upward. As you “draw,” the

trunk will appear and then the foliage. If you want a “bushier” tree, hold the mouse button down

for a second before releasing it. Branches, as shown in Figure 2-32, will be added.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

98

Figure 2-32. Pick a tree…any tree.

The Spray Brush tool

There is a tool in the CS5 lineup that is seriously fun to use. The tool? Introduced in Flash CS4, it is called

the Spray Brush tool, and, like the Deco tool, it is part of the procedural modeling framework. Here’s

how to use it:

1. Open the SprayBrush.fla file in the Exercise folder. When it opens, you will notice there is a

movie clip symbol named Figurine in the Library.

2. Click the drop-down menu for the Brush tool, and you will see the Spray Brush tool. Select it.

The tool’s icon looks like a can of spray paint. This should tell you that you are about to become a

graffiti artist.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

99

3. .Open the Properties panel shown in Figure 2-33, and the tool’s properties are available to

you. The properties are as follows:

 Default Shape: You can spray with a symbol in the Library or a series of dots by

selecting Default Shape. Click the color chip under the Edit button, and you can change

your paint color.

 Scale width: Scrub across this to make the paint drops wider. This is available only if you

spray using a Library symbol.

 Scale height: Scrub across this to make the drops higher.

 Random scaling: Select this to have nonuniform paint drops.

 Rotate symbol: Select this, and the symbol being sprayed onto the canvas will rotate. This

is available only if you spray using a Library symbol.

 Random Rotation: Select this, and the symbol will rotate in a random manner.

4. So much for the theory; let’s have some fun.

Figure 2-33. Spray Brush tool properties

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

100

5. With the Spray Brush tool selected in the Tools panel, open the Properties panel, and use

these settings:

 Default shape: Selected

 Color: #000099 (Blue)

 Scale width: 200%

 Random scaling: Selected

6. Click the mouse a couple of times on the stage. Now click and drag the mouse. Having fun?

Double-click the Eraser tool to clear the stage.

7. Change the brush’s width and height values in the Properties panel to 85, and change the

angle to 150 CW. Click and drag. As you can see, you can create some pretty interesting effects

by changing the properties of the brush.

Where this tool moves from neat to really cool is its ability to spray Library items onto the stage. If you

open the Library, you will see we have included a Figurine movie clip symbol in the Library.

8. With the Spray Brush selected, click the Edit button in the Properties panel. This will open

the Select Source Symbol dialog box. Click the Figurine symbol once, and click OK.

9. Use these values in the Properties panel:

 Scale width and height: 150%

 Random scaling: Selected

 Random rotation: Selected

 Brush Width: 53 px

 Brush Height: 100 px

 Brush angle: 0 CW

10. Click the mouse. Holy figurines! Click and drag. You have just created a bunch of figurines, as

shown in Figure 2-34.

Here’s a really neat trick. If you use a movie clip symbol, you can spray paint animated

artwork onto the stage. Need twinkling stars in a night sky? Create the twinkling star in a

movie clip and paint it into the sky.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

101

Figure 2-34. Spray Brush properties

The Eraser tool

The Eraser tool is quite similar to the Brush tool, only it erases rather than paints. Select the Eraser

tool or press the E key, and the following three modifiers, shown in Figure 2-35, appear in the Tools

panel:

 Eraser Mode: There are five choices in this drop-down menu, and they match those in the

Brush tool.

 Eraser Shape: The choices in this drop-down menu let you select from a number of shapes for

the eraser.

 Eraser Faucet: Select this, and you can erase an entire fill or line with one click. The hot spot

is the drip on the faucet.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

102

Figure 2-35. The Eraser options

Here’s a quick way to erase the contents of an entire layer: double-click the Eraser tool

to clear your layer.

The Pen tool

If you use Illustrator, Fireworks, or Photoshop, you are accustomed to using the Pen tool. The interesting

thing about this tool is its roots aren’t found in the graphics industry. It started out as a solution to a tricky

problem faced by the auto industry in the 1970s.

Computers were just starting to be used in some areas of car design, and the designers involved faced a

rather nasty problem: they could draw lines and simple curves, but squiggles and precise curves were

completely out of the question. The solution was to use a calculation developed by the mathematician

Pierre Bezier to produce what we now know as Bezier curves.

A simple curve is composed of a number of points. A Bezier curve adds two additional pieces of data

called direction and speed. These two data bits are visually represented by the handle that appears when

you draw a curve with the Pen tool. Here’s how to create a Bezier curve:

1. Open a new Flash document, and select the Pen tool or press the P key. When you place the

mouse pointer on the stage, it changes to the pen, and a small x appears next to it.

2. Click and drag. As you drag, you will see three points on the line, as shown in Figure 2-36. The

center point, called the anchor point, is the start of the curve, and the two outer points, called

handles, indicate the direction and degree of the curve.

Figure 2-36. The start of a Bezier curve

3. Roll the mouse to another position on the screen, and click and drag the mouse. As you drag, the

mouse handles and the curve get longer, and the curve follows the direction of the handle, as

shown in Figure 2-37.

4. Click and drag a couple of more times to add a few more points to the shape.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

103

Figure 2-37. The curve shape changes based on the length and direction of the handle.

5. Roll the mouse over the starting point of the shape. Notice the little o under the Pen tool, as

shown in Figure 2-38? This tells you that you are about to create a closed shape. Click the

mouse.

Figure 2-38. The shape is about to be closed.

A couple other options are available to you with the Pen tool that will allow you to edit your curves. If you

click and hold the Pen tool in the Tools panel, you will see there are three extra choices:

 Add Anchor Point: Select this tool, and click anywhere on the line to add an extra point.

 Delete Anchor Point: Click an anchor point to remove it. The shape will change.

 Convert Anchor Point: Click an anchor point, and the point will be converted to a corner

point. Unfortunately, this conversion does not go both ways. To get your curve back, switch to the

Selection tool, and hover near a line that extends from the corner point. When you see the

curve mouse pointer, drag out a bit of curvature yourself, and then switch back to the Pen tool.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

104

Prior to Flash CS3, these alternate Pen tool modes were not available as separate tools, so the distinction

is a great addition. You can, however, access the functionality of each tool from the main Pen tool. Here’s

the wrapped-up-in-one approach:

 Adding an anchor point: Using the Pen tool, hover over an existing line. Note how the normal x

under the mouse pointer becomes a +. Click to add a new anchor.

 Deleting an anchor point: Hover over a corner point, and you’ll see the mouse pointer acquire a

little -. Click to delete the anchor. Hover over a normal anchor, and you’ll have to click twice:

once to convert the anchor to a corner point and a second time to delete it.

 Converting an anchor point: Well, you just saw this in the previous bullet point. But note, in

addition, that the Alt (Windows) or Options (Mac) key temporarily converts the Pen tool into the

Convert Anchor Point tool.

Your turn: let’s have a campfire
It’s time to try what you have been experimenting with. In this little exercise, you are going to draw a small

campfire in the woods. Along the way, we are going to introduce you to a couple of new tools. Let’s get to

work:

1. Open a new Flash document file, and save it to your Chapter 2 Exercise folder.

2. Select Insert ➤ New Symbol. When the New Symbol dialog box opens, name the symbol

Trees, and select Graphic as its Type. Click OK to accept the changes and to open the

Symbol Editor. The tree you are about to draw will form the basis for this entire exercise.

Drawing the tree trunk

You’ll start by drawing the trunk of the tree.

1. Select the Pencil tool, and in the Smooth mode, draw a stretched oval shape. Don’t worry

about the stroke or fill. We’ll get to that in a moment. This will be the tree trunk. Select the shape

on the stage, and click the Smooth button.

2. Select the Zoom tool, which looks like a magnifying glass, and click and drag over your shape.

When you release the mouse, the shape will be larger, and you will be able to manipulate it more

easily.

3. Switch to the Subselection tool, and click your shape. You will see the vector nodes and

handles. Manipulate the nodes and handles to change the shape of the trunk. Refine the shape

by rolling the mouse pointer over it, and when you see the curved line under the mouse pointer,

drag the line segment you are over inward or outward to refine the shape.

4. When you finish, double-click the Zoom tool on the Tools panel to zoom out to 100 percent

view.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

105

5. Switch to the Selection tool, click your shape, and in the Properties panel specify these

values:

 Width: 20

 Height: 45

 X: 35

 Y: 104.5

 Stroke Color: #480000 (dark brown)

If you really need to see the decimal values while scrubbing, hold down the Ctrl key

(Windows) or Control (Mac), and you will be able to scrub using decimal values.

6. In the Tools panel, set the Fill color to #480000, and select the Paint Bucket tool or press

the K key. Place the tip of the bucket in the hollow part of the shape, and click the mouse. The

tree trunk, as shown in Figure 2-39, will fill with the dark brown color. (An alternative would be to

select the Brush tool and, using the Paint Inside mode, paint the fill color into the shape.)

You are probably looking at the Hex color value in the panel and thinking, “Hey, it’s blue.

I can scrub it to get the color.” Be our guest. Give it a shot. Not easy, is it? When

choosing color values, forget about scrubbing and directly input them instead. Why? You

have more than 16 million colors to scrub through.

7. Right-click the shape you have just drawn, and select Convert To Symbol from the context

menu. Name the symbol Log, and select Graphic from the Type menu. Click OK to close the

dialog box and return to the Symbol Editor.

8. Name the layer Trunk, and lock the layer.

Figure 2-39. The tree trunk is filled using the Paint Bucket tool.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

106

Drawing the pine tree

Think back to your youth and how you drew a pine tree. It was nothing more than a triangle. You will do

the same thing here, but you will fill it with a gradient color.

1. Add a new layer named Fir.

2. Select the new layer, and select the Line tool in the Tools panel or press N on your keyboard.

The Line tool draws straight lines and is great for drawing things like triangles.

3. Click and drag the tool on the stage to draw a line at an angle. Release the mouse, and the line is

drawn. Repeat this step two more times to draw the three lines to form a triangle. Move your

triangle over the tree trunk.

4. When you reach the start point of the first line, a circle will appear, indicating you are about to

close the path. Click the mouse.

5. Select the Subselection tool, and click the triangle. Notice how the anchor points become

visible. Select an anchor point with the Subselection tool, as shown in Figure 2-40, and using

either the mouse or the arrow keys on your keyboard, move the points until the triangle takes on

the shape of a pine tree.

Figure 2-40. Use the Subselection tool to select and move anchor points.

6. Switch to the Selection tool, and roll the mouse to the bottom line of your triangle. When you see

the small curve under the pointer, drag the line slightly downward. Your triangle should now look like

a cone. Select the Paint Bucket tool, and click once inside the shape to fill it with a color.

7. Double-click the stroke, and press the Delete key to remove the stroke around the shape.

8. Switch to the Selection tool, double-click the shape to select it, and in the Properties panel

set its width to 81 and its height to 114.

9. With the object selected, open the Color panel, and select Linear from the Type drop-down

menu.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

107

10. Click the left crayon, and set its color value to #002211 (dark green). Set the color value of the

right crayon to #004433, which is a lighter green.

11. Select the Paint Bucket tool, and fill the triangle. The gradient, as shown in Figure 2-41, gives

the tree a bit of depth.

12. Lock the layer.

Figure 2-41. Use a gradient to give the tree some depth.

Adding pine needles

The final step in the process is to give your pine tree some needles. The key to this technique is to match

the gradient on the tree. It is a lot easier than you may think.

1. Add a new layer named Needles.

2. Open the Color panel, select the Stroke color chip, and select Linear from the Type drop-

down menu. The gradient you just created is now in the Stroke area of the Tools panel.

3. Select the Pencil tool, and set the stroke width to 20 pixels in the Properties panel.

4. Click the Edit stroke style button (the pencil to the right of the Style drop-down) in the

Properties panel to customize your stroke. In the Stroke Style dialog box shown in

Figure 2-42, specify the following settings:

 Type: Hatched

 Thickness: Medium

 Space: Very Close

 Jiggle: Wild

 Rotate: Medium

 Curve: Medium Curve

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

108

 Length: Random

Figure 2-42. You can set the stroke style for the Pencil tool.

5. Use the Zoom tool to zoom in on the tree. Draw four lines across the tree, as shown in Figure 2-43.

Figure 2-43. Drawing the lines on the tree

A number of preset strokes are available from the Property panel’s drop-down menu

to the left of the Edit stroke style button.

Build the campfire movie

Now that you have created the assets for the movie, let’s put them to work. Follow these steps:

1. Click the Scene 1 button to return to the main timeline. Change the stage color to a medium

gray color: #666666.

2. Add two more layers. From the top layer down, name the layers Trees, Logs, and Fire.

3. Select the Spray Brush tool, load the Trees symbol into the brush, and click and drag across

the Trees layer to add the forest.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

109

4. Select the Logs layer, and drag three copies of the Log graphic symbol to the stage.

5. Create a TeePee fire by manipulating each Log symbol with the Free Transform tool’s rotate

and resize features. Move the logs into place, as shown in Figure 2-44.

Figure 2-44. Building the campfire with the Log symbol

6. Click the Fire layer once. Select the Deco tool, and select Fire Animation from the Drawing

Effect drop-down menu.

7. If you need to, in the Advanced Options, change the Fire duration value to 50 frames.

8. Click the stage once just above the log stack. The tool, as shown in Figure 2-45, will build the

entire animation of the fire across 50 frames. When you have finished, save and test the movie.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

110

Figure 2-45. The Fire Animation Deco brush builds an animated fire with one click.

Working with color in Flash
So far you have spent some time filling objects or strokes with either a solid color or a gradient color. The

purpose of this section is to dig a bit deeper into the color models available to you as a Flash designer and

to show you a couple of really snazzy color techniques you can use in your day-to-day workflow. What we

aren’t going to do is get into color theory or take color down to its molecular level. Entire books have been

written on those subjects.

In Flash, you have three basic color models available to you: RGB, HSB, and hexadecimal. Let’s briefly

look at each one.

The RGB model is the computer color model. Each pixel on your computer monitor is composed of a

mixture of red, green, and blue lights. The value for each color is actually based on the old black-and-white

model for computers where there were 256 shades of gray that were able to be displayed. The values

started at 0 and ended at 255. The best way to imagine this is to think of 0 as being “no light,” which

means the color is black. This means 255 is pure white. When it comes to the RGB model, each pixel can

have a color value that ranges from 0 to 255. If you are looking at a pixel with values of 0 for red, 0 for

green, and 255 for blue, you can assume the pixel is pure blue. The A value you see is the opacity value.

The letters in the HSB model represent hue, saturation, and brightness. Hue is the color, saturation is the

amount of the color or its purity, and brightness is the intensity of the color. The ranges for each value

differ in this model. Hue goes from 0 to 360; that’s one of 360 degrees around an imaginary wheel of color.

Red starts at 0 (the same as 360). Green is one third of the way around the wheel, 120. Blue is two thirds

around, 240. To see your secondary colors, shift your travel around the wheel by 60 degrees: yellow is 60,

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

111

cyan is 180, and magenta is 300. Saturation and brightness are percentages. That pure blue value from

the RGB model would here be as follows: hue = 240, saturation = 100, brightness = 100.

The hexadecimal model is the one commonly used on the Web. In this model, the red, green, and blue

values for a pixel can be either a letter ranging from A to F, a number from 0 to 9, or a combination of the

letters and numbers. In the case of a blue pixel, the hexadecimal value would be #0000FF.

The six characters in any hexadecimal color are actually three pairs of values: red, green, and blue. We

humans, with ten fingers, count in decimal notation. We start with nothing and keep adding 1 to the “ones

column” until we hit 9—that’s a range of ten values, 0 to 9. Add one more, and the ones column can’t go

any higher, so it resets to 0, while the “tens column” advances by 1.

Computers aren’t so simple. They have 16 fingers on each hand, so their ones column goes from 0 to 15.

Columns can hold only one character at a time, so after 9, the value 10 is represented by...a letter—the

letter A. For example, 11 is represented by B, and so on, until 15, which is F. Add one more, and the ones

column can’t go any higher, so it resets to 0, while the tens column—actually, the “sixteens column”—

advances by one. If your brain hasn’t already turned to jelly, good, because even though this doesn’t feel

normal to us humans, it’s not so hard.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

112

That 1 in the sixteens column and 0 in the ones column look like 10, but in hexadecimal notation, that

value is 16. For example, 17 would be 11, 18 would be 12, and so on. A 10 in the ones column, as you

now know, would be A. So, what we would call 26 in decimal—that is, a 1 in the sixteens column and a 10

in the ones column—would be 1A. Follow that through, and you’ll see that FF refers to what we call 255

(that’s 15 in the sixteens column, a total of what we call 240, plus a 15 in the ones column).

So, hexadecimal notation is just another way to represent a range from 0 to 255 in each of the primary

colors.

The Color palette and the Color Picker

When you click a color chip in Flash, the current Color palette, shown in Figure 2-46, opens. The color

chips are all arranged in hexadecimal groupings. As you run your mouse pointer across them, you will see

the hex value for the chip you are currently over. The colors on the left side of the Color palette are

referred to as the basic colors. These are the grays and solid colors used most often.

There is a reason for the pink and turquoise colors being there. The left column in that

Color palette goes like this, from top to bottom: six even distributions of gray, from

black to white. Then are the three primaries (red, green, blue) and finally the three

secondaries (yellow, cyan, magenta). These colors, by the way, follow this hex pattern:

red = #FF0000; green = #00FF00; blue = #0000FF; yellow = #FFFF00; cyan =

#00FFFF; magenta = #FF00FF.

Another really useful feature of this panel is the ability to sample color anywhere on the computer screen.

When the Color palette opens, your mouse pointer changes to an eyedropper, and if you roll the mouse

pointer across the screen, you will see the hex value of the pixels you’re over appearing in the Hex edit

box, and the color will appear in the preview box. This is a relatively dangerous feature because if you click

the mouse over a pixel on your screen, that will be the selected color.

Figure 2-46. The current Color palette

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

113

The color wheel in the upper-right corner, when clicked, opens the Flash Color Picker shown in Figure

2-47. The swatches in the top left are the basic system colors, and you probably noticed the pane on the

right with all of that color that sort of looks like the Northern Lights gone haywire. This pane, called the

Color window, contains all the color you can use in your movies. Click a color, and you will see its RGB

and HSB values as well as a preview of the color chosen. You can adjust that color by moving the

Luminance slider up or down.

How many individual colors are available to you in the Color window? The answer is more than 16

million. One of the authors once answered this question, and the student who asked the question

remarked, “Is that all?” The author told him that was one seriously large number of crayons in his box, and

the student responded, “What if I want more?” The author thought about that one for a couple of seconds

and asked the student to imagine a crayon box with 16 million crayons. “If you have a box of crayons, are

they all given a color name on the label?” asked the author. The student replied, “Of course.” The author

then said, “OK, you have in your hands a box containing 16 million crayons. None is labeled. Start naming

them.” That ended that discussion.

How do we get 16 million colors? First, the exact number is 16,777,216. At rock bottom, computers use

base 2 notation (aka binary), and millions of colors is referred to as being 24-bit color. Each pixel is

comprised of three primary colors, and each color is defined by 8 bits (8 to the 2nd power is 256—a-ha, a

number we already understand!). So, that’s where the 24 comes from: 3 times 8, which is the same as

saying 256 to the 3rd power (256 256 256)—or 2 to the 24th power.

Figure 2-47. The Flash (Windows) Color Picker

Things are a bit different on the Mac, as shown in Figure 2-48. Though the Color Picker may look

different, it works in almost the same manner.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

114

Figure 2-48. The Macintosh Color Picker

In the Mac-only color wheel, a color is chosen by clicking it in the wheel. If you want to adjust the RGB

values, click the Color Sliders button at the top, and select RGB Sliders, as you see in Figure 2-49,

from the drop-down menu. The color picking options, to be honest, are far superior to those on Windows

and well out of the scope of this book. What the Mac can’t do is create multiple custom colors. You will

have to mix those individually.

To save a color on the Mac, you just drag and drop a color from the preview area into

the Custom Color boxes at the bottom of the dialog box.

To add the color to your palette, either click the Add to Custom Colors button (Windows) or click OK

(Mac). Of course, things are not always wonderful for Windows users. The custom color you just added

appears in the Custom Colors area of the Color Picker. That’s the good news. The bad news is if

you add enough (more than 16) custom colors, Flash will wrap back to the beginning and overwrite your

first color. If you are creating a number of custom colors, select the empty box before you pick your color.

So, you have a created a bunch of custom colors; are you ready to use them in all of your projects? Not

quite. They aren’t automatically saved when you close Flash. If you create a bunch of custom colors and

then close Flash, they will be gone—forever—when you return to Flash. The question, therefore, is how do

you save your custom colors?

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

115

Figure 2-49. Choosing the sliders to change a color value

Creating persistent custom colors

Saving custom colors in Flash is not exactly up there in the category of “dead simple.” After you have created

your custom color, you need to add it to the main Color palette and then save it as a color set. Here’s how:

1. Open the Color panel, select the Fill color, and select Solid Color as the fill type. Create

this color—#B74867 (dusty rose)—and make sure it is now the Fill color by pressing the Enter

(Windows) or Return (Mac) key.

2. Click the menu in the upper-right corner of the panel to open the panel’s drop-down menu. Select

Add Swatch, as shown in Figure 2-50.

Figure 2-50. You start by selecting Add Swatch from the panel menu.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

116

3. Click the Fill drop-down menu to open the current Color palette. Your new swatch will appear,

as shown in Figure 2-51, in the bottom-left corner of the swatches. You can add as many colors

as you want, but we’ll stay with the one we are using here.

Figure 2-51. Your custom color now appears on the current Color palette.

4. Open the Swatches panel by selecting Window ➤ Swatches or pressing Ctrl+F9 (Windows) or

Cmd+F9 (Mac).

5. When the panel opens, click the panel menu, shown in Figure 2-52, and select Save Colors.

The Save As dialog box will open.

Figure 2-52. Saving a swatch

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

117

If you pay attention to the Save As dialog box, you will notice the file is being saved as a Flash Color Set

or *.clr file.

6. Name your file myFirstSet.clr, and as shown in Figure 2-53, save it to C:\Program
Files\Adobe\Adobe Flash CS5\Common\First Run (Windows) or <Hard Drive> / Users
/ <User Name> / Library/ Application Support / Adobe / Flash CS5 / en /
Configuration / Color Sets (Mac). Click OK to create the CLR file and close the dialog box.

You don’t have to use the Flash application folder for these. Just put them in a location

where they will be handy. Some Flash designers stick them in their My Documents

folder, and others put them in the project folder.

Figure 2-53. A color set

7. To load the color set, simply open the Swatches panel, and select Add Colors from the panel

menu. Navigate to the folder containing the set, and double-click it to add the set to Flash.

Yes, we agree that is a lot of work. Is there an easier way? In fact, there is. Why not do what the print guys

do and attach a color swatch directly to the file? Let’s assume you have a client who has six specific

corporate colors that must always be used. Create a movie clip containing squares filled with those colors,

and then simply put that movie clip on the pasteboard, which is the area just outside the stage that doesn’t

show in the published SWF by default. Any time you need the color, select the Eyedropper tool and

sample it. If you are really lazy, don’t add it to the pasteboard, and simply sample the color using the

Library Preview pane. If you use the colors in a lot of projects, you might even consider adding it to a

shared library along with the client’s logos and other common elements used in the client’s Flash projects.

The kuler Color Picker

A couple of years ago, Adobe introduced a small web-based color picker named kuler. The whole premise

behind the application was to give designers the opportunity to freely share custom color schemes with

each other. Needless to say, the application was a hit, and it has quietly been added to practically every

Adobe application that contains a color palette. Flash is no exception.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

118

To access the Kuler panel shown in Figure 2-54, select Window ➤ Extensions ➤ Kuler. Scroll through

the list in the panel. If you a see a combination (they are called themes) you like, just click the arrow to the

right of the set’s name, and select Add to swatches panel. When you open the Swatches panel, you

will see the set has been added to the bottom color chips.

Figure 2-54. The Kuler panel

You can also edit a swatch in the panel. Click the right arrow that appears when you select a theme, and

select Edit This Theme from the drop-down menu. The Create area of the Kuler panel, as shown in

Figure 2-55, will open. Select a swatch, and start making changes. Once you have a color or theme that

works for you, click the Save Theme button to name your theme. If you want to return to the main panel,

click the Browse button.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

119

Figure 2-55. Editing a kuler theme

Your turn: playing with color

Here are a few tricks you can do with color. Two involve the standard use of a tool, but the other is right up

there in the realm of “That is waaay cool.”

The first trick involves a gradient. Did you know Flash allows you to create a variety of gradient effects with

the click of a mouse? Here’s how:

1. Open a new Flash document, and create a big rectangle filled using the leftmost gradient in the

bottom-left corner of the fill Color Picker.

2. Switch to the Gradient Transform tool, and resize the fill so it is much smaller than the

rectangle. When you shorten the gradient, the black and white areas of the gradient become

larger. This is because Flash is filling the rectangle with the end colors. This process is called

overflowing.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

120

3. Open the Color panel, and click the middle chip in the Flow area of the panel (Figure 2-56).

Figure 2-56. The Gradient Overflow options

4. These choices, from left to right, are as follows:

 Extend: The default choice. The two last colors in the gradient extend to fill the shape.

 Reflect: The overflow area of the rectangle will be filled with repeating versions of the

gradient. Every other version is mirrored/reflected. Select this, and the rectangle looks like

stacked pipes (see Figure 2-57).

Figure 2-57. The Reflect overflow

 Repeat: The gradients aren’t reflected. The result is the “Venetian blind” look in Figure 2-58.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

121

Figure 2-58. The Repeat overflow

If you really want to rock ’n’ roll with this technique, change the gradient type to Radial, reduce the size of

the gradient with the Gradient Transform tool, and select the Repeat option. As shown in Figure

2-59, the result resembles the Looney Tunes logo background.

Figure 2-59. That’s all, folks!

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

122

The next technique is one a lot of Flash designers tend to overlook: using an image, not a gradient or a

solid color, to fill an object. There are two methods of accomplishing this, and they each have a different

result. Let’s try them:

1. Open the ImageFill.fla file, and open the Color panel.

2. Select Bitmap as the fill type. In cases where the FLA does not yet contain imported images, an

Import to Library dialog box will open at this point. In this sample file, an image already

exists in the Library panel, so you’ll see the Import button instead.

3. Click the Import button, if you like, to import an image of your own. If you go this route, use the

Import to Library dialog box to navigate to an image. Select the image, and click OK to

close the dialog box. Of course, you’re welcome to use the already-imported Lake.jpg.

4. If you take a look at the Fill chip in the Color panel, the image is in the chip and in the Fill

area of the Tools panel.

5. Select the Paint Bucket tool, and click once inside the object on the stage. It fills, as shown in

Figure 2-60, with the image.

6. Select the Gradient Transform tool to adjust the tiled image in various ways. Given the

minuscule size of the tiles, you may want to zoom in first.

Figure 2-60. Using a bitmap as a fill

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

123

Here’s the second method:

1. Add your image or the one we supplied in the Library to the stage. Click the photo on the

stage, and select Modify ➤ Break Apart or press Ctrl+B (Windows) or Cmd+B (Mac). The

image looks crosshatched because the image has changed from a bitmap instance to a shape

with a fill.

2. Select the Eyedropper tool, and click once in the photo. The image will appear in the Fill color

chip of the Tools panel.

3. Select the Paint Bucket tool, and click the object on the stage. The image, shown in Figure

2-61, fills the object.

Figure 2-61. Another way of using a bitmap as a fill

Now that you have finally had a chance to use a bitmap, let’s take a closer look at how such images are

used in Flash.

Using bitmap images in Flash
To this point in the book, you have been working with vectors. Though we have been telling you they are

the most wonderful things in the Flash universe, we are sure our photographer friends are not exactly

“happy campers.” Let’s face it—you are going to be using bitmaps in your workflow. You can’t avoid them,

and they are just as important as vectors. In fact, Adobe has really improved how Flash manages images

and integrates with Photoshop CS5, Illustrator CS5, and Fireworks CS5.

In this section of the chapter, we are going to look at how you can use bitmap images in your workflow. We

are going to talk about the image formats you can use; cover how to import images from Photoshop,

Illustrator, and Fireworks into Flash; and even show you how to convert a bitmap image to a vector image

in Flash. Let’s start with the formats that can be imported.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

124

As an Adobe application, it is not surprising that Flash can import the following formats:

 AI: Adobe Illustrator. This is the native Illustrator file format. This format allows Flash to preserve

the layers in your Illustrator document. The good news is the Illustrator-to-Flash workflow has had

its molecules rearranged and turned inside out—in a good way.

 GIF: Graphic Interchange Format. This is the former standard for imaging on the Web. The

upside of this format is the real small file size. The downside is the color palette is limited to 256

colors. These files come in two flavors: transparent and regular. The increasing use of Flash

banner ads, with their strict file size requirements, has resulted in a resurgence of this format on

websites.

 PNG: Portable Network Graphic. This is the native format for Fireworks. Think of PNG files as a

combination vector/bitmap file. This format supports variable bit depth (PNG-8 and PNG-24) and

compression settings with support for alpha channels. PNG files imported into Flash from

Fireworks arrive as editable objects and will preserve vector artwork in the file.

 JPEG or JPG: Joint Photographic Experts Group. This is the current standard for web imaging,

and any image arriving in Flash will be converted to this format when the SWF is published.

 PDF: Portable Document Format. PDF is a cross-platform standard used in the publishing

industry.

 EPS: Encapsulated PostScript. Think of this as a raw vector file.

 PSD: Photoshop Drawing. This is the native Photoshop file format. A PSD image usually contains

multiple layers. Again, the workflow between Flash CS5 and Photoshop CS5 has undergone a

profound change for the better.

 PICT: This is a Macintosh format comparable to a BMP file on Windows computers.

 TIF or TIFF: Tagged Image File Format. This is usually a high-resolution CMYK document.

A bitmap or raster image is nothing more than a collection of pixels. The reason bitmap images have taken

a bit of a “bum rap” in the Flash community is because the image file needs to map and remember the

location of each pixel in the image. The result is a large file size, which tends to go against the grain in a

community that chants, “Small is beautiful. Small loads fast.”

Use bitmaps when you need photos or lifelike images, when you need a screenshot, or when you need

pictures of drawings or artwork. In fact, a good rule of thumb is to look at a bitmap image and ask, “Could I

draw this in Flash?” If the answer is yes, you might want to consider that route instead.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

125

The best advice we can give you about bitmaps is to make them as small as possible—a process called

optimization—in the originating application. For example, Fireworks CS5 contains an Optimize panel,

shown in Figure 2-62, which allows you to compare the effects of various image settings upon an image. In

Illustrator CS5, see whether you can reduce the number of points in your shapes, and make sure you have

removed all the stray points that aren’t connected to anything. In Photoshop CS5 and Fireworks CS5,

reduce the image size to fit the image size in Flash. These applications were designed to perform these

tasks; Flash wasn’t.

Figure 2-62. Four-up image optimization in Fireworks CS5 allows you to balance quality against image

size.

Working with bitmaps in Flash

The decision is final. You need to use a bitmap and place it in Flash. Then you discover the color is all

wrong or something needs to be cropped out of the image. It needs to be edited. How do you do it? Follow

these steps:

1. Open a new Flash document, and select File ➤ Import ➤ Import to Stage. When the

Import dialog box opens, navigate to the CanoeBurnside.jpg file.

2. Select the file, and click Open to close the Import dialog box. The image will appear on the

stage and in the Library, as shown in Figure 2-63.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

126

Figure 2-63. Images imported to the stage are automatically placed in the Library.

Do not delete the image from the Library. This is the original bitmap, and deleting it

will ripple through an entire project. If you screw something up on the stage, delete the

image on the stage.

3. Right-click (Windows) or Control+click (Mac) the image in the Library to open the context

menu.

4. Select Edit With. This will launch the Open dialog box, allowing you to navigate to the

application folder containing the application you will be using to edit the image. If you select

Photoshop CS5, the image will launch in Photoshop. When you make your changes, select Edit

➤ Save. When you return to Flash, the change made in Photoshop CS5 will be reflected both in

the image on the stage and in the Library.

Fireworks CS5 and, for that matter, practically every other application in the Creative

Suite has a rather cool feature called round-tripping. If you launch Fireworks CS5 as

your editor, the image will open, and you will see a Done button, as shown in Figure 2-

64, at the top of the canvas as well as notification you are, indeed, “Editing from Flash.”

Make your changes, and click the Done button. Fireworks will close, you will be returned

to Flash, and the change will be visible on the stage and in the Library.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

127

Figure 2-64. Round-trip editing between Fireworks and Flash

Your turn: tracing bitmaps in Flash

Tracing converts an image to a series of vectors. On the surface, this sounds like a win-win for everybody.

Not quite. Yes, you get a vector image with all the benefits of scalability and so on, but you also inherit a

load of potential problems along the way.

Tracing an image

There are no hard-and-fast rules in this area, so it is best to experiment. Let’s fire up the Bunsen burner:

1. Open the Trace.fla file. You will see two images of temple painting from a small temple in the

Chinese village of Hougou.

2. Click the image over the Trace Image text, and select Modify ➤ Bitmap ➤ Trace Bitmap

to open the Trace Bitmap dialog box. Specify the values shown in Figure 2-65.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

128

Figure 2-65. The Trace Bitmap dialog box

The settings aren’t all that mysterious:

 Color threshold: The higher the number, the more colors are considered a match and

the fewer the vectors. Set this value to 100.

 Minimum area: The number entered here defines the smallest size for a vector shape. If

you want a really detailed image, use a low number. Just keep in mind that the smaller the

number, the more shapes and therefore the larger the file size. In fact, extremely complex

vectors can, and often do, carry a greater file size penalty than the bitmap images they’re

based on. Set this value to 8 pixels.

 Curve fit: Think of this as being a smoothing setting. Select Pixels, and you get a very

accurate trace. Select Very Smooth, and curves really round out. Again, the fewer the

curves, the smaller the file size.

 Corner threshold: This value determines how much a line can bend before Flash breaks

it into corners. The fewer the corners, the smaller the file size. (Picking up a theme here?)

3. Click the Preview button to see the effect of your choices, as shown in Figure 2-66.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

129

Figure 2-66. A traced bitmap is on the right, and the original image is on the left.

If you have used previous versions of Flash, you will find the Preview button in the

Trace Bitmap dialog box a welcome addition to Flash CS5.

4. Click OK to apply the change and close the dialog box.

5. Now you’ll see what happens when you use even closer tolerances. Select the image on the right

of the stage, and open the Trace Bitmap dialog box. Specify these values:

 Color threshold: 5

 Minimum area: 2

 Corner threshold: Many corners

 Curve fit: Pixels

6. Click the Preview button. The progress bar will take a bit longer this time, and when it finishes,

the difference between the original image and the vector image is not readily evident. Click OK to

apply the changes.

You are about to find out that there is indeed a major difference between the original bitmap and the traced

image. The difference becomes evident when you optimize the image. Let’s get real clear on one aspect of

tracing: Flash should be your last resort. Illustrator CS5’s Live Trace feature is far superior and more

accurate.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

130

Optimizing the drawing

In Flash, optimizing a drawing means you are reducing the number of corners in a traced image and

smoothing out the lines in the traced image to give you a smaller and less-precise image. Though you can

optimize any drawing you have in Flash, this technique is best applied to traced images. Here’s how:

1. Change to the Selection tool, and marquee the image you traced. Select Modify ➤ Shape ➤

Optimize to open the Optimize Curves dialog box shown in Figure 2-67.

Figure 2-67. The Optimize Curves dialog box lets you reduce the size of a traced image.

2. Drag the Smoothing slider up to the Maximum value of 100, and click OK. The process starts,

and when it finishes, you will be presented with an Alert box telling you how many curves have

been optimized (see Figure 2-68).

The downside is the image loses a lot of its precision, and some of the curves become spiky because

Flash converted all the pixelated smoothness to vectors. If you repeat the process on the second image

but only move the Smoothing slider to the midpoint, the process will take a lot longer than the previous

one, and the curve reduction will be minimal. This is because you essentially created a high-resolution

vector image, so there are a lot more curves to check out. The bottom line here is the decision regarding

using a bitmap, tracing it, and optimizing the curves is up to you.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

131

Figure 2-68. A 26 percent curve reduction means a hefty file size reduction.

JPEG files and Flash

The JPG/JPEG file format is the one used for photos. As mentioned earlier, JPEG stands for Joint

Photographic Experts Group and is a method of compressing an image using areas of contiguous color.

The file size reductions can be significant with minimal to moderate image quality loss. This explains why

this format has become a de facto imaging format for digital media. In this exercise, you are going to learn

how to optimize a JPEG image in Flash.

Before you do this, it is extremely important you understand that the JPEG format is lossy. This means

each time a JPEG image is compressed in the JPEG format, the image quality degrades. The point here is

you have to make a decision regarding JPEG images before they arrive in Flash. Will the compression be

done in Photoshop or Fireworks, or will Flash handle the chores? If the answer is Flash, always set the

JPG Quality slider in Photoshop or Fireworks to 100 percent to apply minimal compression. If you don’t

know where the image came from or what compression was used, don’t let Flash handle the compression.

1. Open the JPGCompression.fla file in your Chapter 2 Exercise folder. When it opens, you will

notice the movie contains nothing more than a single JPEG image, and the stage matches the

image dimensions. In short, there is no wasted space that can skew the results of this

experiment.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

132

2. Minimize Flash, and open the Chapter 2 Exercise folder. Inside the folder is a file named

JPGCompression.swf. It is the compiled version of the FLA file, and if you check its file size, you

will see it comes in at about 176KB. Let’s see whether we can shed some weight from this file.

3. Return to Flash, and save the open Flash file to your Exercise folder by selecting File ➤ Save

As and naming the file JPGCompression2.fla.

4. Double-click the image in the Library to open the Bitmap Properties dialog box shown in

Figure 2-69.

Be aware that any changes made in this dialog box ripple through the entire movie and

will override the defaults used in the Publish dialog box.

Figure 2-69. The Bitmap Properties dialog box

Let’s examine this dialog box. To start, the image on the left side is the preview image. As you start playing

with some of the settings, this image will show you the final result of your choices. This is a good thing

because changes you make in this dialog box are visible only when the SWF file is running; they won’t be

reflected in the image on the stage. The other areas are as follows:

 Name: This is the name of the file. If you want to rename the file, select it and enter a new name.

This only changes the name by which Flash knows the file—it does not “reach outside of Flash”

and rename the original image.

 Path, date, dimensions: These are fairly self-explanatory. There will be the odd occasion where

this information will not be displayed. The reason is the image was pasted in from the Clipboard.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

133

 Update button: If you have edited the image without using the Edit with feature, clicking this

button will replace the image with the new version. This button will not work if you have saved or

moved the original image to a new location on the computer. To “reconnect” such a broken link,

respecify the image file’s location with the Import button, explained next.

 Import button: Click this, and you open the Import Bitmap dialog box. When using this

button, the new file will replace the image in the Library, and all instances of that image in your

movie will also be updated.

 Allow smoothing option: Think of this as anti-aliasing applied to an image. This feature tends

to blur an image, so use it judiciously. Where it really shines is when it is applied to low-resolution

images because it reduces the dreaded jaggies.

 Compression drop-down menu: This allows you to change the image compression to either

Photo (JPEG) or Lossless (PNG/GIF). Use Photo (JPEG) for photographs and

Lossless (PNG/GIF) for images with simple shapes and few colors, such as line art or logos.

To help you wrap your mind around this, the image in the dialog box uses Photo (JPEG)

compression, and if you click the Test button, the file size is about 2.4KB. Apply Lossless

compression and click the Test button, and the file size rockets up to 142KB.

 Use Imported JPEG data option: Select this check box if the image has already been

compressed or if you aren’t sure whether compression has been applied. Selecting this avoids

the nasty results of applying double compression to an image.

 Quality option: If you deselect the Use Imported JPEG data check box, you can apply

your own compression settings. In fact, let’s try it.

5. Make sure your compression setting is Photo (JPEG) and that you have deselected the Use

Imported JPEG Data check box. Change the Quality value to 10 percent, and click the

Test button. The image in the preview area, shown in Figure 2-70, is just plain awful. The good

news is the file size, at the bottom of the dialog box, is 4.6 KB.

Figure 2-70. At 10 percent quality, the image is terrible.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

134

6. Change the Quality setting to 40 percent, and click the Test button. Things are a little

better, but the text in the banner a bit looks pixelated, and the file size has gone up to 16KB.

7. Change the Quality value to the normal 80 percent value used by imaging applications, and

click the Test button. The text issue is resolved, but the file size has risen to 43.1KB. As you are

seeing, there is an intimate relationship between the Quality setting and file size.

8. Knowing the quality between 50 percent and 80 percent is a vast improvement; let’s see if we can

maintain quality but reduce the file size. Set the Quality value to 65 percent, and click the

Test button. The difference between 65 percent and 80 percent is minimal, but the file size has

reduced to 3KB. Click OK to apply this setting and close the dialog box.

9. Save the movie, and press Ctrl+Enter (Windows) or Cmd+Return (Mac) to test the movie. This

will create the SWF you need. Minimize Flash and the SWF window, and navigate to your

Exercise folder. The results are, to say the least, dramatic. The file size, as you see in Figure 2-

71, has reduced to 29KB from 176KB. Save and close the open movie.

Figure 2-71. Applying compression in Flash can result in seriously smaller and more efficient SWF files.

Using GIF files in Flash CS5

There was point a few years back where many web and Flash designers were preparing to celebrate the

death of the GIF image and the GIF animation. The reason was simple: in a universe where bandwidth is

plentiful and every computer on the planet is able to display 16-bit color, the limited color range and small

file size of a GIF image that made the format so important were irrelevant. GIF images were developed for

a time of limited color depth—monitors that could only display 256 colors—and dial-up modems. Then a

funny thing happened on the way to the wake; they arose from their deathbed. The reason was banner

advertising.

Ad agencies and their clients were discovering the Web really was a viable advertising medium and that

Flash was a great interactive tool for ads. The problem was, standards for banner advertising appeared on

the scene, and the agencies discovered they were handed a file size limit of 30KB. This tended to go

against the grain, and as they grappled with the requirement for small files, they rediscovered the GIF

image and the GIF animation.

This isn’t to say you should use the GIF format only in banner ads. It can be used in quite a few situations

where size, or even transparency for that matter, is a prime consideration.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

135

Working with GIF images

Here’s how to use GIF images and GIF animations in Flash:

1. Open the GIF.fla file in your Chapter 2 Exercise folder. When the file opens, open the

Library. There are two GIF files in the Library.

2. Drag the Figurines image from the Library to the stage. Notice how you can see the stage

color behind the image. This image is a transparent GIF. When it comes to GIF transparency, you

have to understand it is an absolute. It is either on or off. There are no shades of opacity with this

format. GIFs may contain up to 256 colors, and one of those colors may be transparent.

3. Drag the FigurinesNoTrans file to the stage, and place it under the image already there. This

image is a GIF image with no transparency applied.

4. Select the image you just dragged onto the stage, and press the Ctrl+B (Windows) or Cmd+B

(Mac) combination to break the image apart. Hold on, that isn’t right. Only the figurines in the

image break apart (see Figure 2-72). That is an expected behavior. Remember what we said in

the previous step? The background in a GIF image is either on or off. If it is on, it can’t be

removed in Flash.

When you break apart an image like this, here’s what’s really going on. That image is simply translated

into a shape with a bitmap fill. It is the same thing as drawing a shape and filling it with that bitmap. This is

why file size is identical between the white and transparent versions of this image. The GIF is the same in

all respects—except that the color slot in one file’s color table is white and in the other file the color table is

transparent. But both GIFs have the same number of colors and weigh the same.

5. To “get rid of” the white background, you can drag in the edges of the shape that contains the

white version, just like the star shape from the earlier bitmap fill example. Obviously, this would

be nearly impossible by hand with an image of this complexity, but any portion of the bitmap fill

can be hidden by changing the shape hat contains it.

6. Close the file, and don’t save the changes.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

136

Figure 2-72. Transparent and regular GIFs are treated differently in Flash.

Working with GIF animations

Animated GIFs are a bit different. They are a collection of static images—think of a flip book—that play,

one after the other, at a set rate, all stored inside a single GIF file. These flip book “pages” can be imported

either directly into the main timeline (not a good idea) or into a separate movie clip. Here’s how:

1. Open a new Flash document, and create a new movie clip named Counterforce. The Symbol

Editor will open.

2. Select File ➤ Import ➤ Import to Stage, and when the Open dialog appears, locate the

Counterforce.gif file, select it, and click the Open button.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

137

3. When the import is finished, you will see that each frame of the animation has its own Flash

frame, and each image in the animation, as shown in Figure 2-73, has its own image in the

Library.

4. Press the Enter key to test the animation or click the Scene 1 link to return to the main timeline,

add the movie clip to the stage, and test the movie.

A good habit to develop is to place the images in the Library in a folder. This way,

your Library doesn’t end up looking like what your mom would call “a pigsty.”

Figure 2-73. Importing GIF animations into a movie clip

Importing Fireworks CS5 documents into Flash CS5

When Macromedia was acquired by Adobe in 2006, the betting in the Macromedia community was that

Fireworks, Macromedia’s web imaging application, would simply not make the cut. The reason was the

market regarded Fireworks as a competitor to Photoshop—it wasn’t—and, as such, the application was

doomed to extinction.

What the Macromedia community failed to comprehend was that Adobe, prior to the acquisition, had

quietly announced it was no longer supporting ImageReady, which was the web imaging application for

Photoshop. When the acquisition was settled, Fireworks did indeed make the cut, and in fact Adobe had

decided to reposition Fireworks as a rapid prototyping application for web designers. Along the way,

Adobe improved how Fireworks PNG files integrate with Flash CS5 along with Illustrator CS5, Flex Builder

2, and Photoshop CS5, and the movement of files from Photoshop and Illustrator into Fireworks. The end

result is Flash designers now have a tool that will seriously improve their workflow.

We will be showing you elsewhere in this book techniques in which Fireworks integration will be a huge

timesaver. For now, though, let’s concentrate on getting a PNG image—the native file format used by

Fireworks—into Flash.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

138

As you can see in Figure 2-74, the Fireworks file we will be working with is composed of one layer,

Background, and three sublayers. When you import this PNG image into Flash, you will see these layers

move, intact, into the movie.

Figure 2-74. We start with a Fireworks CS5 PNG image.

To import the PNG image, follow these steps:

1. Open a new Flash document. When the New Document dialog box opens, click the Templates

button, select Advertising from the Category list, and select 728 x 90 Leaderboard from

the Template list, as shown in Figure 2-75. Click OK to open the template.

Figure 2-75. Opening a Flash CS5 template

2. Select File ➤ Import to Library, and navigate to the Banner.png image in the Chapter 2

Exercise folder.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

139

3. When you click the Open button, the dialog box will close, and the Fireworks PNG Import

Settings dialog box, shown in Figure 2-76, will open.

Figure 2-76. The Fireworks import dialog box

Let’s review the options:

 Import: The important aspect of this is not the scene but the fact you are being asked to

import pages. This feature was first introduced to Flash CS3. Because it is a rapid

prototyping application, Fireworks CS5 is able to create multipage documents for websites. If

the PNG file contains multiple pages, you can select the page to be imported from the drop-

down menu.

 Into: Select Current frame as movie clip so all the layers in the Fireworks image

are placed into separate layers in the movie clip. When this occurs, Flash creates a new

folder in the Library named Fireworks Objects and places the movie clip in this folder.

The second choice allows you to add the selected page as a new layer on the main timeline.

 Objects: The choices are to flatten everything on the Fireworks layer or keep each object

editable.

 Text: This has the same choices as objects. We tend to keep text editable just in case there

is a typo.

 Import as a single flattened bitmap: This option flattens all the layers into a

bitmap.

4. Go with the default values for this example. Click OK to import the image into Flash.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

140

5. When the import finishes, you will see the Fireworks Objects folder in the Library. Open it,

and you will see that Flash has created a folder for the page just imported, and if you open that

folder, you will see the movie clip and a flattened bitmap of the file.

6. Double-click the movie clip to open it. Compare the Flash file (shown in Figure 2-77) to the

Fireworks file in Figure 2-74. You can now either save the file or close it without saving the

changes.

Figure 2-77. The Flash movie clip layers match those in the Fireworks PNG image.

Importing Illustrator CS5 documents into Flash CS5

Flash lets you import Illustrator AI files directly into Flash and generally allows you to edit each piece of the

artwork when it is in Flash. The Illustrator file importer also provides you with a great degree of control in

determining how your Illustrator artwork is imported into Flash. For example, you can now specify which

layers and paths in the Illustrator document will be imported into Flash and even have the Illustrator file be

converted to a Flash movie clip.

The Flash Illustrator file importer provides the following key features:

 Preserves editability of the most commonly used Illustrator effects such as the Flash filters and

blend modes that Flash and Illustrator have in common.

 Preserves the fidelity and editability of gradient fills.

 Imports Illustrator symbols as Flash symbols.

 Preserves the number and position of Bezier control points; the fidelity of clip masks, pattern

strokes, and fills; and object transparency.

 Provides an improved copy-and-paste workflow between Illustrator and Flash. A copy-and-paste

dialog box provides settings to apply to AI files being pasted onto the Flash stage.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

141

To many Flash designers, that list is “nirvana,” but there are two critical aspects of the Flash-to-Illustrator

workflow that must be kept in mind:

 Flash supports only the RGB color space. If the Illustrator image is a CMYK image, do the CMYK-

to-RGB conversion in Illustrator before importing the file into Flash.

 To preserve drop shadow, inner glow, outer glow, and Gaussian blur in Flash CS5, import the

object to which these filters are applied as a Flash movie clip. In Flash, these filters can be

applied only to movie clips.

Let’s import an Illustrator CS5 drawing to see what is causing all of the joy. The file we will be using,

Mascot.ai, contains a number of Illustrator layers and paths (see Figure 2-78). One path—in the Head

layer—contains a drop shadow.

Figure 2-78. The Illustrator CS5 file for this example contains a number of layers and paths.

The authors would like to thank Mischa Plocek for the use of the Mascot.ai file. Mischa

is a flash developer/artist based in Zurich, Switzerland, and his work can be seen at

www.styleterrorist.com.

Follow these steps to import an Illustrator CS5 document into Flash CS5:

www.zshareall.com

http://www.styleterrorist.com
http://www.zshareall.com

CHAPTER 2

142

1. Open a new Flash document, and import the Mascot.ai file into the Flash Library. The

Import dialog box, shown in Figure 2-79, will appear. Keep in mind the Head layer contains a

Drop Shadow filter, and as you can see, Flash will import that layer as a movie clip in order to

retain the drop shadow.

Figure 2-79. The Import dialog box used for an Illustrator CS5 image

If you select File ➤ Import to Stage, the Import dialog box will contain a couple

of choices not shown here. You will be asked whether you want the images in each layer

to be placed at their original position in the Illustrator document, and you will also be

asked whether you want to trim the stage to the dimensions of the Illustrator document.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

143

2. Select the remaining layers, not the paths, and select Create movie clip, as shown in Figure

2-80. Don’t bother with instance names because there is no need for ActionScript here. The

Convert layers to drop-down menu allows you to convert your Illustrator layers to Flash

layers or to a series of Flash keyframes (this is handy if they are animated) or allows you to put

the whole image into one Flash layer. You are also given the opportunity to import unused

symbols created in Illustrator or to flatten the image and bring it in as a bitmap.

Figure 2-80. Illustrator layers can be converted to movie clips.

The Import unused symbols option may be a bit confusing. Illustrator allows you to

create symbols, and these symbols can be imported directly into Flash from Illustrator.

We will show how this works in the next chapter.

3. Click OK, and when the import process finishes, open the Library, as shown in Figure 2-81. The

image has been directly imported to the stage, but each of the layers has its own folder

containing the movie clip you created in the Import dialog box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

144

Figure 2-81. The Illustrator image in the Flash Library. Note the drop shadow on the star.

At the top of this section, we mentioned how developers would simply copy Illustrator documents and

paste them into Flash to avoid “issues.” This can still be done, but when you paste the drawing into Flash

CS5, the dialog box shown in Figure 2-82 appears. This dialog box is fairly self-explanatory, though you

may be wondering about the Paste using AI File Importer preferences choice.

Figure 2-82. Pasting a drawing from Illustrator to Flash will open this dialog box.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

145

You can get to the preferences by selecting Edit ➤ Preferences (Windows) or Flash ➤

Preferences (Mac). When the Preferences dialog box opens, click the AI File Importer

selection at the bottom of the Category list. This will open the AI File Importer preferences, as

shown in Figure 2-83. As you can see, many of the choices are also available in the Import dialog box.

Figure 2-83. The AI File Importer preferences

You are most likely looking at the Mascot image in the Library and thinking, “That’s all well and good,

but how do I get the dang document onto the Flash stage and play with it?” Here’s how:

1. Drag the Mascot.ai file from the Library to the Flash stage.

2. Double-click the image on the stage. When the Symbol Editor opens, you will see the image

is actually composed of the movie clips in the Mascot.ai.Assets folder from the Library and

that each movie clip is on a separate named layer.

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

146

Importing Photoshop CS5 documents into Flash CS5

We’ll wind up this overview of Flash’s drawing features with the import of Photoshop CS5 images into

Flash. As you saw with Illustrator CS5, the process has been streamlined, and you are in for a rather

pleasant surprise. Follow these steps to import a Photoshop document into Flash:

1. Open a new Flash document. When the document opens, select File ➤ Import ➤ Import to

Stage, and navigate to the IglooVillage.psd document. Click Open to launch the PSD File

Importer, shown in Figure 2-84.

Figure 2-84. The PSD file importer

The dialog box looks similar to its Illustrator counterpart. Still, there are a couple of major differences. The

inclusion of a Place layers at original position check box option ensures the contents of the

PSD file retain the exact position that they had in Photoshop. For example, if an object was positioned at X

= 100, Y = 35 in Photoshop, it will be placed at those coordinates on the Flash stage. If this option is not

selected, the imported Photoshop layers are centered on the stage.

The other check box option, Set stage to same size as Photoshop canvas, is a real godsend.

In the case of this image, the canvas size is not the default Flash size—500 by 400—but 468 by 146.

When the file imports, the Flash stage will be resized to the dimensions of the Photoshop document.

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

147

The manner in which PSD files are imported into Flash is set in the Preferences. You

can reach them by selecting Edit ➤ Preferences (Windows) or Flash ➤

Preferences (Mac) and selecting PSD File Importer in the Category listing.

2. Hold down the Shift key, and click the first two layers to select them. The Merge Layers button

lights up. This means you can combine the selected layers into one layer. This works for selected

adjacent layers only. Deselect the layers.

3. Select the check box beside the first layer. What you have just done is to tell Flash to ignore

importing that layer. Reselect the check box.

4. Click the name of the first layer. The import options, as shown in Figure 2-85, appear on the right

side of the dialog box. The first thing you should notice is the Importer has figured out you clicked

a text layer. You have three choices as to how the text will be handled, and if you want, you can

put the selection in its own movie clip. Select the Editable text import option.

If the text in the PSD file is PostScript or TrueType, always select Editable text. If

you select the other two options, typos move, cemented, into Flash.

Figure 2-85. The text import options

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

148

5. With the layer still selected, select the Create movie clip for this layer check box

option, and enter Headline as the instance name. Notice the placement of a movie clip icon on

the layer strip.

6. Click the BackgroundImage layer. Pay attention to how, as shown in Figure 2-86, the import

options change to reflect the selection of a bitmap. You can choose to put the layer in a movie

clip—Bitmap image with editable layer styles—or import a flattened bitmap image. It

makes sense with this image to choose the first option to maintain the layer transparency.

Figure 2-86. The text import options for a bitmap image

Hold on, does this mean you have to repeat this step with the remaining five layers? No.

Shift-click each layer to select all of them, and click the first option. A movie clip icon, as

shown in Figure 2-87, will appear beside each layer.

Figure 2-87. How to import a series of bitmap layers as movie clips

www.zshareall.com

http://www.zshareall.com

GRAPHICS IN FLASH CS5

149

7. With all the layers selected, click OK to import the image. The layers are placed on the main

timeline, and the movie clips requested appear in the Library, as shown in Figure 2-88. Save

the file as BannerEx.fla.

Figure 2-88. The Photoshop file is imported and placed on the Flash stage and in the Library.

You have learned
This has been a fairly intense chapter but, along the way, you have learned the following:

 How to use the drawing tools in the Tools panel

 How to create and customize gradients

 How to create custom strokes and fills

 The various color features in Flash and how to create and save a custom color

 How to trace a bitmap in Flash

 How to import and optimize graphics in Flash

 How to use the new Illustrator and Photoshop file importers in Flash CS5

www.zshareall.com

http://www.zshareall.com

CHAPTER 2

150

We aren’t going to deny this has been a pretty intense chapter. Even so, all the topics covered here will

ripple through the remainder of this book. Most important of all, you have learned how graphic content is

created, added to Flash, and optimized in Flash. The next step is making that content reusable in Flash

movies or available to different Flash movies. That is the subject of the next chapter. See you there.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

151

Chapter 3

Symbols and Libraries

Symbols, the topic of this chapter, are one of the most powerful features of Flash. This is because they

allow you to create reusable content. You need only one copy of a symbol. Once it is on the stage, you

can then manipulate that symbol in any number of ways without those changes affecting the original piece

of content.

We’ll cover the following in this chapter:

 Creating and using symbols

 Creating, using, and sharing libraries

 Adding filters and blends to symbols

 Grouping and nesting symbols

 Using rulers, stacking, and alignment to manage content on the Flash stage

 Creating masks

 Creating soft masks

If you haven’t already, download the chapter files. You can find them at www.friendsofED.com/
download.html?isbn=1430229940.

www.zshareall.com

http://www.friendsofED.com
http://www.zshareall.com

CHAPTER 3

152

These are the files used in this chapter:

 GraphicSymbol.fla (Chapter03/Exercise Files_CH03/ GraphicSymbol.fla)

 ButtonSymbol.fla (Chapter03/Exercise Files_CH03/ ButtonSymbol.fla)

 MovieClip.swf (Chapter03/Exercise Files_CH03/ MovieClip.swf)

 MovieClip.fla (Chapter03/Exercise Files_CH03/ MovieClip.fla)

 SymbolEdit.fla (Chapter03/Exercise Files_CH03/ SymbolEdit.fla)

 9Slice.fla (Chapter03/Exercise Files_CH03/9Slice.fla)

 Olives.fla (Chapter03/Exercise Files_CH03/ Olives.fla)

 9Slice2.swf (Chapter03/Exercise Files_CH03/9Slice2.swf)

 9SliceGotchas.fla (Chapter03/Exercise Files_CH03/9SliceGotchas.fla)

 SharedLibrary.fla (Chapter03/Exercise Files_CH03/SharedLibrary.fla)

 Filter.fla (Chapter03/Exercise Files_CH03/Filter.fla)

 Blends.fla (Chapter03/Exercise Files_CH03/Blends.fla)

 NuttyProfessor.fla (Chapter03/Exercise Files_CH03/ NuttyProfessor.fla)

 Stacks.fla (Chapter03/Exercise Files_CH03/ Stacks.fla)

 AlignPanel.fla (Chapter03/Exercise Files_CH03/ AlignPanel.fla)

 SimpleMask.fla (Chapter03/Exercise Files_CH03/ SimpleMask.fla)

 Seasons.fla (Chapter03/Exercise Files_CH03/ Seasons.fla)

 Seasons02.fla (Chapter03/Exercise Files_CH03/ Seasons02.fla)

Symbols are also the building blocks of everything you will do in Flash (other than ActionScript). They are

inevitably created when you come to the realization that the piece of content you are looking at will be

used several times throughout a movie. In fact, the same content may appear in a number of movies, or

even have a single use, such as a movie clip that plays a particular video or sound. The most important

aspect of symbols is they keep the file size of a SWF manageable. The end result of a small SWF is fast

load times and users who aren’t drumming their fingers on a desk waiting for your movie to start.

Symbol essentials
Reduced to its basics, a symbol is something you can use and reuse. It could be an image, an animation,

a button, or even a movie used within the main movie. When a symbol is created, it is placed in the

Library, and any copy of that symbol on the stage at any point in the movie is said to be an instance of

that symbol. Let’s create a symbol and start examining how these things work. Follow these steps:

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

153

1. Launch Flash, and when a new document opens, select the Rectangle, and draw a rectangle

on the stage. Don’t worry about stroke and fill at this point. You are simply concentrating on

creating a symbol.

2. Right-click (Windows) or Cmd+click (Mac) the shape, and select Convert to Symbol from the

context menu (as shown in Figure 3-1). You can also select the object on the stage and press the

F8 key, or you can select the object and choose Modify ➤ Convert to Symbol.

Figure 3-1. Creating a symbol

3. When the Convert to Symbol dialog box opens, name the symbol Box, and select Movie

clip as its Type (see Figure 3-2). Click OK; the dialog box will close, and the new symbol will

appear in the Library.

If you are new to Flash, you may notice a button named Advanced in the Convert to Symbol dialog

box. When you click it, a number of extra options will open. Let’s look at each element in the dialog box:

 Name: The name you enter here will be the name for the symbol as it appears in the Library.

 Type: You select the symbol type here. Symbol types will be explained in even greater depth in

the next section.

 Registration: Each of the nine dots represents a possible location for the symbol’s registration

point. The registration point (also known as the transformation or pivot point) is used for

alignment with other objects on the stage and for movement along a motion guide or for objects

put into motion using ActionScript.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

154

 Folder: This was new to Flash CS4. Click the Library root link to open a Move to folder

dialog box, which lets you specify the Library folder for your new symbol. You can even create

and name a new Library folder in the same step, if desired, which is a huge productivity

booster. In the dialog box, select the New folder radio button, and you can name a folder.

Select the Existing folder radio button, and you can save the symbol to any folder in the

Library.

 Enable guides for 9-slice scaling: Select this, and the guides for this special scaling

will appear. We’ll deal with this important topic in a separate section of this chapter.

 Linkage: You can use ActionScript to pull symbols and other assets out of the Library and

either put them on the stage or use them for another purpose, such as playing audio. To do this,

you need to assign an instance name, called a linkage identifier, for ActionScript to be able to

find it in the Library. The Linkage check boxes allow the symbol to be used by ActionScript

and to load the symbol into the first frame of the movie when the movie plays.

 Sharing: This area allows you to share symbols with other Flash movies or to import symbols

from other Flash movies into your project. This used to be bundled into the Linkage area but

Adobe, recognizing that symbols are the cornerstones of Flash, have made this its own little

configuration in Flash CS5.

 Source: This area allows you to identify external content in a shared library or elsewhere to be

used as a symbol. This comes into play in cases where you’ve dragged an asset from one FLA

into another. For example, a Flash animator might build a character’s body parts in one FLA,

save it, and then use that external library in a completely different series of movies. If he changes

the color of a shirt in the original library from blue to red, the shirt can be configured to change in

the current movie as well. Note that you can select Always update before publishing,

which makes the change in each FLA to which it is linked, minimizing duplicated effort.

4. Click OK. If you look at the box on the stage, you will see it now surrounded by a thin blue line.

This tells you that the object just selected is a symbol. The Properties panel will also change

to show that you have, indeed, selected a symbol.

5. Open the Library, and drag another copy of the symbol to the stage. Click the symbol to select

it. Select the Free Transform tool, and scale and rotate the object. As you can see, changing

one instance of a symbol does not affect any other instance of that same symbol on the stage.

6. Close the movie without saving it.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

155

Figure 3-2. The Convert to Symbol dialog box

Symbol types
You have three basic symbol types to choose from: graphic, button, and movie clip. Each one has specific

capabilities, and the type you choose will be based upon what needs to be done. For instance, say you

have a logo that will be used in several places throughout a movie and not be required to move. In this

case, the graphic symbol would be your choice. If the need is for a racing car zooming across the screen

with the engine sounds blasting out of the user’s speakers, then the movie clip symbol is the choice. Need

a button? Well, that one is a bit obvious. Let’s briefly review each symbol type.

Graphic symbols

Graphic symbols are used primarily for static images or content used in a project. They can also be used

as the building blocks for complex animations. Though we say they are primarily static, they can be put

into motion on the main timeline or the timelines of other symbols.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

156

Graphic symbols, unlike their movie clip cousins, do not play independently of the timeline they are in. This

is why they need a matching number of frames on the parent timeline in order for each frame of the

graphic symbol to display. For example, if a graphic symbol animates over 60 frames and you want it to be

on the main timeline for half of its life, then you would need to allocate 30 frames on the main timeline for

this task. That may sound a little convoluted. We agree, and have provided a small movie that shows you

what we mean:

1. Open the GraphicSymbol.fla file. When it opens, you will see a bronze Mao statue on the

timeline that has a duration of ten frames. Scrub across the timeline, and the statue moves a

short distance to the right.

2. Double-click the graphic symbol—Mao—in the Library, and when the Symbol Editor opens,

you’ll see that the animation has a length of 60 frames. Double-clicking a symbol on the stage to

open the symbol is called editing in place. This is a handy way of fixing symbols and seeing how

the changes are reflected in the main timeline.

3. Click the Scene 1 link to return to the main timeline.

4. Select frame 60 on the main timeline, and add a frame (not as keyframe, just a frame). Scrub

across the timeline. This time, the statue moves all the way across the stage because it is

matching the movement of the symbol’s nested animation.

5. Insert a frame at frame 61 of the main timeline. Because the statue’s internal timeline loops back

to frame 1 after frame 60, the statue pops back to the left side of the stage. If you keep inserting

frames, you will eventually finish with a loop. This is an extremely useful technique to know. If you

were to have a bird with flapping wings, you can have the wings flap inside the graphic symbol’s

timeline while the main timeline manages the motion of the bird flying from side to side of the

stage.

6. Select the statue on the stage, and open the Properties panel.

7. Twirl down the Looping area in the Properties panel. The drop-down menu in the Options

area lets you choose Loop, Play Once and Single Frame. The field labeled First lets you

choose which frame of the graphic symbol’s timeline to display first. We’ll dig into this interesting

feature in Chapter 7.

8. Close the file without saving the changes.

Button symbols

Button symbols are rather interesting in that they are able to do a lot more than you may think. Button

symbols have a four-frame timeline in which each frame is the state of the button (up, over, down, and hit),

as shown in Figure 3-3. The button states can be created using graphic symbols or movie clips or drawn

directly into the frame using the tools. The key to a Button symbol, as you will see, lies in telling Flash

where the mouse has to be to activate the various states of the button. Let’s look at a typical button:

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

157

1. Open the ButtonSymbol.fla file, and select Control ➤ Enable Simple Buttons. This

menu item brings the button to life on the Flash stage. If you roll over a button and click it, you will

see that the button changes in relation to whether it has been clicked or rolled over and whether

the mouse is off of the button. In this case, nothing happens. Let’s see why.

If you use the Enable Simple Buttons menu item, do your sanity a favor, and

deselect it after you have tested the button. This menu item puts the button into its “live”

state, meaning that you can’t select it or move it to another location on the stage.

Figure 3-3. The button symbol timeline

2. Double-click the button symbol named Button in the Library. When the Symbol Editor

opens, you will see that each state of the button is in its own keyframe. Select the Hit keyframe.

The button didn’t work in step 1 because the Hit frame is empty. Flash doesn’t have a clue where the

mouse should be to make the button work. We are fixing this by defining a “hot” area in the Hit frame.

3. Select the Rectangle tool, and draw a large square or rectangle that covers most of the stage.

4. Click the Scene 1 link, turn on Enable Simple Buttons, and drag the mouse across the

stage. The over state will appear even though the mouse pointer is not over the button. This is

the hit state coming into play. The area of the shape determines the active area for an event. This

should tell you that you can have a button composed only of a hit state. If you do, what you have

created is a hotspot, sometimes referred to as an invisible button, on the stage.

5. Close the movie, and don’t save the changes.

You can add layers to a button symbol. A common use of this feature is adding a sound

to a button. For example, you could have something explode only when the mouse is

over a button. Drag the BlowUp button to the stage and try it. The explosion sound is on

the Audio layer of the symbol and is triggered only when the mouse is over the button

on the stage.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

158

Movie clip symbols

Movie clips can be thought of as movies within movies. These symbols, unlike their graphic counterparts,

actually run independent of the timeline in which they are placed. They can contain code, other symbols,

and audio tracks. Movie clips can also be placed inside other movie clips—the term for this is nesting—

and they have become so ubiquitous and useful among Flash designers that they are, in many cases,

replacing graphic and button symbols on the stage.

A major aspect of their timeline independence is that movie clips continue to play even if the parent

timeline is stopped, which explains why they are often placed in a single frame on the main timeline. In

cases where, for example, a movie clip fades in over a period of time, it may extend across a number of

frames to accommodate this effect, but, technically, movie clips need only a single frame on whatever

timeline they are placed into. The other major feature of movie clips is they can be controlled using

ActionScript. We are going to get into this in a big way later in the book. In the meantime, let’s explore that

concept of timeline independence:

1. Double-click the MovieClip.swf file to launch Flash Player. You will see a sports car come

roaring onto the screen and drive off the right edge of the stage. Close the SWF, and let’s look at

how this was put together.

2. Open the MovieClip.fla file. If you drag the playhead across the timeline, you will see that the

car starts moving across the stage in frame 6 and is off the stage by frame 45.

3. Open the Library panel, and you will see the car is actually composed of several symbols. The

Car graphic symbol doesn’t contain a rear wheel. Why is it a graphic symbol? It is simply a

picture The Rear movie clip contains the wheel that is rotated over a series of frames in its

timeline. Why is this one a movie clip? The answer is the rotating wheel on the movie clip’s

timeline.

4. Double-click the Race movie clip in the Library to open the Symbol Editor. You will see that

the car is composed of two layers, and each layer contains a symbol. This is what is meant by

nesting. Movie clips can be placed inside other movie clips. This is also true of graphic symbols,

but again, the key difference, in terms of animation, is that the timelines for the movie clips aren’t

controlled by the main timeline. Notice that each symbol resides in a single frame of its own layer.

Even though the Rear movie clip gets one frame of the timeline, it still spins when the SWF is

published.

5. Click the Scene1 link to return to the main timeline. Select the car anywhere between frames 6

and 45 on the stage, and open the Properties panel. You will see that the Race movie clip, as

shown in Figure 3-4, is used for the animation.

6. Scrub the playhead across the timeline. You’ll see that the car gets larger and smaller, thanks to

a tween. The key aspect of this is that movie clip properties can be changed, and in the case of

nested movie clips, this change is reflected throughout the entire symbol, including the movie

clips nested inside the main movie clip.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

159

Figure 3-4.The Race movie clip is selected on the stage.

Yes, we agree this is not exactly a well-designed piece. In fact, one of the authors saw it

and said, “Dude, what’s with that?” Sometimes the technique is more important than the

actual content. This is an important concept for those of you who are new to Flash: get it

to work, understand why it works, and then start playing with it. Everything you will do in

Flash starts with a basic concept, and everything else in the movie builds upon that

concept. For example, Joshua Davis, one of the more influential characters in the Flash

community, started one project by simply watching how a series of gray squares rotated

on the Flash stage. Once he got the squares to rotate in a manner that worked for him,

he simply swapped out the squares for shapes he had drawn in Illustrator.

Editing symbols

There will be occasions where you will want to edit a symbol. This is where the Symbol Editor becomes

an invaluable tool. There are two ways of opening the Symbol Editor:

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

160

1. Open the SymbolEdit.fla file in your Exercise folder.

2. Open the Library, and double-click the Circle movie clip symbol in the Library. The

Symbol Editor will open. This technique is also known as entering the timeline of a symbol.

Click the Scene 1 link to return to the main timeline.

3. Double-click the squashed circle on the stage. This will also open the Symbol Editor, but, as

you may have noticed, the other instances of any symbol on the stage are visible but look to be

dim. If you try to select the instance of the box, you will notice you can’t. This technique, called

editing in place, allows you to see how the change to a symbol or instance affects, or works

with, the rest of the content on the stage.

The edit in place technique often provides the designers with a helpful sense of context. The other

important aspect of this technique is that changes you may have made to the symbol on the main timeline,

such as changing the size or color of the squashed circle, are only reflected in the symbol’s timeline thanks

to the edit in place context. If you double-click the Circle movie clip in the Library, you will see that it isn’t

squashed. What you can learn from this is that symbols can be manipulated on the timeline without

affecting the original symbol in the Library.

4. In the Symbol Editor, you can make changes to the symbol. Click the squashed circle to

select it and, in the Tools panel, change the fill color to a different color. When you do this, both

instances of the circle symbol on the stage will change color.

5. Close the file without saving the changes.

What you can gather from this is that instances of symbols can be changed without affecting the original

symbol in the Library. Change the symbol in the Symbol Editor, and that change is applied to every

instance of the symbol in the movie.

9-slice scaling
Until the release of Flash 8, Flash designers essentially had to put up with a rather nasty design problem.

Scaling objects with rounded or oddly shaped corners was, to put it mildly, driving them crazy. No matter

what they tried to do, scaling introduced distortions to the object. The release of Flash 8 and the inclusion

of 9-slice scaling solved that issue. To be fair, there are still a few quirks with this feature, but it was so

welcome in Flash that this feature is now appearing in Fireworks and Illustrator CS5. The best part of this

addition to those two applications is that symbols created in these applications that are destined for Flash

can have 9-slice scaling applied to them that carry over into Flash as well.

As we pointed out at the start of this chapter, 9-slice scaling is applied to movie clips when the Convert

to Symbol dialog box opens. If you create a movie clip and decide to apply this feature later during the

production process, select the movie clip in the Library and right-click (Windows) or Control+click (Mac)

the symbol to open the context menu. Select Properties, and add 9-slice scaling by selecting this option

at the bottom of the symbol Properties dialog box. Movie clips with 9-slice scaling applied will show a

grid in the Library panel’s preview window,

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

161

How 9-slice scaling works

What the heck is 9-slice scaling?

That question is not as dumb as it may sound because it is a hard subject to understand. What happens is

that the symbol in question—in Flash it can only be a movie clip—is overlaid with a three-by-three grid.

This grid divides the movie clip into nine sections (or slices) and allows the clip to be scaled in such a way

that the corners, edges, and strokes retain their shape.

Figure 3-5 shows the actual grid that Flash places over the object. The object is broken into the nine

areas. The eight areas surrounding the center area—the area with the 5—will scale either horizontally or

vertically. The area in the middle—area 5—will scale on both axes. The really interesting aspect of this

feature is that each section of the grid is scaled independently of the other eight sections.

Figure 3-5. The 9-slice scaling grid

The best way of understanding how all of this works is to actually see it in action.

1. Open the 9Slice.fla file. When it opens, you will see two movie clips on the stage. The upper

movie clip doesn’t have 9-slice scaling applied; the lower one does (see Figure 3-6). The key to

both of these objects is they are the identical size, and the stroke width around both shapes is

also identical.

2. Click the upper movie clip, and open the Transform panel (Window ➤ Transform).

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

162

Figure 3-6. You start with two movie clips on the stage.

3. When the Transform panel opens, change the Horizontal scaling value to 300 percent.

When you press the Enter (Windows) or Return (Mac) key, the shape scales along the horizontal

axis, but as you can see, the corners flatten out and distort, and the stroke gets fatter.

4. Click the lower movie clip, open the Transform panel, and change the Horizontal scaling

value to 300 percent. When you press the Enter (Windows) or Return (Mac) key, the shape

scales along the horizontal axis, and the corners don’t distort (as shown in Figure 3-7). You can

see why by looking at Figure 3-5. The areas numbered 2, 5, and 8 are scaled horizontally, and

the corner areas are unaffected.

Figure 3-7. Both movie clips are scaled at 300 percent along the horizontal axis; the movie clip without 9-

slice scaling is distorted.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

163

Additionally, the guides are adjustable. They can be moved, which allows you to control how the scaling

will be applied. Here’s how:

5. Double-click the 9Scale movie clip in the Library to open the Symbol Editor. You will see

the grid.

6. Roll the mouse pointer over one of the slice guides, and it will change to include a small arrow

pointing to the right if you are over a vertical guide, or pointing downward if you are over a

horizontal guide (see Figure 3-8).

7. Click and drag the selected guide to its new position. When you release the mouse and return to

the main timeline, you will see the change in the Library’s preview window.

Figure 3-8. The guides can be repositioned.

So far, so good. You have applied the slice guides to a geometric object. OK, we hear you. You are

probably muttering, “Not exactly a real-world project.” We thought about that, and agree with you. What

about occasions where the corners are irregular? Let’s go visit an Olive Seller in Guang Zhou to give you

some “real-world” experience with that issue.

Your turn: frames for an olive seller

When we approached this exercise, the question was, “What could we put in a picture fame that would be

memorable?” Flowers and other images are interesting, but they really don’t make the point. Then one of

the authors said, “How about a picture of an olive seller?” The reply was, “Yeah, right.” To which the author

who made the original suggestion said, “No. No. No. There is a guy in Guang Zhou, China, who sells

olives on the street. He wears a rooster suit and blows a horn. Maybe we can use it?”

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

164

1. Open Olives.fla. When the file opens, you will notice that the images of the olive seller don’t

exactly fit their frames (see Figure 3-9). Let’s fix that.

Figure 3-9. The picture frames don’t fit the images.

2. Right-click the Frame movie clip in the Library, and select Properties from the context

menu.

3. When the Symbol Properties dialog box opens, click the Enable guides for 9-slice

scaling check box, as shown in Figure 3-10.

Figure 3-10. Enabling 9-slice scaling for a symbol

4. Open the movie clip in the Symbol Editor, and adjust the guides to match those shown in

Figure 3-11. Note that the guides are positioned to encompass the extent of each corner olive.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

165

Figure 3-11. Applying 9-slice scaling and adjusting the guides

5. Click the Scene 1 link to return to the main timeline.

6. Select the Free Transform tool, and adjust the picture frames found in the frame1 and

frame2 layers to fit the image, as shown in Figure 3-12. Even though each photo has its own

width, the same symbol can now be used to neatly frame these different dimensions.

Figure 3-12. 9-slice scaling allows us to put a frame around the olive seller.

Now that you have seen how 9-slice scaling works, how it is applied, and how to use it, don’t get lulled into

thinking it is especially easy to use. That is a real danger with books of this sort, where everything appears

rosy, wonderful, and trouble-free. In many cases, it is. In this one, it isn’t.

When we started working on olive seller’s picture frame, things started “blowing up.” The corner images

started distorting when they shouldn’t have. This caused us to halt the process and really dig into this

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

166

particular feature. The next section gives you the unrosy, “it ain’t all that wonderful and easy to use”

rundown regarding what we discovered about 9-slice scaling. Thankfully, our pointers should help you

steer clear of the mines.

The 9-slice “gotchas”

You need to know that there are a handful of interesting “gotchas” involved with 9-slice scaling.

The first concerns the area in the middle of the 9-slice grid, which scales across both the horizontal and

the vertical axes. If you have content in the center area of the grid (area 5), such as a gradient or image, it

will distort if the scaling is uneven. Take a look for yourself.

Open the 9Slice2.swf file, and drag out a corner. Notice how the flower distorts. This is because the

frame and the flower are both in the area 5 slice (see Figure 3-13). Depending on your needs, this makes

9-slice symbols useful only as background borders, layered behind content that simply must not be

distorted. In the Olives.fla file, the photos are on layers of their own.

Figure 3-13. The center area of a symbol containing 9-slice scaling scales on two axes. The area in the

middle will distort.

The second involves maintaining the integrity of any drawings or objects used in the corners. Shapes,

drawing objects, primitives, or graphic symbols can be used. Movie clips or rotated graphic symbols, such

as the graphic symbol of the olive originally destined for the frame’s corners, can’t be used. That would be

easy enough to remember, but an interesting quirk rears its head with graphic symbols: if you use graphic

symbols that are rotated, they will not display correctly as specially scaled 9-slice elements in the Flash

interface. Rest assured, they work just fine in the SWF—you just can’t see that they’re working until you

test your movie. If this annoys you, bear in mind that Flash 8 didn’t show 9-slice scaling in the authoring

environment at all, so this is an improvement!

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

167

You can see what we are talking about in Figures 3-13 and 3-14. Instead of the drawing of the olive, it was

placed into a graphic symbol, which was then rotated to meet the design. When we applied the 9-slice

scaling to the movie clip, the result was Figure 3-14. The boxes and olives looked like something had gone

horribly wrong.

Figure 3-14. Rotating a simple graphic symbol can cause issues.

When the movie was tested in Flash Player, as shown in Figure 3-15, everything looked normal.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

168

Figure 3-15. Testing in Flash Player. Problem? What problem?

Stretching objects along the horizontal axis is another issue that will jump up and bite the unwary. Figure

3-16 demonstrates this. We started with nothing more than a rounded rectangle with a square in the

upper-left corner. If you open 9SliceGotchas.fla, you will see that a shape, a drawing object, a

primitive, a graphic symbol, a movie clip, and an imported bitmap representing the square. These objects

were all wrapped in a movie clip to which 9-slice scaling is applied.

We did nothing more than select the Free Transform tool and stretched the selection along the

horizontal axis. The results were, to be gentle, rather surprising.

Figure 3-16. Horizontal scaling can introduce distortions.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

169

The bottom line is: use 9-slice scaling with care. The idea is a good one, but don’t go nuts with it. Keep it

simple! Avoid nesting symbols in the corners and sides. If you insist on using bitmaps, bear in mind that

they’ll stretch in ways that may not be predictable. We encourage you to experiment on your own, but by

all accounts, the simpler, the better.

It is OK to rotate symbols that are not movie clips in 9-slice corners, but they look correct

only when your FLA is configured for ActionScript 3.0. You can do this by selecting File

➤ Publish Options and clicking the Flash tab. The change is made by selecting

ActionScript 3.0 from the Script drop-down menu.

Sharing symbols
One of the really useful features of symbols in a Library is that they are available to files other than the

current movie. Symbols in a Flash Library can be shared with other Flash movies. This is extremely

helpful if you are working on a number of movies and need to use the same symbol or symbols in

numerous Flash documents.

Animators make extensive use of this feature. An animator will, for example, create a character composed

of a number of symbols—eyes, arms, legs, and hands, for instance—that are used to put the character in

motion. As the animations are built in a given movie, the animator will use symbols that were created in a

separate character Library movie instead of redrawing them. Here’s how to use symbols from another

movie:

1. Create a new Flash document, and open the new document’s Library. As you can see, it is

empty.

2. Select File ➤ Import ➤ Open External Library or press Ctrl+Shift+O (Windows) or

Cmd+Shift+O (Mac), as shown in Figure 3-17. When the Open dialog box appears, navigate to

the Chapter 3 Exercise folder, and open SharedLibrary.fla.

Figure 3-17. Importing a Library from one Flash document into another

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

170

3. The Library for the selected movie will open, but there are a couple of things missing from that

Library. There is no drop-down menu, the pushpin is missing, and the Open New Library

buttons are missing. As well, the Library looks grayed out. All of these are visual clues that the

SharedLibrary.fla file isn’t open.

4. Drag the arrowLeft symbol to the empty Library. When you release the mouse, the symbol

and the bitmap that it comes from will appear in the empty Library and become available for

use in the movie (see Figure 3-18).

Figure 3-18. Drag a symbol from the imported Library to the empty Library.

You can also share font symbols between movies. We’ll get into that subject in Chapter 6.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

171

Sharing libraries

Since the introduction of Flash 5, Flash designers and developers have had the ability to link symbols,

sounds, animations, bitmaps, and other Library symbols within external SWF files to other Flash

movies. These external SWF files are called shared libraries.

Why would you want to create a shared Library? The reason is that it only needs to be downloaded

once, even though several other Flash movies may need to access the same symbol. For example, you

may be creating a character animation that uses the same image background in ten of the movies that

comprise the animation. Rather than adding it in each of the ten movies that use it—not a good idea

because the file size of the image will be added to the final SWF for each movie—you can have that

symbol reside in a shared Library SWF file. This way, the file is loaded only once but used by several

movies.

The other thing that sets a shared Library SWF apart from a regular SWF is that it doesn’t load into a

movie clip. Instead, you create the Library as you would any other Library, but none of the content in

that Library is put on the Flash stage. Then, each item in the Library is given a class identifier, which

allows ActionScript to access that item. The file is saved, and the SWF is published.

The key is the class identifier. When you select an item in the Library and select Linkage in the Symbol

Properties dialog box, you will see a Linkage area (shown in Figure 3-19). If a Library is to be shared at

runtime, then you must select Export for runtime sharing and enter the location of the shared

Library. In the case of Figure 3-16, the URL indicates that the shared Library SWF will be located in the

same folder as the other SWFs that use it. If the shared Library were in a different location, you would enter

a full path, such as http://www.myMostExcellentSite.com/excellentMovie/SharedLibrary.swf.

Figure 3-19. Adding items to a shared Library using the Linkage Properties dialog box

www.zshareall.com

http://www.myMostExcellentSite.com/excellentMovie/SharedLibrary.swf
http://www.zshareall.com

CHAPTER 3

172

Items in shared libraries can also be created when the symbol is created (see Figure 3-20) or by selecting

Properties from the Library drop-down menu.

Figure 3-20. Symbols can be added to shared libraries when they are created.

Obviously, things will rarely remain the same in your workflow. Things change and, more often than not,

these changes ripple through a number of movies. Let’s assume, for example, you need to add or remove

something from the background image used in a number of animations in the movie. This is quite easily

accomplished.

The first step is to open the FLA containing the background and make the change in the Symbol Editor.

When you finish, save and publish the document, and close the FLA. With the change made, open a Flash

document that uses the shared asset and open its Library. Select the symbol that was changed, and

select Update from the Library drop-down menu or, alternatively, right-click (Windows) or Control+click

(Mac) on the item and select Update from the context menu. This will open the Update Library

Items dialog box (shown in Figure 3-21). Select the check box next to the item’s name, and click the

Update button.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

173

Figure 3-21. Symbols that have changed in a shared Library can quickly be updated wherever they are

used.

If you have been carefully going through the chapter to this point, you are probably thinking, “Man, there is

a lot of serious stuff that I have to know.” We can’t deny that, but once you understand the serious stuff,

you can then start having fun with symbols. In fact, let’s start.

A WORD FROM THE BUNNIES

Jennifer Shiman has created what is arguably one of the funniest sites on the Web
(www.angryalien.com/). On a regular basis, she releases a Flash movie that uses the following
premise: the movie is a 30-second synopsis of a popular film, and the actors are bunnies. Drawing and
animating each bunny would be a daunting task. Jennifer’s solution is the use of a shared Library
containing all of the “bunny bits” needed to create the animations (see Figure 3-22). This is what
Jennifer says about how she does it:

“This is my library of ‘bunny bits,’ which I incorporate into each of my 30-Second Bunnies
Theatre cartoons. I’ve compiled a bunch of the symbols I use most commonly in animating the
bunnies, and I grouped them into folders. For instance, within the ‘bun mouths’ folder are
subfolders of different mouth shapes for lip sync; mouths smiling and frowning; mouths in
color and black and white; mouths of differing line thickness. The ‘bkgds’ folder contains
background symbols I frequently use, such as standardized clouds, grass, and trees. At the
beginning of production, I’ll open the bunny bits library and drag the folders into the library of
my current cartoon file. Then I import the additional artwork specifically pertaining to that
cartoon.

“During the course of production, if I create new bunny-related artwork I want to use in future
files (such as a new version of a bunny mouth shape or a bunny arm position I’ll use often), I
drag those symbols into the bunny bits library file. It saves time to have one central location for
these types of reusable elements.”

www.zshareall.com

http://www.angryalien.com
http://www.zshareall.com

CHAPTER 3

174

Figure 3-22. Shared libraries help Jennifer manage complex animations.

Filters and blend modes
The introduction of filters and blend modes in Flash 8 was a direct response to Flash designers looking for

more eye candy. Since then, they have become indispensable tools for animators and designers.

Applying filters

In the years prior to Flash 8, Flash designers were quite comfortable using Photoshop filters or Fireworks

Live Effects. Back in those days, if you needed to add a blur, drop shadow, or glow, you would leave

Flash, open an imaging application containing the needed effect, export a PNG, and import the bitmap into

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

175

Flash. If the effect wasn’t quite right, you made the round-trip again. Those days are over, and, thankfully,

these same filters have become part of Flash. The ability to use filters directly in the Flash authoring

environment (and animate them, to boot) has handed you a quick-and-easy method to create some

fascinating visual effects.

The filters that are available in Flash are as follows:

 Drop Shadow: Places a gray or colored shadow beneath an object, which gives it the

appearance of floating over the background.

 Blur: Takes the subject out of focus, making it look smudged or out of the depth of field.

 Glow: Creates a faint glowing outline around an object by following its curves.

 Bevel: Gives an object a 3D look by creating shadows and highlights on opposite edges.

 Gradient Glow: Quite similar to the Glow filter, except that the glow follows a gradient of colors

from the inside to the outside edges of the object.

 Gradient Bevel: Comparable to the Bevel filter, except that a gradient is applied to the

shadow and the highlights of the bevel.

 Adjust Color: Allows you to adjust the brightness, contrast, hue, and saturation of an object.

There are also three filters that can be applied only through the use of ActionScript:

Color Matrix, Displacement Map, and Convolution. Their use is out of the

scope of this book, but check out the ActionScript dictionary in the Help menu for

explanations and demonstrations of how to use these filters.

Before you start playing with them, understand filters can’t be applied to everything you see on the Flash

stage. Filters can be applied only to buttons, text, and movie clips. This makes a lot of sense because the

bulk of the movie clips that will receive a filter arrive in the Library as either bitmaps from Photoshop and

Fireworks or line art from Illustrator. As you saw in Chapter 2, they inevitably get imported as movie clip

symbols. Even neater is, if an imported image has transparent areas, the filter—such as a Drop Shadow—

is applied only to the opaque edges of the symbol.

Applying a Drop Shadow filter

In Flash, you can apply filters using a couple of methods. The most common is to select the object on the

stage and then click the Filters twirlie on the Properties panel. Filters can also be applied through

ActionScript.

To get started, let’s get creative with a simple drop shadow:

1. Open the Filter.fla file. You will see that a cartoon of one of the authors has been placed over

an image of a couple of people asleep on a park bench in Paris (see Figure 3-23). The cartoon is

a Fireworks image that was imported into the Library as a movie clip.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

176

Figure 3-23. We start with a Fireworks image imported into Flash.

The authors would like to thank Chris Flick of Community MX and Capes & Babes

(www.http://www.capesnbabes.com/) for allowing us to use this caricature of Tom.

Chris is a colleague at Community MX, where he produces the weekly strip CMX Suite

every Tuesday at www.communitymx.com/.

2. Select the character on the stage, and click the Filters twirlie in the Properties panel. Click

the Add Filter button in the bottom-left corner of Properties panel to open the Filters drop-

down menu. Select Drop Shadow.

3. The Properties panel will change to show the various options for this filter, and the selection

on the stage will also develop a drop shadow using the current default values for the Drop

Shadow filter.

4. Change the Blur X and the Blur Y values to 8 to make the shadow a little bigger and change

the Distance value to 11 to make the shadow a bit more pronounced. Also change the

Quality setting to High. The shadow should now look a lot better (see Figure 3-24).

The lock joining the Blur X and Blur Y values ensures that the two values remain equal. Click the lock

if you want the Blur X and Blur Y values to be different.

The first rule of “Flash physics” states: for every action, there is an equally opposite and ugly implication.

Selecting High quality results in a great-looking shadow. The ugly implication is that this setting requires

more processing power to apply when the SWF is playing in the browser. This is not a terrible thing if the

image is static. For objects in motion, however, keep the setting at Low.

www.zshareall.com

http://www.www.capesnbabes.com
http://www.communitymx.com
http://www.zshareall.com

SYMBOLS AND LIBRARIES

177

Figure 3-24. The filter is applied to the selection.

The result is acceptable, but we can do a lot better than what you see. The problem is the shadows in the

image. Notice how they are at a different angle than the one used for the character? Let’s fix that.

Adding perspective

What we are going to do is to make this effect look a little more realistic. Applying the Drop Shadow filter

in the previous steps resulted in a character that looks flat and has no perspective. Yet, if you closely

examine the image, the shadows all move away from the character in the foreground. In this exercise, you

are going to add the perspective. Follow these steps:

1. Select the object on the stage, select the Drop Shadow filter in the Properties panel, and

click the Trash can at the bottom of the Filters area of the Properties panel to remove the

Drop Shadow filter. With the object selected on the stage, copy it to the clipboard.

2. Add a new layer, give it a name, and with the new layer selected, select Edit ➤ Paste in

Place. A copy of the character is pasted into the new layer. Turn off the layer’s visibility.

You also have the ability to copy the contents of a particular frame in the timeline. Right-

click (Windows) or Control+click (Mac) the frame or sequence of frames, and select

Copy Frames from the context menu. You can then select the frame where the content

is to be placed, open the context menu again, and select Paste Frames.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

178

3. Select the character on the stage and apply a Drop Shadow filter. Use these settings:

 Blur X: 30

 Blur Y: 7

 Strength: 70 percent (this is an opacity value)

 Quality: High

 Angle: 87 degrees

 Hide Object: Selected

What you should see is nothing more than a somewhat transparent shadow on the image due to your

selecting Hide Object (see Figure 3-25). This opens you up to some rather creative applications. For

example, just a shadow appearing over something adds a bit of a sinister feeling to a scene.

Figure 3-25. Hiding the object allows you to only show the shadow.

4. To add the perspective, select the object with the Free Transform tool, and scale, rotate, and

skew the selection.

5. Turn on the visibility of the hidden layer. Select the shadow on the stage and, using the arrow

keys, move the shadow to align with the foot that is on the ground.

6. Select the copy on the stage and apply the Drop Shadow filter.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

179

7. This time leave the values alone, but select High as the Quality setting, and select Inner

shadow. The character takes on a bit of a 3D look to go with the shadow he is casting, as shown

in Figure 3-26.

Figure 3-26. Apply an inner shadow to add some depth.

Some filter facts

Before we move on to applying a blend, here are a few things you should know about adding and using filters:

 You can apply multiple filters to an object. The character can, for example, have the Drop

Shadow, Glow, and Bevel filters applied to it. If you need to remove one, select the filter name

and click the Trash icon in the Filters area.

 You cannot apply multiple instances of a filter to an object. You saw this in this exercise. Each

movie clip has a Drop Shadow filter applied to it.

 Filters do result in a hit on the user’s processor when the movie plays in the browser. Use them

judiciously.

 Filters applied to layers in Photoshop will be visible in Flash but will not be editable in Flash when

the image is imported into the Flash Library or to the stage.

 Alpha channel video in a movie clip can have filters applied to it.

 Filters can be applied to objects using ActionScript.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

180

Playing with blends

The blend modes operate quite differently from the filters. If you are a Fireworks or Photoshop user, you

may already be familiar with the concept. In applications like those two, such modes are commonly used to

manipulate the colors of pixels to create new colors based on combinations with underlying pixels.

The blend modes in Flash are as follows:

 Normal: No blend is applied, and the selection isn’t affected. Use this one to remove a blend.

 Layer: This allows you to stack movie clips on top of each other with no effect upon their color.

 Darken: This compares the foreground and background colors and keeps the darkest one.

 Multiply: This multiplies the base color value by the blend color value and divides the result by

256. The result is inevitably a darker color.

 Lighten: This is the opposite of darken with the result always being a lighter color.

 Screen: This is the inverse of the blend color is multiplied by the base color. Think of this as

being the opposite of Multiply resulting in a lighter color.

 Overlay: This multiplies, or screens, the colors depending on the base color. The base color is

not replaced. Instead, it is mixed with the blend color to reflect the lightness or darkness of the

original color.

 Hard Light: This mimics the effect of shining a bright light through the selection. If the blend

color is darker than 50 percent gray, the image is darkened as if it were multiplied. This is another

way of adding shadows to a selection.

 Add: The blend and base colors are added together resulting in a lighter color.

 Subtract: The blend and the base colors are subtracted from each other resulting in a darker

color.

 Difference: Depending upon their brightness values, either the base color is subtracted from

the blend value or vice versa. The result looks like a color film negative.

 Invert: This inverts the base color.

 Alpha: The blend color is converted to an alpha channel, which, essentially, turns transparent.

 Erase: This is the base color including those of the background image are erased.

Blend modes, once you grasp that they are math-driven, work like this: the pixel colors values are

considered from two separate layers of an image and mathematically manipulated by the blend mode to

create the effect. An excellent example of this manipulation is the Multiply mode. This mode will

multiply the color values of a pixel in the source layer with the color values of the pixel directly below it in

the destination layer. The result is divided by 256 and is always a darker shade of the color. In Flash,

these calculations are performed on overlapping movie clips or buttons on the stage.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

181

When applying a blending mode in Flash, keep in mind that it is not the same task as it is in Photoshop or

Fireworks. Flash lets you place multiple objects in a layer. When a blend mode is applied to a movie clip or

button in Flash, it is the object, which could be a photo, directly under the movie clip or button, which will

supply the color for the change in the movie clip or the button.

Blend modes are extremely powerful creative tools in the hands of a Flash artist. Though they can be

applied only to movie clips and buttons, applied judiciously, the blend modes can provide some rather

stunning visual effects. To apply a blend mode, you simply select the movie clip to which it is to be applied

and select the mode from the Blend drop-down menu in the Properties panel. Let’s look at a few of the

blend modes and learn some blend fundamentals along the way.

1. Open the Blend.fla file. When the file opens, you will see we have put two movie clips on the

stage (see Figure 3-27). The movie clips are also in separate layers named Source and

Destination. In this example, the Source layer contains some text filled with a neutral gray

color. The Destination layer contains an image of autumn leaves that were blurred using the

Gaussian Blur filter in Photoshop. Those layers have been given those names for a reason:

blending modes are applied in a top-down manner. This means that the effect will do the

manipulation using the source layer’s pixels and apply the result to the movie clip on the

destination layer. That’s right, anything visible under the source (including the stage) will be

affected by the transformation.

Figure 3-27. The pixels in the Source layer—the text—are used to create the effect with the pixels in the

destination layer—the blurred autumn leaves.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

182

2. Select the movie clip in the Source layer—the text—and click the twirlie in the Display area of

the Properties panel. Then select Normal from the Blending drop-down menu, as shown in

Figure 3-28. The Normal mode does not mix, combine, or otherwise play with the color values.

Figure 3-28. Blend modes are applied through the Properties panel.

3. With the text still selected, apply the Multiply mode. As you can see, Figure 3-29, the colors

have mixed, and the darker colors make the Source image darker. The important thing to notice

here is how the medium gray of the stage is also being used where the Source image overlaps

only the stage. If you return the mode to Normal, select the image in the Destination layer,

and apply the Multiply mode—the image will darken because of the dark gray color (#606060)

of the stage. Nothing happens to the text in the Source layer.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

183

Figure 3-29. The Multiply mode

4. Set the blend mode of the Destination layer to Normal. Select the text in the Source layer,

and apply the Lighten mode. In this example, as shown in Figure 3-30, the lighter color of both

the Source and Destination images is chosen. As you can see, the lighter pixels in the

Destination image are replacing the darker pixels in the Source image.

Figure 3-30. The Lighten mode

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

184

5. Finally, select the image in the Source layer, and apply the Difference mode. This mode is

always a surprise. This one works by determining which color is the darkest in the Source and

Destination images and then subtracting the darker of the two from the lighter color. The

result, as shown in Figure 3-31, is always a vibrant image with saturated colors.

Figure 3-31. The Difference mode

Managing content on the stage
Now that you have had some fun, playtime is over. It is now time to get back to the serious issue of

managing your work. Though we have talked about using folders in layers and in the Library, we really

haven’t addressed the issue of managing the content on the stage.

As we have been telling and showing you to this point, you can determine the location of objects on the

stage by dragging them around. We look upon that practice, in many respects, as attempting to light your

BBQ with an atom bomb. You will light the BBQ, but taking out the neighborhood is a lot less precise than

striking a match and lighting a burner. This is why we have been doing it by the numbers. We enter actual

values into the Properties panel or use menus to precisely place items on the stage, and we resize and

otherwise manipulate content.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

185

We’ll start by showing you how to group content:

1. Open the NuttyProfessor.fla file in the Chapter 3 Exercise folder. When the file opens, head

over to the Library, and open the Professor movie clip.

2. Click the Professor layer, and you will see that the drawing is composed of quite a few bits and

pieces (see Figure 3-32). If you wanted to move that drawing over a couple of pixels, you would

have to select each element to be moved. There is an easier method.

Figure 3-32. Line art, in many cases, is the sum of its parts.

3. Select Modify ➤ Group, or if you are a keyboard junkie, press Ctrl+G (Windows) or Cmd+G

(Mac). The pieces become one unit, as indicated by the square surrounding them.

4. Deselect the group by clicking the stage, and then click the image of the professor on the stage.

Again, you will again see the box indicating that the selection is grouped, and you will also be

given the same information in the Properties panel, as shown in Figure 3-33.

5. To ungroup the selection, select Modify ➤ Ungroup, or press Ctrl+Shift+G (Windows) or

Cmd+Shift+G (Mac).

6. Close the file without saving the changes.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

186

Figure 3-33. A group is indicated both on the stage and in the Properties panel.

Aligning objects on the stage

Now that you know how to make your life a little easier by grouping objects, let’s turn our attention to how

objects can be aligned with each other on the stage. Reopen the NuttyProfessor.fla file.

The first technique is the use of Snap Align. You can switch on this very handy feature on and off by

selecting View ➤ Snapping ➤ Snap Align. When Snap Align is switched on, the default, dragging

one object close to another object, will show you a dotted line. This line shows you the alignment with the

stationary object.

Click the words on the stage and slowly drag them toward the bottom-left corner of the movie clip. You will

see the Snap Align indicator line (see Figure 3-34) telling you that the left edge of the text is aligned with

the left edge of the movie clip. By dragging the text up and down the indicator line, you can align objects at

a distance. Release the mouse, and the text will snap to that line.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

187

Figure 3-34. Using Snap Align

Snapping to the grid

You can also align objects on the stage through the use of a grid. This is a handy way of precisely

positioning objects on the stage. You can turn on the grid by selecting View ➤ Grid ➤ Show Grid. When

you release the mouse, a grid will appear on the stage. This grid is what we call an authortime feature.

That means that the grid won’t appear when you publish the SWF and put it up on a web page.

You can also edit the grid by selecting View ➤ Grid ➤ Edit Grid. The Grid dialog box, shown in

Figure 3-35, will appear. Here you can change the color of the grid lines, determine whether items snap to

the grid, and change the size of the squares in the grid. The Snap accuracy drop-down menu lets you

choose how snapping to the grid lines will be managed by Flash.

Figure 3-35. Adding a grid and managing it on the stage

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

188

Take another look at the Grid panel in Figure 3-35. There is a Show over objects

option that was added in Flash CS4. This option allows you to show the grid over

everything on the stage, meaning you now have the ability to be super accurate in

snapping objects to grid lines. As we said in the previous edition of this book, this option

is “super cool.”

Aligning with guides

Another method for aligning objects or placing them in precise locations on the stage is to use guides. You

can add guides by dragging them off either a horizontal or a vertical ruler. The ruler isn’t shown by default

in Flash; to turn it on, select View ➤ Rulers. At 100 percent view, the rulers are divided into five-pixel

units. If you need even more precise placement, zooming in to 2,000 percent view allows you to work in

units of .5 pixels.

To add a guide, drag it off of either the horizontal or vertical ruler, and when it is in position, release the

mouse. To remove a guide, drag it back onto the ruler.

Once a guide is in place, you can then edit it by selecting View ➤ Guides ➤ Edit Guides. This will

open the Guides dialog box (see Figure 3-36), which is quite similar to the Grid dialog box. The Snap

accuracy drop-down menu allows you to determine how close an object needs to be to a guide before it

snaps to the guide. You can also choose to lock the guides in place. Locking guides once they are in

position is a good habit to develop. This way, you won’t accidentally move them.

If you need to turn off the guides, select View ➤ Guide ➤ Show Guides; reselect it to turn them on

again. If you no longer need the guides, you can remove them with a single click of the mouse by selecting

View ➤ Guides ➤ Clear Guides.

Figure 3-36. Rulers, guides, and the Guide dialog box

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

189

Snapping in a guide layer and to pixels

Finally, you can snap objects to items in a guide layer—not to be confused with the guides we just

discussed—and even to individual pixels.

Snapping to an object in a guide layer is nothing more than a variation of the Snap to Objects, except

the layer in question has been converted to a guide layer by right-clicking (Control+clicking) the layer

name and selecting Guide. What’s the difference? As you saw in Chapter 1, the lines drawn in a guide

layer aren’t included in the SWF.

Snapping to pixels is best-suited to ultra-precise positioning and control freaks. This is extremely useful

with the placement of bitmaps and text fields. In fact, you won’t even see the pixel grid until you have

zoomed in to at least 400 percent. The pixel grid is not the same grid we demonstrated earlier.

Stacking order and using the Align panel

Layers are effective tools for managing content, but there is another related concept you need to be aware

of: stacking. When multiple objects are in a layer, the objects also have a front-to-back relationship with

each other, appearing to be placed on top of each other, which is called the stacking order.

Symbols, drawing objects, primitives, text fields, and grouped objects can be stacked. Everything else

essentially falls to the bottom of the pile in the layer. To accomplish this, each new symbol or group added

to a layer is given a position in the stack, which determines how far up from the bottom it will be placed.

This position is assigned in the order in which the symbols or objects are added to the stage. This means

that each symbol added to the stage sits in front, or above, the symbols or objects already on the stage.

Let’s look at this concept:

1. Open the Stacks.fla file. You will see four photos on the stage.

2. Drag the objects on top of each other, and you will see, as shown in Figure 3-37, a stack; the

location of each object in this stack is a visual clue regarding when it was placed on the stage.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

190

Figure 3-37. Objects stacked in a layer

Stacking order is not fixed. For example, suppose you wanted to move the bread image to the top of the

stack and move the stairs image under the fountain image.

3. Select the bread image on the stage, and select Modify ➤ Arrange ➤ Bring to Front. The

image moves to the top of the stack. This tells you that the Bring to Front and Send to

Back menu items are used to move selected objects to the top or the bottom of a stack.

4. Right-click (Windows) or Control-click (Mac) on the stairs image to open the context menu.

5. When the context menu opens, select Arrange ➤ Send Backward, as shown in Figure 3-38.

The stairs move under the fountain image. This tells you that the Bring Forward or Send

Backward menu items can be used to move objects in front of or behind each other. What you

have also learned is the Arrange menu is available in the Modify menu or by opening an

object’s context menu.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

191

Figure 3-38. You can also use the context menu to change the stacking order of selected objects.

Throughout this book, we have talked about the use of layers to manage content. Obviously, stacking

objects on top of each other flies in the face of what we have said. Not so fast. There is an incredibly

useful menu item that actually allows you to bring a bit of order to the chaos.

1. Select all the items on the stage.

2. Select Modify ➤ Timeline ➤ Distribute to Layers. When you release the mouse, the

order of the objects in relation to each other doesn’t change, but each object has been removed

from the original layer—Layer 1—and is now on its own named layer, as shown in Figure 3-39.

This is extremely useful, for example, when you import Photoshop layer folders as movie clips

and then you see that you need to break them into Flash layers.

3. Close the file, and don’t save the changes.

Now that you see what you can do with this powerful menu item, you also need to understand some rules

regarding its use:

 Symbols, shapes, drawing objects, primitives, text fields, and grouped objects will be placed on

their own individual layers.

 For symbols, layer names are based upon either the instance name in the Properties panel or

the symbol name in the Library. If both the symbol name and the instance name are the same,

instance names take precedence.

 For text fields the name of the layer is based on the text content—or the text field’s instance

name in the Properties panel. Again, instance names take precedence.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

192

Figure 3-39. Distribute to Layers places each selected object on its own layer.

Using the Align panel

The Align panel allows you to line up and center objects and otherwise bring order to chaos with a click

or two of the mouse.

You can access the Align panel either by selecting Window ➤ Align or pressing Ctrl+K (Windows) or

Cmd+K (Mac) to open the panel shown in Figure 3-40. When the panel opens, you are presented with a

number of alignment options—there are 17 options available and a button labeled Align to stage. The

Align to stage button allows you to either align objects with each other or, if it is selected, align them

with the stage.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

193

Figure 3-40. The Align panel

Let’s see how all of this works:

1. Open the AlignPanel.fla file in the Chapter 3 Exercise folder. As you can see, the file

consists of a number of button components scattered across the stage. Open the Align panel.

2. Select all the components, and being sure the Align to stage check box is not selected, click

the Left Align button in the panel. The buttons all line up along their left edges.

The addition of a check box to the Align to stage feature is a welcome change. Up

to this version of the application designers and developers constantly complained about

not knowing when the button was selected.

3. Click the Vertical Spacing button in the Space options, and the components will be spaced

evenly on the vertical axis. Click the Distribute Top Edge button to even out the spacing.

Now let’s use the panel to create a button bar across the top of the stage.

4. Click the Align to stage check box on the Align panel.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

194

5. Select all the buttons and click the Align Top Edge button. The buttons will all pile on top of

each other at the top of the stage.

6. With the buttons still selected, click the Distribute Horizontal Center button. The buttons

spread out along the top of the stage, as shown in Figure 3-41. Not bad—two clicks, and you

have a button bar.

Figure 3-41. Two clicks is all it takes to create a button bar.

Masks and masking
Before we turn you loose on a project, the final subject we will be examining is the issue of masking in

Flash. As you know, masks are used to selectively show and hide objects on the Flash stage. The value of

a mask is, in many respects, not clearly understood by Flash designers. They tend to regard masking as a

way to hide stuff. They see it as an overly complicated method of doing something that could be more

easily done in an imaging application. This is not exactly incorrect, but what they tend to miss is that

masks in Flash can be animated and can even react to events on the stage. For example, one of the

authors connects a webcam to his computer and, using Flash, is able to broadcast himself peering out of

billboards in Times Square, waving at people walking by in Piccadilly Circus in London, or looking out of

the porthole of a sensory deprivation tank. When the camera is not connected, the images used revert to

their normal states.

Here you will learn to create simple mask, create a masked animation, and use text as a mask. Finally,

you’ll tackle creating a soft mask, an exercise designed to pull together much of what you have discovered

in this chapter.

A simple mask

In this exercise, we are going to show you the basic steps involved in a creating a mask in Flash. Once

you have the fundamentals under your belt, you can then apply what you have learned in a rather creative

manner. Let’s start:

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

195

1. Open the SimpleMask.fla file.

2. Add a new layer named Mask, and draw a circle with no stroke on the new layer.

3. Right-click (Windows) or Cmd+click (Mac) on the Mask layer to open the Layer context menu.

Select Mask. When you release the mouse, the image of the frozen pond will look like it is

circular. You should also notice that the appearance of the layers has changed and that they are

locked (see Figure 3-42). The icon beside the Mask layer name (the rectangle with a cutout)

indicates that the layer is a mask, and the indent for the Cycle layer name indicates that it is the

object being masked.

Figure 3-42. Applying a mask

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

196

What you see is the image showing through the circle in the Mask layer, with the stage color visible. One

thing you need to know about masks is that you need to be careful dragging other layers under them. Do

that, and they, too, will be masked—depending on how you are doing the dragging. The following steps

explain what we’re getting at:

4. Add a new layer above the mask, and name it Square. Select the Rectangle tool, and draw a

rectangle on this new layer.

5. Drag the Square layer under the Blue Springs layer. When you release the mouse, the circle

and the square are visible. Click the Lock icon in the Square layer, and the square will

disappear because it is under the photograph.

The locks turn the masks on and off and allow you to edit or manipulate the content in

the layers, including the masks. When you finish making your changes, click the locks to

reapply the mask. When all layers are locked (the masked layers and the mask), the

mask goes into a preview mode.

6. Unlock the Square layer, and drag it back above the Mask layer. This time, drag the Mask layer

above the Square layer. When you release the mouse, you will see that both the Mask and

Cycle layers have moved above the Square layer and that the shape in the layer is visible, as

shown in Figure 3-43.

7. Drag the Square layer below the Blue Springs layer again, this time keeping to the left. When

you release the mouse, the Square layer is no longer associated with the mask. This is an

alternative method of toggling between the Normal and Masked (or Mask) layer options seen

when you right-click (Windows) or Control-click (Mac) a layer and select Properties.

8. Close the file without saving the changes.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

197

Figure 3-43. Masking layers can be moved around.

Now that you understand the fundamentals, let’s get a little more complex.

Creating a masked animation

The art of Flash is, in many respects, the art of illusion. In this exercise, you’ll create the illusion of the

Dancing Fool from the Drop Shadow example earlier in the chapter sliding across six panels on a wall in

Adobe’s San Jose Headquarters building. The problem to contend with is the fact the panels are large, and

each panel has its own shape. How do you get the Dancing Fool to slide out from behind one panel,

across a few more and slide behind another as he exits the stage?

You think a bit differently.

The effect you want to create is shown in Figure 3-44. Instead of using the panels as the mask, you need

to use the colored area in each panel as the mask. The following steps show you how to accomplish this.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

198

Figure 3-44. The Dancing Fool slides across colored panels.

1. Open the Wall.fla file. All of the items you will need for this exercise are located in the

Library.

2. Select the Magnifying Glass tool, and zoom in on the bottom six panels by clicking and

dragging the Magnifying Glass across them.

3. Select the Pen tool, and draw a shape that matches the colored area without the triangle with the

dot in the bottom-right corner of each panel.

4. Fill each shape drawn with the Pen tool with black by clicking inside it with the Paint Bucket

tool.

5. Holding down the Shift key, select each of the shapes you have just drawn, and convert the

selection to a movie clip named Mask.

6. Open the Mask movie clip in the Symbol Editor. Change Layer 1’s name to Panels, and

add a new layer named DancingFool to the timeline. Drag the DancingFool layer under the

Panels layer.

7. Select frame 1 of the DancingFool layer, and drag a copy of the DancingFool movie clip to

the stage. Place the movie clip to the left of shapes in the Panels layer, as shown in Figure 3-45.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

199

Figure 3-45. Place the movie clip to the left of shapes in the Panels layer.

With the assets in place, you can now concentrate on creating the animation. The plan is to have the

Dancing Fool slide through the frames. Here’s how you do that:

1. Select frame 80 of the Panels layer, and insert a frame.

2. Select frame 80 of the DancingFool layer, and add a frame. Right-click (Windows) or

Control+click (Mac) anywhere between the two frames, and select Create Motion Tween from

the context menu.

3. Select frame 80 of the DancingFool layer, and move the movie clip to the right of the panels.

You will see a keyframe in frame 80 of the DancingFool layer and the motion path, shown in

Figure 3-46.

4. Right-click (Control+click) the Panels layer, and select Mask from the context menu. If you scrub

across the timeline, you will see the mask you just applied.

5. Click the Scene 1 link to return to the main timeline. The Mask movie clip just created is the

white dot shown in Figure 3-47 that is located just above the panels being masked.

6. Save the movie and test it.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

200

Figure 3-46. The assets are in place, and you can now move on to creating the movie.

Figure 3-47. The movie clip with the mask appears as a white dot on the main timeline.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

201

Using text as a mask

Though we are going to fully explore the use of text in Flash in Chapter 6, we can’t overlook the power of

using text as a mask. If you are going to be using text for this purpose, use a font that has a separate bold

version, such as Arial Black, or another font that has the words Heavy, Black, Bold, or Demi in its name.

These fonts are traditionally used as headline fonts, which makes them ideal for use as a mask.

Let’s have some fun with a text mask and create an intro screen for a site named Places.

1. Open the Seasons.fla file. Add a new layer and name it Text.

2. Select the Text layer, and then select the Text tool. Open the Properties panel, and select

Classic Text from the Text type drop-down.

3. Click in the Text layer, and enter the word Winter. Select the word with the Text tool.

4. In the Properties panel, change the font to a strong sans serif—we chose Arial Black—

and set the point size for the text to 150 and the Letter spacing to -7.0 and the color to

white, as shown in Figure 3-48. The font size slider in the Properties panel only goes up to a

value of 96, so double-click the value and enter 150 from the keyboard. The objective is to get

the letters to run across the image. If you use a different font, you will need to use different values

for Size and Letter spacing.

5. Select the Text layer, and turn it into a mask layer. The shadows on the snow will appear

through the characters in the text.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

202

Figure 3-48. Use a strong font as the mask.

Now let’s add a bit of motion to this movie. To start, turn off the mask in the Text layer by unlocking the

Text layer.

6. Select the text on the stage, and convert it to a movie clip named Text.

7. Add a frame to frame 60 of the Image layer.

8. Right-click frame 1 of the Text layer, and select Create Motion Tween from the context

menu. Drag the last frame of the blue Motion Tween to frame 60.

9. Right-click the last frame of the Text layer, and select Insert Keyframe ➤ Scale. A small

blue diamond will appear in the last frame. This sets the end size for the animation.

10. Drag the playhead to frame 1 of the Text layer. Select the text on the stage, and select the

FreeTransform tool. Scale the text down to a very small size.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

203

11. Click the Timeline tab, lock the Text layer to reapply the mask, and scrub across the timeline.

The text, as shown in Figure 3-49, will grow as you drag the playhead.

Figure 3-49. Masks are not static; they can be animated.

You can also add a bit of graphic interest to the mask by applying a filter to the text. If you intend to go this

route, keep in mind that filters can’t be applied to text that’s being used as a mask. Instead, the filter needs

to be applied to a copy of the text and its layer moved under the mask to give the illusion that a filter has

been applied. Here’s how:

1. Open the Seasons02.fla file in your Exercise folder. When it opens, add a new layer named

Filter to the timeline.

2. Unlock the Text layer, select the text on the stage, and copy the text to the clipboard.

3. Relock the Text layer to apply the mask. Select frame 1 of the Filter layer, and select Edit ➤

Paste in Place to position the text directly over the mask.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

204

4. Select the text in the Filter layer, and apply the Gradient Glow filter using the following

settings in the Properties panel (see Figure 3-50):

 Blur X: 9

 Blur Y: 9

 Strength: 100 percent

 Quality: High

 Angle: 300

 Distance: 10

 Knockout: Selected (this will turn the text transparent and apply the glow to the edges)

 Type: Outer

 Start Color: #FFFFFF (white)

 End Color: #CCCCCC (Light gray)

5. Drag the Text layer above the Filter layer. Notice how both layers in the mask move. As you

can see, as shown in Figure 3-50, the effect gives the mask a bit of a 3D look. Feel free to save

the changes before moving on.

Figure 3-50. Filters can add a bit of zing to mask effects.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

205

Your turn: a sunny day on Catalina Island
In this final exercise, you will let you turn a fog bank rolling in on Catalina Island just west of Los Angeles

into a blue sky and clouds. Here’s how:

1. Open Catalina.fla. When it opens you will see, as shown in Figure 3-51, the foggy image is

already on the stage, and the clouds image is in the Library.

The plan for this project is simple. Replace the fog bank in the sky with the clouds image and, to give it a

bit of eye candy, to put the clouds in motion. You may be thinking why not simply pop open Photoshop or

Fireworks, pull out the fog, heave in the clouds and save it as a .psd or .jpg image? The answer is

sometimes all you get is a .fla and you don’t have the extra time to manipulate the image elsewhere.

Also, this is as good a time as any for you to start getting comfortable with the tools in Flash.

Figure 3-51. You can do amazing stuff with only two images and Flash’s tools.

2. There is obviously a lot more stage than there is image. Click the stage, and in the Properties

panel, click the Edit button to open the Document Properties dialog box. Click the

Contents radio button to shrink the stage to the size of the image, and click OK.

If you are designing Flash movies and the stage is larger than the stuff on it, get into the

habit of reducing the stage size. Wasted space, in the Flash universe, translates into

increased download times. Remember, when you think Flash, think small.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

206

3. Add a new layer to the timeline, and name it FogMask.

4. Select the Pen tool in the toolbox. Turn off the stroke, and draw a shape that follows the tops of

the mountains and covers the bottom of the image as shown in Figure 3-52.

5. Select the Paint Bucket tool and fill the shape with a color of your choosing.

6. Right-click (Control+click) the FogMask layer, and convert it to a mask. The clouds will disappear,

and the harbor will reappear.

Figure 3-52. Draw a shape that covers the mountains and the harbor.

Adding the clouds

With the fog bank masked out, you can now turn your attention to the sky and making the day a lot

brighter.

1. Add a new layer named Clouds, and drag it under both layers on the timeline.

2. Drag the cga_Clouds.png image from the Library into the Clouds layer. Line the right edge of

the clouds image against the right edge of the stage, as shown in Figure 3-53.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

207

Figure 3-53. The clouds are added.

As you can see in Figure 3-53, there is a problem. The clouds image is huge, and you have no idea where

the top of the stage is located. This is a “nonissue” if your intention is to go no farther. All of the excess will

be “trimmed off” when you test the movie because content that isn’t on the stage isn’t visible at runtime.

We intend to put the clouds in motion, so let’s solve the issue:

3. Select the Clouds layer, and add a new layer named CloudsMask above it.

4. Turn off the visibility of the Clouds layer to turn off the image, which lets you see the top of the

stage.

5. Select the CloudsMask layer, and draw a rectangle that covers the white area of the stage.

6. Turn on the visibility of the Clouds layer, select the image, and convert it to a movie clip.

7. Turn the CloudsMask layer into a mask. As shown in Figure 3-54, the image is looking a lot

better.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

208

Figure 3-54. Two masks and the day is looking brighter.

Getting the clouds in motion

In this, the final part of the exercise, you are going to put the clouds in motion. There are any number of

ways of doing this, but the issue you will be dealing with has to do with something one of the authors tells

his students: “Pay attention to the world around you.” In the case of the clouds, the image is flat, and the

clouds won’t look quite right because, even though they can move sideways or up and down they will still

look flat. Instead, let’s have the clouds move toward the viewer. Here’s how:

1. Scrub over to frame 200 of the main timeline, and add a frame to all of the layers. This tells you

the animation will occur over 200 frames.

2. Unlock the Clouds layer, right-click the image, and convert it to a movie clip named Clouds.

3. Right-click anywhere in the Clouds layer’s timeline between frames 1 and 200 and select

Create Motion Tween.

4. Select the Clouds movie clip on the stage, and select Window ➤ Transform. This opens the

Transform panel shown in Figure 3-55.

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

209

We are going to get a lot deeper into this panel in Chapter 9 for now, though, pay attention to the 3D

Rotation settings. These settings allow you to rotate objects on the x-, y-, and z-axes in 3D space.

5. With the Clouds movie clip selected on the stage, set the X value in the Transform panel’s 3D

Rotation area to 60 degrees. The clouds will “tilt.” Close the Transform panel.

6. With the Clouds movie clip still selected, move the playhead to frame 200.

Figure 3-55. Tilt the clouds to add a degree of realism.

7. Click the Clouds movie clip, and in the Properties panel twirl down the 3D Position and

View area.

8. In the 3D Position and View area, change the Z value to -260. If you scrub across the

timeline, the clouds will look like they are moving towards you.

9. To complete the effect, lock the Clouds layer to reestablish the mask.

10. Save and test the movie. The cloud motion (Figure 3-56) looks a lot more realistic.

www.zshareall.com

http://www.zshareall.com

CHAPTER 3

210

Figure 3-56. The small value change on the z-axis makes the clouds move lazily across the sky.

Bonus round

Before we start, you are probably wondering, what’s a bonus round? We have thrown a few of these into

the book in order to give you the opportunity to play and further extend your skills. What we don’t do is give

you detailed instructions. Instead, we tell you how to do it in much the same way a colleague would talk

about how he or she did something cool. It’s like when you learned to ride a bike. Eventually the person

teaching you takes their hand off of the bike seat and lets you go solo. We just let go of your bike seat.

Here are a couple of things you might want to try with the Catalina Island project you just completed.

If you think the harbor is too dark, here’s a way to brighten it up. Add a new layer above the Layer 1 layer

containing the Catalina harbor image. Copy and paste the Catalina image into that new layer, and convert

it to a movie clip. Apply the Subtract blend mode to the movie clip you just created. Reapply the mask,

save, and test.

The purpose of this exercise was to not only let you play with the tools but to reinforce the fact that effects

where subtlety is used are, more often than not, the most effective ones. Still, you can have a blast with

this exercise.

Here’s another idea. Slide another copy of the Clouds movie clip into a new layer under the masked

clouds layers. If you unlock the layer, select the distorted movie clip, and apply a variety of Blends from

the Properties panel, you can get a number of different effects ranging from a softer sky (Overlay) to

a post nuclear blast sky (Subtract). Have fun.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

SYMBOLS AND LIBRARIES

211

What you’ve learned
In this chapter, you learned the following:

 How to create and use symbols in Flash animations and movies

 How to create and share libraries among Flash movies

 The power of filters and blends

 A variety of methods for managing on-stage content

 How to create and use a mask

 How to use masks and the 3D tools in Flash to create a realistic sky.

In the next chapter, you will be exposed to ActionScript 3.0, the current version of Flash’s programming

language.

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

213

Chapter 4

ActionScript Basics

Programming is a discipline all its own. In fact, Flash has grown so much over the ten years of its

existence that people are actually earning fairly decent incomes as ActionScript programmers, or, as they

are known in the industry, Flash developers. This is not to say our intention is to turn you into a

programmer outright, but an understanding of the ActionScript 3.0 language and the fundamentals of its

use will make your day-to-day life easier.

Here’s what we’ll cover in this chapter:

 Using the Actions panel

 Understanding the fundamentals of objects

 Commenting code

 Creating and using variables

 Using data types, operators, and conditionals

 Using the new Code Snippets feature

 Getting help

The following files are used in the exercises in this chapter (located in Chapter04/ExerciseFiles_Ch04):

 Instance.fla

 Events.fla

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

214

 twinkie.fla

 PauseTimeline.fla

 carRace.fla

 AddSnippet.fla

 CodeHint.fla

Additionally, we’ve provided completed versions of several exercises for your reference (located in

Chapter04/ExerciseFiles_Ch04/Complete/).

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

Using ActionScript is a lot like owning a car. Our hunch is that most of you own one, or have at least

thought about owning one. We also suspect that some of you (including one of the authors) find the

mechanics of a car so mystifying that you prefer to let a mechanic handle routine maintenance. Others of

you won’t be happy unless the hood is up and you’re covered in grease up to your elbows. Whichever way

you lean, it’s hard to argue against acquiring at least the basic skills necessary to change the oil and

maybe fix a flat tire. You never know when you’ll be stuck on the side of the road without a cell phone!

This chapter gives you an introduction to programming as it relates to Flash CS5. We trust the following

information will guide you past the first few mile markers.

This chapter has been acknowledged by many as one of the better introductions to

ActionScript that is available. It appeared in both the Flash CS3 and Flash CS4 editions

of this book and was largely written by our former coauthor, David Stiller. Other than

minor tweaks here and there and the inclusion of a couple of new CS5 features, this

chapter is intact because, as David would say, “It would be like drawing a moustache on

the Mona Lisa.” Thanks, David.

The power of ActionScript
When Flash first appeared on the scene (first as FutureSplash Animator and then later as Flash), web

designers were quite content to populate sites with small movies that moved things from here to there. The

result was the rise of bloated Flash movies and, inevitably, the infamous Skip Intro button. But once

ActionScript was introduced into the mix, Flash started its march forward.

Today, Flash is a mature application, and Adobe now refers to the use of Flash CS5 as part of the Flash

Platform, an umbrella term that includes industrial-strength programming tools like Flex and AIR. This

means that SWF files are no longer the exclusive property of the Flash authoring environment. Flash

Builder 4 also produces SWFs. They’re fundamentally the same as SWFs built in Flash—they all run in the

same Flash Player 9 or newer—but Flex is geared toward programmers who normally work in applications

like Microsoft Visual Studio or Borland JBuilder—not at all the domain of artsy types! As you have seen in

the preceding chapters, Flash can still be used to move things from here to there. On one hand, you have

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.zshareall.com

ACTIONSCRIPT BASICS

215

an animation tool for building scalable, lightweight motion graphics that renders animated GIFs extinct, and

many Flash designers are using the application to create broadcast quality cartoons for display on the

Web and television.

On the other hand, even without Flash Builder, Flash developers have plenty of room to spread their

wings. They use the platform for everything from building online banking applications to fully realized

clones of Super Mario Brothers. In between is a wealth of content ranging from interactive banner ads to

MP3 players, from viral e-cards to video-enhanced corporate multimedia presentations. How far you go,

and the directions you take, are up to you—that’s an exciting prospect! These are all possible thanks to

ActionScript.

Put simply, ActionScript brings your movies to life. No matter how impressive your sense of graphic

design, the net result of your artistry gets “baked,” as is, into a published SWF. What’s done is done—

unless you introduce programming to the picture. With ActionScript, your opportunities extend beyond the

bounds of the Flash interface. You can program movies to respond to user input in orderly or completely

random ways.

ActionScript also has a pragmatic side. You can reduce SWF file size and initial download time by

programming movies to load images, audio, and video from external, rather than embedded, files. You can

even make things easier for yourself by loading these files based on information stored in XML documents

and styled with CSS (these topics are covered in Chapters 12 and 13).

ActionScript 3.0 is the latest and most mature incarnation of the programming language used by Flash. As

a point of interest, it was supported a full year before Flash CS3 came to market by two related, but

distinct, Adobe products: Flex Builder 2 and Flash Player 9. This was an all-time first in the history of

Flash. The decision to do so was a wise one on the part of Adobe. What it meant was that Flash

developers had already become familiar with the new features and improvements of ActionScript 3.0 by

hearing about it around the watercooler. If you were in an academic or office setting during the release of

Flash CS3, chances were good that a kind and wise soul had already forged ahead and cleared the path.

With the release of Flash CS5, few are looking back. Numerous tutorials and articles on ActionScript 3.0

are already available online at the Adobe Developer Connection (www.adobe.com/devnet/). All of the

examples in this book use the ActionScript 3.0 language.

Flash CS5 is perfectly capable of using ActionScript 2.0 and even older versions of the

language. But do note that ActionScript 1.0, the first iteration, is on its last legs, and

ActionScript 2.0 is heading for that status as well. The adoption of ActionScript 3.0 has

become more rapid than in the past because of the introduction of Flex and the fact that

the Flash developer community was exposed to the language so far in advance of Flash

CS3.

So, where did ActionScript come from? Before Macromedia joined the Adobe family, it looked at the

programming languages used for web interactivity and realized JavaScript was predominant. Rather than

add yet another language, the decision was made in Flash 5 to stay within the parameters of something

called the ECMA-262 specification. This makes ActionScript a close cousin of JavaScript, so if you’re

already comfortable with that, you may find ActionScript encouragingly familiar.

www.zshareall.com

http://www.adobe.com/devnet
http://www.zshareall.com

CHAPTER 4

216

Ecma International (formerly the European Computer Manufacturers Association) is an

industry standards association that governs a number of specifications for data storage,

character sets, and programming languages, including specs for C++ and C#. It’s

something like the World Wide Web Consortium (W3C), which manages the

specifications for HTML, XML, and CSS.

So much for history. Let’s roll up our sleeves and get covered in electrons up to our elbows by getting to

know the interface for ActionScript: the Actions panel.

Actions panel components

Let’s take a look at what the Actions panel has to offer. Create a new Flash File (ActionScript 3.0)

document. When the document appears, select Window ➤ Actions or press F9 (Option+F9) to open the

Actions panel. As shown in Figure 4-1, this panel has three distinct zones: the Actions toolbox, the

script navigator, and the Script pane.

Figure 4-1. The Actions panel

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

217

Of the script editors mentioned, the Actions panel has been around the longest. It has evolved through

significant changes since its introduction in Flash 4, and it even reveals a handful of new features since

Flash 8.

Actions toolbox

The Actions toolbox provides a kind of “card catalog” for the default available scripting functionality in

Flash. Clicking one of the little book icons with arrows opens that book to reveal either more books—in an

extensive, cascading organization of categories—or a circle icon that lets you add that particular bit of

ActionScript to your code. You may do this by double-clicking the desired circle icon or by dragging it to

the Script pane at the right. In theory, this gives you a helpful point-and-click mechanism for building

complex expressions without having to memorize the whole language. In practice, however, this is like

using alphabet magnets to compose sonnets on the refrigerator...with a spatula. It’s much easier and

quicker to simply type the code you need by hand. ActionScript 3.0 is significantly larger in scope than

previous versions of the language, and no one has the full application programming interface (API)

memorized, so don’t worry if you find yourself looking up code all of the time.

Script navigator

ActionScript may be placed in any frame on any movie clip timeline. The script navigator area shows which

frames have scripts, and it allows you to quickly jump to the desired code.

Selected scripts may be “pinned” beneath the Script pane. Each pinned script is displayed as a new tab,

which provides an alternative navigation method.

Script pane

The Script pane is the high-traffic zone of the panel, because it’s where you type your code. Along the

top of the pane, you’ll find the following buttons for working with your code (see Figure 4-2). Note that you

may have to increase the size of the code panel to see all of these buttons:

 Add a New Item to the Script: Provides functionality equivalent to the Actions toolbox.

 Find: Lets you find and replace text in your scripts.

 Insert a Target Path: Helps you build dot-notation reference paths to objects.

 Check Syntax: Provides a quick “thumbs up” or “thumbs down” on whether your code is well

formed.

If you relied on the Check Syntax feature back in Flash 8, be prepared for a bit of

disappointment. This button behaves very differently for ActionScript 3.0 documents,

though it still works the same for ActionScript 2.0 documents. For details, see the

“Syntax checking” section later in this chapter.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

218

 Auto Format: Sweeps through your code to correct its posture, based on your own formatting

preferences. In a pinch, this can act as a backup Check Syntax button, because it applies

formatting only to legal code.

 Show Code Hint: Summons a tooltip that suggests what you might want to type next.

 Debug Options: Lets you set and remove breakpoints, which are used to help debug

ActionScript.

 Collapse Between Braces, Collapse Selection, and Expand All: Allow you to “fold

up” long stretches of code to reduce clutter, and then open them again.

 Apply Block Comment, Apply Line Comment, and Remove Comment: Allow you to add

code comments in two different ways, and then remove them again.

 Show/Hide Toolbox: Opens and closes the books in the Actions toolbox.

 Open Code Snippets: Holds pieces of code you use on a regular basis. It is new to Flash

CS5, and you’ll be getting to it later in the chapter.

 Script Assist: Puts the Actions panel into a special line-by-line mode that provides

programming hand holding.

 Help: Opens the ActionScript section of the Flash documentation.

Figure 4-2. The Script pane buttons

Panel context menu

The Actions panel’s context menu, shown in Figure 4-3, resides in the upper-right corner of the panel.

Many of its choices repeat functionality already discussed—Pin Script, Auto Format, and Check

Syntax—but a good handful of choices show features unavailable anywhere else. These include the

ability to import in, export out, and print script from the Actions panel; show and hide hidden characters

and line numbers; and wrap text.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

219

Figure 4-3. The Actions panel context menu

A really good habit to develop is to keep Line Numbers selected in the context menu.

Code can get very long, and if there is a mistake, Flash usually tells you the line number

where the mistake can be found.

The Actions panel vs. the Behaviors panel

If you’re not new to Flash, you may be familiar with the Behaviors panel. This panel allows you to select

an object with the mouse, such as a button symbol, and apply a prewritten script—a behavior—to it.

Behaviors include common functionality such as pausing and playing embedded video, sending the

playhead to a particular frame, dragging a movie clip, and so on. The Behaviors panel is still available in

Flash CS5—under Window ➤ Behaviors—but behaviors are not compatible with ActionScript 3.0

documents.

That’s right. If you’re using ActionScript 3.0, you need to write your own code. This is partly because the

on() and onClipEvent functions, which allowed earlier ActionScript to be attached directly to objects, are

no longer part of the language. Is this a big loss? Not really. The truth of the matter is that code written

through the Behaviors panel is of the canned, one-size-fits-all variety. This means that it is often more

complicated than it needs to be, which can make your code harder to maintain or customize. In fact, many

Flash developers avoid behaviors completely because, as they rightly claim, it produces “bloated code.” By

that, they mean that a behavior may need six lines to accomplish what could otherwise be done using one

or two lines.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

220

Are behaviors a bad thing? No, but they frequently give you a false sense of freedom. As soon as you find

yourself in a position where you “just need this one part to act a bit differently,” you’re stuck, because you

haven’t the foggiest idea where to begin. That isn’t the Behaviors panel’s job. Its purpose is to write the

code for you, not tell you what it is doing.

It is a lot like buying coffee from a vending machine in the office. Coffee from a vending machine might

seem convenient at first, but it is never as good as a pot you have attentively brewed on your own. When

you finish this chapter, you’ll be well equipped to explore ActionScript on your own and use much more of

it than the Behaviors panel offers.

Why are we exposing you to it if it is to be avoided? Because it is to be avoided.

Before you start entering code in the Actions panel, let’s step back and understand exactly what it is you

are working with when you enter code. It is called an object.

Everything is an object
Your first step in using ActionScript, and possibly the most important, is to think in terms of objects. This

concept is fundamental to ActionScript’s object-oriented environment and ties the whole language to an

elegant, unifying metaphor. So, what is an object? Well, that’s just it: you already know what an object is!

An object is a thing—something you can look at, pick up, and manipulate with code.

The Flash interface allows you to “physically” manipulate certain objects—movie clips, text fields, and so

on—by means of the Free Transform tool, the Properties panel, and other tools and panels. But

that’s only the tip of the iceberg, and merely one way of looking at the “reality” of the parts of a Flash

movie.

In ActionScript, objects aren’t physical things, but if you place yourself mentally into Flash territory, you’ll

find it helpful to imagine them that way. With programming, you’re dealing with an abstract world. In this

world, objects “live” in the parallel universe determined by the binary information stored in a SWF. That

information may be governed by tools and panels or by ActionScript, or both.

Every movie clip in a SWF is an object. So is every text field and button. In fact, everything you use,

interactive or not, is an object. For visual elements, this is generally an easy concept to grasp—you can

see them on the stage—but it goes further. Things you might not think of as objects, such as the

characteristics of the Glow effect or changes in font settings, can be described in terms of objects. Even

nonvisual notions—such as math functions, today’s date, and the formula used to move an object from

here to there—are objects. Thinking of these in this way may seem disorienting at first, but the concept

should ultimately empower you, because it means you can manipulate everything of functional value in a

SWF as if it were a tangible thing. The best part is that all objects are determined by something called a

class. In many respects, classes provide a kind of owner’s manual for any object you encounter, which is

a big tip on how to approach the documentation.

Before we move on to the owner’s manual, let’s look at two objects: Tiago and Tom. The authors of this

book, in object terms, are human beings. We’ll refine this analogy in just a moment, but for now, let’s say

our class is Male. You can look at either one of us and say, with certainty, “Yep, those are two guys.” But

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

221

drill deeper, and you’ll discover that even though we are of the same class, we are also quite different,

which is where the owner’s manual comes into play.

Classes

Think of a class as a sort of blueprint or recipe for a given object. If you’re a fan of pizza, all you need is a

single pizza recipe, and you’re good to go. As long as you follow the recipe, every pizza you make will be

as good as the one that came before it. Some pizzas will be larger than others, some will be square, some

round, and the toppings will certainly change, but there’s no mistaking what’s on your plate. It’s the same

with objects.

A movie clip symbol is defined by the MovieClip class. Any given movie clip will have its own width and

height, and it might have a longer or shorter individual timeline, but all movie clips have dimensions, and

all movie clips have a timeline. Along the same lines, every type of object in ActionScript has its own

unique qualities. These are generally defined by some combination of three facets:

 Characteristics the object has

 Things the object can do

 Things the object can react to

In programming terms, these facets are known respectively as properties, methods, and events.

Collectively, these are called members of a class. This also explains why even though Tiago and Tom fit

into the class Male, we are also different. We feature the same properties across the board—height,

fishing license, Moose Lodge membership, and, say, hair—but each has his own unique values for those

properties. For example, Tom’s Moose Lodge membership expires next year, but Tiago’s has only begun.

Someday, one of us might have the value bald for his hair property—but not yet. It’s the same with

methods and events. Both of us can kick a football, and because our singleMale properties are set to

false, both of us respond to the sheIsCalling event.

It’s time to refine the analogy in which Tiago and Tom are instances of the Male class. Both of the authors

have a dog, and it’s immediately clear these dogs aren’t instances of the Male class. So, let’s reshuffle our

thinking a bit.

In a broader sense, the authors are instances of a class that could be called Human. That means our dogs

aren’t part of our class, which is obvious. But here is where it gets interesting. As it turns out, the Human

class, in turn, fits into an even broader category called Mammal, which fits into a broader category still,

called Vertebrates, then Animal, and so on. The broader you go, the more the members of these groups

have in common. It’s when you get narrower—down to the Human branch, for example—that specifics

come into play. Mammals, for example, don’t lay eggs (with very few exceptions!); they feed their young

milk, and so forth. This distinguishes mammals from other vertebrates, such as fish or amphibians; and

yet, as vertebrates, all backbone animals at least have a spine in common, which explains how our dogs

and their authors can share a class.

It works the same way in ActionScript. The MovieClip class defines movie clip symbols. You learned

about movie clips in Chapter 3, but at the time, we didn’t clue you in to the fact that movie clips belong to a

larger family tree. The reason we withheld this information earlier is because the ancestors of movie clips

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

222

are available only in ActionScript, not something you can create with drawing tools. Just as Human is a sort

of Mammal, MovieClip is a sort of Sprite. Where mammals—the authors and their dogs—are a particular

sort of vertebrate, the Sprite class is a particular sort of DisplayObjectContainer. The list continues.

Further down the family tree, the DisplayObjectContainer class is simply one branch of the

InteractiveObject class, which itself is a particular branch of the DisplayObject class.

If your eyes are already starting to glaze over, don’t worry. You won’t see a quiz on this stuff—not in this

book. The important part is that you get a general sense that classes define only the functionality that’s

specific to the type of object they represent. The Mammal class wouldn’t define what a spine is, because all

mammals are vertebrates—along with fish and amphibians—so it would be redundant for each group of

animal to restate that definition. All of these animals share a spine, and therefore all of their classes rely on

the definition of “spine” from the Vertebrate class, from which they all inherit information. Bearing that in

mind, let’s take a closer look at properties, methods, and events.

Do you want to know the name of the absolute rock-bottom object—the class used as

the starting point of all classes, inherited by them all? You’ll smile when you hear it. The

mother of all objects is...the Object class.

Properties

Properties might be the easiest class members to conceptualize, because they seem the most concrete.

For example, Tiago and Tom both live in cities, but the value of our city property is different. Tiago’s city

value is Zurich; Tom’s is Toronto. Now wrap your mind around a movie clip on the Flash stage. That

movie clip symbol clearly exists at a particular position on the stage. Its position is apparent during

authoring because you establish it yourself, perhaps by dragging the movie clip by hand or by setting its

coordinates with the Properties panel. To access these same properties with ActionScript, you’ll need

to be able to call the movie clip by name, so to speak.

Using instance names

As you learned in Chapter 3, you may drag as many instances of a symbol to the stage as you please. So

that an instance is set apart from the others—at least in terms of ActionScript—each instance needs a

unique instance name. Recall that the two authors are unique instances of the Human class. You tell us

apart by giving each of us an instance name.

A symbol’s library name and its instance name are not the same thing, so they can overlap if you like. But

the instance name must be unique from other instance names in the same scope. What’s scope? We’ll

touch on this later in the “Scope” section of this chapter, but think of scope as ActionScript’s take on the

concept of point of view. Tiago and Tom can both have a dog named Guinness, and those names do

count as unique from the point of view that refers to each dog as “Tiago’s dog Guinness” and “Tom’s dog

Guinness.” But there’s another point of view—in Tom’s head, for example—that simply refers to the dog as

“Guinness.” From Tom’s point of view, he can have only one dog by that name; otherwise, he won’t know

which of his dogs is which. In the same manner, two movie clips on the main timeline can’t share the same

instance name.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

223

You name an instance through the appropriately named Instance Name field of the Properties panel.

Once a movie clip has an instance name, you can access its MovieClip class members in terms of that

particular movie clip instance. Here’s how:

1. In your Chapter 4 Exercise folder, open Instance.fla.

2. Rename Layer 1 to content, add a new layer named scripts, and then lock it.

A standard practice in Flash development is to put scripts in a separate, locked layer

named scripts, actions, Actions or some other meaningful description. This way,

all the code is in one place, and nothing else but scripts can be added to the layer. This

has become an “unofficial” naming convention throughout the Flash industry.

3. Open the Library, and drag a copy of the Guinness.jpg image into the content layer.

4. Convert the image to a movie clip symbol named Guinness so that it appears in the Library by

that name. Select the movie clip on the stage, and give it the instance name guinness in the

Properties panel (as shown in Figure 4-4).

Figure 4-4. Instance names are added in the Properties panel.

5. Use the Selection tool to drag the guinness instance to the upper-left corner of the stage—

not flush with the corner, just in the vicinity. Note its x and y coordinates as indicated by the

Properties panel. You’re about to see ActionScript tell you these same figures.

6. Open the Actions panel by selecting Window ➤ Actions. Select frame 1 in the scripts

layer. This directs the Actions panel to that frame—this is where your script will be stored. Type

the following ActionScript into the Script pane:

trace(guinness.x, guinness.y);

7. Close the Actions panel, and test your movie.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

224

After the SWF has been created, locate the Output panel, which will have opened automatically (it should

appear in the area where the Timeline and Motion Editor panels are docked, but you can always

show and hide it by selecting Window ➤ Output). In the Output panel, you’ll see two numbers, as shown

in Figure 4-5. They will be the same numbers you noted in your Properties panel. These numbers

appear as a result of the trace() function you just typed. They are the horizontal and vertical

coordinates—the MovieClip.x and MovieClip.y properties—of the guinness instance of the

MovieClip class. In fact, they match the x and y coordinates shown in the Properties panel.

Figure 4-5. The guinness movie clip on the stage shows its coordinates in the Properties panel. In

the SWF, it shows its coordinates in the Output tab thanks to the trace() function.

How does this work? The trace function accepts something called parameters, and these parameters

affect the way the trace function acts. Whatever values—called expressions—you place between its

parentheses, separated by a comma, are displayed in the Output panel. In this case, the two expressions

are guinness.x and guinness.y. Like methods, functions are coding keywords that do things, but

functions aren’t associated with a class. We’ll show you some additional examples of functions later in the

chapter.

You’ll find the trace() function to be a useful tool in experimenting with ActionScript. Its

sole purpose is to display information normally under wraps, such as the value of an

object property, an expression, or a variable. In actual practice, you might use a movie

clip’s position or the value of a property of an object to determine the outcome of some

goal. For example, you might want a movie clip to stop being draggable after it has been

dragged to a certain location on the stage. You wouldn’t need the trace() function to

accomplish such a task, but it could certainly help you test your code along the way.

For interest’s sake, the x and y properties of this movie clip don’t originate with the MovieClip class. This

is where the concept of inheritance, touched on earlier, comes into play. Movie clips certainly aren’t the

only objects that can be positioned on the stage. The same is true of button symbols, text fields, and many

other objects. The classes that define these objects, many in their own offshoot branches of the family

tree, all inherit x and y properties (and more, besides) from the DisplayObject class. If you look up the

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

225

MovieClip class entry in the ActionScript 3.0 Language and Components reference, you might not see

the x and y properties at first. The documentation features headings for properties, methods, and events,

and each heading has a hyperlink that lets you see inherited functionality. We’ll talk more about the

documentation in the “How to read the ActionScript 3.0 Language and Components Reference” section

later in this chapter.

Setting properties via ActionScript
In addition to being retrieved, or read, in this manner, many properties (but not all) can also be set via

ActionScript. Here’s how:

1. Save your current file as Instance2.fla.

2. Select frame 1 of the scripts layer, if it isn’t already selected, and return to the Actions panel.

Delete the existing line of ActionScript. Enter the following new lines, and test your movie again:

guinness.x = 300;
guinness.y = -50;

This time, you’ll see the image positioned at 300 pixels in from the left and 50 pixels past the top of the

stage, just as if you had placed it there yourself. Want to adjust something else? How about width?

1. Save your current file as Instance3.fla.

2. Replace the existing ActionScript to make it look like the following code, and then test your movie:

guinness.x = 200;
guinness.y = 100;
guinness.width = 300;

See what happens? Not only does the movie clip change position—this time to 200 pixels in from the left

and 100 pixels down from the top—but it also stretches to a new width of 300 pixels.

Changing the code and then testing it to this point may seem a bit mundane in these

simple examples. There is a very good reason why we are doing this. What you have

been doing is changing the code and adding to it. ActionScript can get pretty complex.

This is why now would be a good time to get into the habit of “Do a bit. Test it.” This way,

if there is a problem or an unexpected result, you can easily fix it because you know

exactly where the change was made.

There are dozens of MovieClip properties, and we mentioned that not all are settable. One example is

the MovieClip.totalFrames property, which indicates the number of frames in a movie clip’s timeline.

Another is MovieClip.mouseX, which indicates the horizontal position of the mouse in reference to a

given movie clip. Some things simply are what they are. The documentation tells you at a glance what the

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

226

full set of an object’s properties is and which of them are read-only. Later in the chapter, we’ll discuss how

to best approach the documentation, in particular the ActionScript 3.0 Language and Components

Reference, but for now, let’s keep rolling.

Methods

Methods are the “verbs” of an object—things the object can do. You can spot them right away, because

they usually end in parentheses (()), which is the punctuation that actually runs the method or function in

question. Staying with the Tiago and Tom metaphor, both of us can walk, but Tiago may decide to take a

left turn at the corner, while Tom takes a right. Like functions, methods can accept parameters that alter

the way the method is carried out.

As with properties, each unique object type has its own set of methods. The TextField class, for

example, provides for the selection of text in various ways. These methods are absent in the MovieClip

class, which makes perfect sense because movie clips do movie clip things and text fields do text field

things. The Loader class provides for the loading of files and data from outside a SWF. It makes equally

good sense that its methods are unique to instances of Loader and that neither text fields nor loader

objects can send the playhead to the frame of a movie clip’s timeline.

ActionScript 3.0 is much better organized in this regard than previous versions of the

language. In ActionScript 1.0 and 2.0, movie clips were responsible for loading external

SWFs and images. There was also a class called MovieClipLoader that did the same

thing but in a more useful way. Thanks to the new virtual machine introduced in Flash

Player 9, ActionScript 3.0 slices through such legacy ambiguity.

Let’s keep exploring our movie clip instance, because movie clips are arguably the most important object

in Flash to learn. Why? Because the main timeline itself is a MovieClip instance, which means SWF files

are functionally equivalent to movie clip symbols. If you’re interested in controlling the main timeline, you’ll

want to know where to look for the necessary methods, and those are found in the MovieClip class.

Some advanced developers will tut-tut this by pointing out that the main timeline can be configured as its

immediate ancestor class, Sprite. Technically, they’re right, but that’s not the sort of hairsplitting we’ll get

into in this book. You could also say that binoculars are actually a pair of telescopes strapped together.

The bottom line is that if you’re planning to send the playhead from frame to frame on the main timeline, it

means you’re using a timeline, which means you’re using the MovieClip class.

As you learned in previous chapters, timelines have frames. By default, the playhead runs along those

frames, displaying whatever visual assets they contain. In other words, the natural tendency of a movie

clip is to move, rather than stand still. As you’ll see, the MovieClip class provides methods to stop the

playhead, send it to a specified frame (skipping frames in between), and stop or play from there, plus

plenty more.

1. Save your current file as Instance4.fla.

2. Delete the existing three lines of ActionScript, and close the Actions panel for now.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

227

3. Click frame 50 of the content layer. Select Insert ➤ Timeline ➤ Frame, which spans out the

guinness instance over a series of 50 frames.

4. Right-click (Windows) or Control+click (Mac) anywhere inside the span of frames, and select

Create Motion Tween.

5. In frame 50, use the Selection tool to reposition the box instance to the right side of the stage,

and use the Free Transform tool to increase its size.

6. Test your movie. You should see the Guinness instance move from the left side of the stage to

the right, increasing in size as it goes. So far, this is nothing new. This is the same sort of

tweening done in Chapter 1.

In the previous section, we referred to the guinness instance to access its MovieClip properties. Here, we

could access its methods in essentially the same way—and we will in the next section, “Events”—but for

the time being, let’s refer to the main timeline instead. Ah, but wait a moment! The main timeline doesn’t

have an instance name. How is this going to work? The solution depends on a special, flexible keyword:

this. The meaning of the this keyword changes depending on context. Since your ActionScript is in a

keyframe of the main timeline, it refers, in this context, to the main timeline.

The this keyword is one of a small selection of special statements in ActionScript that

stand apart from all the classes that make up the language’s objects. When you see

this in code, recognize it as a reference to the timeline in which it appears or to the

object in which it appears.

7. Click in frame 1 of the scripts layer, and open the Actions panel.

8. Type the following ActionScript, and test your movie:

trace(this);

9. Test your movie. The movie will animate as before, but this time you’ll see a new message in the

Output panel: “[object MainTimeline].” Bingo!

As the movie naturally loops, the message will repeat itself whenever the playhead enters frame 1. So,

because you know the main timeline is a movie clip, you now have your reference to a MovieClip

instance. At this point, you simply follow that reference with a dot and refer to the desired MovieClip

method.

10. Replace the existing code with the following ActionScript, and then test your movie:

this.stop();

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

228

11. Test your movie. This time, the movie stays put at frame 1. Visually, that’s pretty boring, but the

fact is, you just used ActionScript to direct the course of a SWF! Let’s do something a little more

interesting.

12. Comment out the existing ActionScript by putting two forward slashes at the beginning of line 1.

You may either type them yourself or use the Actions panel’s Apply line comment button.

To use this button, either position your cursor at the beginning of the line or highlight the entire

line, and then click the button. If code coloring is active, you’ll see your ActionScript change color.

//this.stop();

For some of you the term commenting might seem a bit odd. In fact, commenting is a standard

coding best practice. The most common use for comments is to let others know what something

does. For example, your comment for the previous line would be as follows:

// This code stops the timeline on frame 1

Don’t forget to add the slashes. Omit them, and Flash’s Output panel will give you this rather cryptic

message:

Scene 1, Layer 'Layer 1', Frame 1 1071: Syntax error: expected a definition keyword (such as function)

after attribute This, not code.

That message translates to this: “I don’t have a clue what this is.” Use code coloring as your visual clue. If

a comment is gray, it is a comment. We get deeper into this subject later in this chapter.

What’s code coloring? Certain words, phrases, and other terms that ActionScript

recognizes will be colored black, blue, green, or gray. The words this and stop are

reserved for ActionScript and are blue by default, though you can customize these

colors by selecting Edit (Flash) ➤ Preferences ➤ ActionScript. Gray is the

default color for commented code, which is nonfunctional as long as it remains a

comment. Keep an eye on the code color. If the word stop, for example, is not blue, you

may have a problem (maybe a typo). As you can imagine, code coloring is especially

helpful with longer words and expressions.

13. Click frame 50 of the scripts layer, and add a blank keyframe (Insert ➤ Timeline ➤ Blank

Keyframe). Select this keyframe, and notice that the Actions panel goes blank. That’s because

no code exists on this frame. You’re about to add some.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

229

14. Type the following ActionScript into this frame:

this.gotoAndPlay(25);

The keyword this isn’t always needed, strictly speaking. If you drop the reference to

this in these examples, Flash understands that you’re referring to the timeline in which

the code appears.

15. Test your movie. You’ll see that, because the ActionScript in frame 1 is commented out, it’s

ignored.

The playhead breezes right on past frame 1. When it reaches frame 50, the MovieClip.gotoAndPlay()

method is invoked on the main timeline, and the movie jumps to frame 25, where it eventually continues

again to 50. At frame 50, it will again be invoked and send the playhead to frame 25, and the cycle will

repeat—sort of like a dog chasing its tail. The only difference between ActionScript and a dog is that a dog

will eventually stop. The only way to stop this movie is to quit Flash Player.

What makes the playhead jump to frame 25? The number inside the method’s parentheses determines

that. Like the trace function we used earlier, some methods accept parameters, and

MovieClip.gotoAndPlay is one of them. If you think about it, the idea is reasonably intuitive. A method

like MovieClip.stop doesn’t require further input. Stop just means “stop,” but gotoAndPlay wouldn’t be

complete without an answer to the question “go where?”

To be fair, it isn’t always obvious when parameters are accepted. In fact, in many cases, when they are,

they’re optional. Some methods accept many parameters; others accept none. What’s the best place to

find out for sure? The answer, once again, is the documentation. Seriously, it’s is your quickest source for

definitive answers to questions about class members.

Events

Events are things an object can react to. Yell at Tiago, and he will turn his head in your direction. Push

Tom to the right and, if he is walking, he will veer in that direction. It is no different in ActionScript. Events

represent an occurrence, triggered either by user input, such as mouse clicks and key presses, or by Flash

Player itself, such as the playhead entering a frame or the completion of a sound file. Because of this

dependence on outside factors, your response to events—called event handling—requires an additional

object.

It’s something like you see in physics: for every action (event), there is a reaction (event handling)—and it

applies only if you want Flash to do something when an event occurs. On its own, Flash doesn’t actively

respond to anything. You have to tell it to respond. At this point, you may want to roll up your pant legs a

few twists, because we’re going to wade a little deeper here.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

230

Event handling in ActionScript 3.0 requires an instance of the Event class or one of its many derivatives,

including MouseEvent, ScrollEvent, TimerEvent, and others listed in the Event class entry of the

ActionScript 3.0 Language and Components Reference. The handling itself is managed by a custom

function, written to perform the response you want to see when the event occurs. Before this begins to

sound too complex, let’s return to our movie clip instance.

1. Open Events.fla in your Chapter 4 Exercise folder.

2. Double-click the box instance on the stage to open the Symbol Editor.

3. Select frame 2, and select Insert ➤ Timeline ➤ Blank Keyframe to add a blank keyframe.

4. Use the Oval tool to draw a circle that is approximately 75 75 pixels in frame 2. If you like, use

the Properties panel to adjust these dimensions precisely and to position the shape at

coordinates 0,0.

5. Test the movie. You will see the box instance animate from left to right, increasing in size. This

time, however, that second frame inside box’s timeline causes it to naturally loop, fluttering

between the square and circle—something like an abstract artist’s impression of a butterfly. It’s a

neat effect, but let’s harness that and make it act in response to the mouse instead.

6. Click the Scene 1 link to return to the main timeline.

7. Select frame 1 of the scripts layer, and open the Actions panel.

8. After the existing ActionScript, type the following new line:

box.stop();

9. Test your movie. You will see that the fluttering has stopped, and only the square shape (the first

frame of the box instance) is visible on the stage, even though the main timeline continues, which

means the box moves to the right and increases in size. This happened because you invoked the

MovieClip.stop() method on the box instance, which told that movie clip—as opposed to the

main timeline—to stop. Now let’s use the mouse to manage some events and make this even

more interactive.

10. Open the Actions panel, and click at the end of line 2 of the code. Press the Enter (Windows) or

Return (Mac) key, and add the following code block:

box.addEventListener(MouseEvent.CLICK, clickHandler);
box.addEventListener(MouseEvent.MOUSE_OVER, mouseOverHandler);
box.addEventListener(MouseEvent.MOUSE_OUT, mouseOutHandler);

box.buttonMode = true;

function clickHandler(evt:MouseEvent):void {
 trace("You just clicked me!");
}

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

231

function mouseOverHandler(evt:MouseEvent):void {
 box.gotoAndStop(2);
}

function mouseOutHandler(evt:MouseEvent):void {
 box.gotoAndStop(1);
}

That may seem like an awful lot of complicated code, but it really isn’t. We’ll go over it in a moment.

11. Test the movie. You’ll see that the cursor now controls the action. In fact, just place the cursor in

the path of the box moving across the stage and watch what happens.

If you get errors or the code doesn’t work, don’t worry. You can use the Event.fla file

we’ve provided in the Chapter 4 Complete folder. We’ll talk about checking for coding

mistakes a little later in the chapter.

In the code, you are essentially telling Flash to listen for a series of mouse events (the three addEvent
Listener() lines) and do something in response to them (the three blocks of code beginning with the

word function). The events happen, regardless. It’s your call when you want to handle an event. The first

three lines do just that. Let’s dissect the first line, which will illuminate the other two.

In plain English, the line first tells the box to listen up (box.addEventListener) and then says, “When the

mouse clicks (MouseEvent.CLICK) the object on the stage with the instance name box, perform the action

called clickHandler.”

It’s a lot like visiting the local fire station. Let’s assume you’re in a fire station for the first time. Suddenly,

there is a bell sound and the firefighters slide down a pole, jump into their suits, and pile onto the truck.

The truck, with the firefighters aboard, goes roaring out of the front door of the station. This is all new to

you, so you just stand there and watch. The firefighters, trained to react to the bell (addEventListener),

did something completely opposite from what you did. The difference is that the firefighters knew what to

do when the bell rang. You did not. The firefighters knew what to listen for—a bell and not the phone or an

ice cream truck driving past (either one of which could be considered an event)—and they knew what to do

when that event occurred (execute an event handler). What you are doing with this movie is telling Flash

how to behave when the bell rings (MouseEvent.CLICK), when the phone rings (MouseEvent.
MOUSE_OVER), or when the ice cream truck arrives (MouseEvent.MOUSE_OUT).

You might be curious why the function references—clickHandler, mouseOverHandler, and

mouseOutHandler—don’t end in parentheses in the first three lines. They’re functions, right? Functions

and methods are supposed to end in parentheses. Well, this is the exception. It’s the parentheses that kick

a function or method into gear, and you don’t want the functions to actually do anything quite yet. In those

three lines, you’re simply referencing them. You want them to act when the event occurs, and

addEventListener() does that for you. (Incidentally, the addEventListener() method does feature

parentheses in those lines precisely because that method is being asked to perform immediately: it’s being

asked to associate a function reference to a specific event.)

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

232

The fourth line essentially tells Flash to treat the box like a button:

box.buttonMode = true;

This means the user is given a visual clue—the cursor changes to the pointing finger shown in Figure

4-6—that the box on the stage can be clicked.

Figure 4-6. The mouseOverHandler function is what changes the box into the circle.

The remaining functions tell Flash to put some text in the Output panel if the box is clicked, to go to frame

2 of that movie clip (showing the circle) when the mouse moves over the box, and to go to frame 1 of that

movie clip (showing the square) when the mouse moves off it.

So, what about the parameters inside the event handler functions? What’s the :void for, and what’s

evt:MouseEvent? We’ll get into :void in the “Data types” section later in this chapter, but it basically

means these functions don’t return a value; they simply do something without reporting. In contrast, the

Math.round method, for example, does return a value; if you feed in 4.2 as a parameter, you get back 4.

The expression evt:MouseEvent represents the mouse event itself—literally, an instance of the

MouseEvent class—that gets fed to the event handler automatically. It isn’t being used in the functions as

shown, but it must be present or the compiler complains (you’ll see error messages if you leave the

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

233

parentheses blank). Using the mouse event is pretty easy. The MouseEvent entry of the ActionScript 3.0

Language and Components reference lists a number of properties for this class. One is called shiftKey,

which lets you know if the Shift key was pressed while the mouse event was dispatched. To see this in

action, revise the clickHandler function so that it looks like this:

function clickHandler(evt:MouseEvent):void {
 trace("You just clicked me!");
 if (evt.shiftKey == true) {
 trace("The Shift key was pressed while that happened.");
 }
}

As you can see, the MouseEvent instance is referenced by the arbitrarily named evt parameter. This

object features a number of properties, which can be accessed by referencing the object first (evt),

followed by a dot (.), and then naming the desired property (shiftKey). If the value is true—because the

user is holding down Shift while clicking—then a second trace statement is sent to the Output panel.

Test the movie again, and see for yourself. Pretty neat!

Coding fundamentals
Now that you understand the idea of objects and what can be done with them, let’s look at how to write

ActionScript code. We’ll begin with the most basic language rules.

Syntax

Just like English, ActionScript has a set of grammatical rules that governs its use. In English, for example,

sentences begin with a capital letter and end with a period, exclamation point, or question mark. Of course,

it gets much more complicated than that, but we assume you know most of the important stuff, even if you

don’t have an English degree. ActionScript’s grammar is called syntax, and it’s easier than you might think.

In fact, there are two major rules when working with ActionScript. The first rule of grammar is this:

capitalization matters.

Capitalization matters

ActionScript 3.0 is a case-sensitive language. If you want to know which frame a movie clip is currently on,

you must reference its MovieClip.currentFrame property, spelled just like that—not currentframe or

any other combination of uppercase and lowercase letters.

If the thought of memorizing arbitrary capitalization has you worried, have no fear. ActionScript follows a

manageably small set of conventions. As a general rule of thumb, just imagine a camel. Those humps will

remind you of something called camel case, a practice in which spaces are removed from a group of

words, and each letter that begins a new word (other than the first word) is capitalized. So “current frame”

becomes currentFrame, “track as menu” becomes trackAsMenu, and so on.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

234

Add to this the observation that class names begin with a capital letter. The class that defines text fields is

TextField, the class that defines movie clips is MovieClip, and the class that defines the stage display

state is StageDisplayState. Still camel case, but with an initial cap.

Constants are the exception to this rule, because they always appear in full uppercase, with underscores

where the spaces should be. For example, in the StageDisplayState class just mentioned, the constant

that refers to “full screen” is FULL_SCREEN, and the constant that refers to “normal” is NORMAL. You’ve

already seen a few constants in the “Events” section, such as MouseEvent.CLICK.

Semicolons mark the end of a line

As you’ve already seen, every line of ActionScript code terminates with a semicolon (;). Adding

semicolons is optional, but if you omit them, Flash will make the decision on your behalf as to when a

given statement has ended. It’s better to place them yourself.

Mind your keywords

Certain words belong to you, and certain words belong to ActionScript. The ones that aren’t yours are

called keywords or reserved words. You’ve run into some of these already. For example, function is a

keyword that means something to Flash (it declares a function); the term true is a Boolean value that tells

you whether something is true; the term this gives you a reference to the current scope. These words

aren’t part of the class structure that defines ActionScript’s objects, but they’re essential to the language,

so you can’t commandeer them for your own uses. For example, you can’t create a custom function

named new(), because new is used to create instances of a class (as in, var mc:MovieClip = new
MovieClip();). To find the full list, as shown in Figure 4-7, select Help ➤ Flash Help. When the Help

menu opens, click Learning ActionScript 3.0, and click the Syntax link.

What, only three rules of syntax? Truthfully, no. But these three rules will help you ward off some of the

most common beginner errors. Offshoots of the syntax concept are discussed in the following sections.

Additionally, the Actions panel provides help in the form of code coloring. Correctly typed ActionScript

keywords are displayed in color, as opposed to plain old black and white, which is reserved for words and

so on that aren’t in Flash’s dictionary. In fact, different categories of ActionScript are colored in different

ways. You may configure these colors as you please, or turn them off completely, under the ActionScript

user preferences (select Edit (Flash) ➤ Preferences ➤ ActionScript or the Preferences

choice under the Actions panel’s context menu).

You also might have noticed the Check Syntax button of the Actions panel’s toolbar. We’ll talk about

that after we cover some other coding essentials.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

235

Figure 4-7. The documentation spells out all of ActionScript’s keywords and reserved words.

Commenting code

Now that you are aware of the major grammar rules, you should also be aware of a coding best practice:

commenting.

In the previous exercise, we asked you to enter a lot of code. We are willing to bet that when you first

looked at it on the page, your first reactions was, “What the hell does this stuff do?” A major use of

commenting is to answer that question. Flash developers heavily comment their code in order to let others

know what the code does and to make it easy to find all of the functions in the code.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

236

A single-line comment always starts with a double back slash (//), which tells the Flash compiler to ignore

everything that follows in the same line. If we had added comments to the earlier code, you might not have

wondered what was going on. For example, doesn’t this make your life easier?

// Tell the box what events to listen for and what to do and
// when an event is detected

box.addEventListener(MouseEvent.CLICK, clickHandler);
box.addEventListener(MouseEvent.MOUSE_OVER, mouseOverHandler);
box.addEventListener(MouseEvent.MOUSE_OUT, mouseOutHandler);

// Treat the box as though it were a button to let user know it is live

box.buttonMode = true;

// Put a message in the Output panel when the object is clicked

function clickHandler(evt:Object):void {
trace("You just clicked me!"”);
}

// Go to frame two and show the ball movie clip
// when the mouse is over the box

function mouseOverHandler(evt:Object):void {
box.gotoAndStop(2);
}

// Go to frame one and show the box
// when the mouse is outside of the object

function mouseOutHandler(evt:Object):void {
box.gotoAndStop(1);
}

You can even put the two slashes at the end of line, if you like:

someObject.someProperty = 400; // These words will be ignored by Flash

You may also use a comment to temporarily “undo” or “hold back” a line of ActionScript. For example, you

might want to experiment with a variety of possible values for a property. Single-line comments make it

easy to switch back and forth. Just copy and paste your test values, commenting each one, and remove

the slashes for the desired value of the moment.

//someObject.someProperty = 400;
someObject.someProperty = 800;
//someObject.someProperty = 1600;

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

237

You can comment whole blocks of ActionScript by using a block comment. Rather than two slashes,

sandwich the desired code or personal notes between the special combination of /* and */ characters.

Regardless of how you do them, comments are easy to spot in code: they are gray.

/*someObject.someProperty = 400;
someObject.someProperty = 800;
someObject.someProperty = 1600;*/

Dot notation

Objects can be placed inside other objects, just like those Russian stacking dolls, matryoshki. Actually,

that analogy gives the impression that each object can hold only one other object, which isn’t true. A better

comparison might be folders on your hard drive, any of which might hold countless files and even other

folders. On Windows and Macintosh systems, folders are usually distinguished from one another by

slashes. In ActionScript, object hierarchies are distinguished by dots. As you have already seen, class

members can be referenced by a parent object followed by a dot, followed by the desired member.

Nested movie clips can be referenced in the same way, because, after all, movie clips are just objects. All

you need is a movie clip with an instance name.

Junk food is a great example of this concept. Imagine a nested set of movie clips in the main timeline that,

combined, represent the Hostess Twinkie in Figure 4-8. The outermost movie clip is made to look like the

plastic wrapper. Inside that is another movie clip that looks like the yellow pastry. Finally, the innermost

movie clip represents the creamy filling.

Figure 4-8. Real-world dot notation

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

238

If each movie clip is given an instance name that describes what it looks like, the innermost clip would be

accessed like this from a keyframe of the main timeline:

plasticWrapper.yellowCookie.creamyFilling

Note the camel case. Because creamyFilling is a MovieClip instance, it contains all the functionality

defined by the MovieClip class. If the innermost movie clip—creamyFilling—has a number of frames in

its own timeline and you want to send the playhead to frame 5, you would simply reference the whole path,

include another dot, and then reference a relevant MovieClip method, like this:

plasticWrapper.yellowCookie.creamyFilling.gotoAndPlay(5);

This linked series of objects is known as a path. The extent of a path depends on the “point of view”

(scope) of the ActionScript that refers to it. In Flash, this point of view depends on where the ActionScript

itself is written. In this case, it’s written inside a keyframe of the main timeline, and you’re aiming for the

innermost object; therefore, the full path is required. If ActionScript is written inside a keyframe of the

innermost movie clip’s timeline—then the this keyword would suffice. The creamyFilling instance

would simply be referring to itself:

this.gotoAndPlay();

It wouldn’t make sense to mention yellowCookie or plasticWrapper in this case unless you needed

something in those movie clips. From the point of view of creamyFilling, you could reference

yellowCookie via the Movieclip.parent property, like this:

this.parent;

But bear in mind, it’s usually best to keep your point of view in the main timeline. Why? Well, when all of

your code is on one place—in the same layer or even in the same frame—it’s much easier to find six

months from now, when you have to frantically update your movie.

The most important thing to realize is that you’re the one in control of what you build. If it’s easier for you to

drop a quick MovieClip.stop method into some keyframe of a deeply nested movie clip—as opposed to

“drilling down” to it with a lengthy dot-notated path—then do that. Just keep in mind that paths are

fundamentally important, because they serve as the connection between objects.

If you want to actually see how movie clips are nested using dot notation, open twinkie.fla. We have

constructed the image on the stage as a series of movie clips from the Library. This is the code in the

scripts layer:

trace(plasticWrapper.yellowCookie.creamyFilling);

This essentially asks, “What is the object at the end of the path?” If you test the movie, the Output panel

will tell you the object is a MovieClip.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

239

If you consult the MovieClip class entry in the ActionScript 3.0 Language and

Components Reference, you’ll find the built-in class members that ship with Flash.

Obviously, it won’t list whatever instance names you might assign on your own. This

example works because the MovieClip class is a dynamic class, which means you can

add members to it right in timeline code. Not all classes are dynamic; in fact, most are not.

Scope

Movie clips aren’t the only objects that can be nested. And just as plasticWrapper, yellowPastry, and

creamyFilling in the previous example each has its own point of view, so do all objects. These points of

view can be thought of as special compartments that manage the availability of variables, class members,

and other information to the code currently being executed.

If you trace x, for example, from the scope of creamyFilling—that is, if you put code inside a keyframe

of the creamyFilling timeline that says trace(x);—you’ll get the horizontal position of that movie clip in

relation to its parent, yellowPastry. You won’t get the position of any other movie clip, and that makes

sense. creamyFilling‘s scope reports its own x value when asked because that scope looks into its own

private world first. When it sees that it has such a property, it says so. If creamyFilling didn’t have an x

value, its scope would look “up the chain” to yellowPastry and try to find an x value there. This tells you

that outer scopes are visible to inner scopes, but it doesn’t go the other way around.

Here’s a quick hands-on example:

1. Create a new Flash document, and rename Layer 1 to scripts.

2. In frame 1, open the Actions panel, and type the following ActionScript:

var loneliestNumber:int = 1;
trace(loneliestNumber);

3. Test the movie. You’ll see 1 in the Output panel. You’ve created a numeric variable named

loneliestNumber, set it to 1, and traced its value. Close the SWF.

4. Beneath the existing ActionScript, add the following new code:

function quickTest():void {
 trace(loneliestNumber);
}
quickTest();

5. Test the movie again. You’ll see 1 in the Output panel twice: once from the original trace and

once from the trace inside the custom quickTest() function. Close the SWF.

The idea is a bit harder to grasp, but try to wrap your head around the notion that quickTest() is an

instance of the Function class. Remember that everything is an object! Just like creamyFilling is a

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

240

MovieClip instance nested inside yellowPastry, this is a Function instance nested inside the main

timeline. Because quickTest() doesn’t have its own loneliestNumber value, it looks outside its own

scope to find that value in the scope of its parent.

6. Replace the existing ActionScript altogether with this variation:

trace(loneliestNumber);

function quickTest():void {
 var loneliestNumber:int = 1;
 trace(loneliestNumber);
}
quickTest();

7. Test this movie one last time. You’ll see an error in the Compiler Errors panel: 1120:

Access of undefined property loneliestNumber. Close the SWF.

This time, the variable is declared inside the function. The function’s scope can see it, but the main

timeline’s no longer can. Why? Outer scopes can’t look in; the process moves only from inside out. You

got an error because, when the main timeline looks into its own private world, it doesn’t see anything

named loneliestNumber. There’s nothing above it that has that value either, so it gives up.

You’ve seen that scope has the potential to trip you up with variables. Now let’s dig deeper into variables.

Variables

Variables are often described as buckets. It’s not a bad analogy. Like buckets, variables are containers

that temporarily hold things. Like buckets, variables come in specific shapes and sizes, and these

configurations determine what sorts of things, and how many of them, a given variable can hold. In fact,

variables are practically the same as properties.

A great way of understanding the concept of a variable is to consider a trip to the supermarket. You pay for

a bunch of tomatoes, a can of soup, a box of Twinkies, a head of lettuce, and a package of paper towels.

The clerk puts them in a bag, you pay for them, pick up the bag, and walk out of the store. If someone

were to ask you what you carrying, the answer would be “groceries.” The word describes all of the objects

you have purchased, but it doesn’t describe any item in particular, and the contents of your bag certainly

might change. The word groceries is a suitable placeholder.

Essentially, variables are properties that aren’t associated with a particular class, which means you can

create a variable in any timeline and access it from that timeline without needing to refer to an object first.

The formal term for creating a variable is declaring a variable. This is done with the var keyword, like this:

var theGreatStoneFace:String = "Buster Keaton";

or this:

var groceries:Array = new Array("tomatoes", "soup", "Twinkies", "lettuce",
"toweling");

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

241

From that point forward, the variable theGreatStoneFace is a stand-in, or placeholder, for the phrase

“Buster Keaton,” referring to the deadpan comedian of early silent films. If you type

trace(theGreatStoneFace); after the variable declaration, you’ll see Buster Keaton in the Output

panel. The variable groceries is a placeholder for an instance of the Array class, which lets you store

lists of things.

To summarize, the var keyword dictates, “All right folks, time for a variable.” theGreatStoneFace and

groceries are arbitrary names provided by you, used to set and retrieve the contents of the variable. The

:String or :Array part is interesting. Although not strictly necessary, its presence declares the variable

as efficiently as possible, as explained in the next section. Just because we said the class declaration is

not “strictly necessary,” not using it is not suggested or recommended—by using it you are letting Flash

know exactly what you mean, and in return Flash can help you by giving you more accurate code hinting in

the Actions panel and better error reporting in the Output panel when something goes wrong. Finally,

the equality operator (=) sets the value of the variable. In the first example, its value is set to a string,

delimited by quotation marks. In the second, the variable value is an array, with its elements in quotation

marks, separated by commas, and enclosed in parentheses.

One of the authors, in order to get his students to understand variable naming, tells them

they can use any name they want, and then he creates a variable named

scumSuckingPig. A few years back, Macromedia asked for a video tape of one of his

lessons, and not even thinking while the camera was rolling, he wrote “scumSuckingPig”

on the white board, pointed to it, and asked the class, “What is this?” Thirty voices

answered, “a variable.” To this day, those Macromedia people who saw the tape never

forget to mention this to him.

You pick the names for your variables, but remember the third grammar rule: you can’t name your own

variable after an existing keyword in ActionScript. That makes sense—how is Flash supposed to know the

difference between a variable named trace and the trace() function? As noted earlier, search the

phrase keywords and reserved words in the documentation, and you’ll find the full list. Also, your variable

names can contain only letters, numbers, dollar signs ($), and underscores (_). If you decide to use

numbers, you can’t use a number as the first character.

Data types

Arguably, data types are just another way to describe classes. When used with variable declarations,

however, they provide a useful service. Specifying a variable’s data type not only helps you avoid code

errors but, in ActionScript 3.0, can also reduce memory usage, which is always a good thing. Many of the

people who have been test-driving ActionScript 3.0 have discovered that this also is a factor in the speed

of playback in Flash Player 9 and 10. Adobe is not shy about claiming speed boosts of an order of

magnitude, and we aren’t disputing that claim.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

242

Thanks to the way Flash Player 10 is built, strongly typed variables in ActionScript 3.0 can reduce memory

usage because they allow variables to be only as big as they need to be. When it creates a variable,

what’s actually going on is that Flash Player asks the computer to set aside a certain amount of memory

(RAM) to hold whatever information needs to be stored in the variable. Some data types require more

memory than others, and when ActionScript knows what type you intend to use, it requests the minimum

amount necessary.

Another important result of using data types is that you avoid coding errors. The more Flash knows about

your intentions, the better it’s able to hold you accountable for them. If a variable is supposed to hold a

number and you accidentally set it to a bit of text, Flash will let you know about it. Mistakes like that

happen more often than you might think, and to be honest, it will happen to you. Let’s make a mistake and

see how Flash reacts.

1. Create a new Flash ActionScript 3.0 document, and save it as DatatypeError.fla. Rename

Layer 1 to text field.

Use the Text tool to draw a text field somewhere on the stage. Select the text field, and use the

Properties panel to set its type to Input Text (as shown in Figure 4-9). Give it the instance

name input.

Figure 4-9. Setting the text field to Input Text

2. Create a new layer and name it scripts. Select frame 1, and open the Actions panel. Type

the following ActionScript into the Script pane:

var num:Number = 0;
num = input.text;

Another way of writing the first line would be as follows:

var num:Number = new Number(0);

The keyword new is normally used when creating new instances of complex data types, such a Sound

object or a NetStream used to play a video. Less complex data types, including simple stuff like numbers

and strings, really don’t require the new keyword for them to be instantiated.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

243

3. Test the SWF and keep your eye on the Compiler Errors tab in the Properties panel

group. You’ll see a helpful error warning that lets you know the num variable, a Number data

type, doesn’t like the idea of being fed a String data type, which is what the TextField.text

property provides (see Figure 4-10).

Figure 4-10. Trying to call Apples as numbers results in an error, thanks to data typing.

You can double-click the error in the Compiler Errors tab, and it will take you to the

exact line in the Actions panel that contains the error.

4. For extra credit, use the Number() function to convert the String to a Number on the fly. This is

known as casting.

var num:Number = 0;
num = Number(input.text);

Besides indicating the sort of variable something is, data typing can also specify the return value of

functions and methods. If a function returns a string, for example, it can (and should) be typed like this:

function showMeTheMoney():String {
 return "$$$";
}
trace(showMeTheMoney());

Many functions don’t return anything, which means they get to use :void.

function manipulateAMovieclipSomewhere():void {
 // movie clip manipulation code here
 // notice the function doesn’t return anything
}
manipulateAMovieclipSomewhere();

For further detail on available data types, search the topic Data type descriptions in the Programming

ActionScript 3.0 book of the Help panel.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

244

Operators

“Hello, operator? Connect me with Grand Central, will ya?” Actually, that’s not the sort of operator we’re

talking about here. Whether you are a casual ActionScript programmer making things move from here to

there or a hard-core coder, you will use operators—they can’t be avoided.

In ActionScript, operators are special characters—usually punctuation but sometimes words—that

evaluate or change the value of an expression. Some of those most commonly used look and act just like

mathematical symbols. For example, the addition operator, +, adds numbers together; the subtraction

operator, -, subtracts them. The multiplication and division operators, * and /, multiply and divide

numbers, respectively. These are appropriately called arithmetic operators. Let’s use our old friend

trace to see these in action.

Type the following ActionScript into a keyframe, and test your movie to see the results of these simple

math problems:

trace(5 + 5);
trace(7 - 2);
trace(5 * 5);
trace(7 / 2);

The Output panel shows 10, 5, 25, and 3.5, as you would expect. The thing about operators is they

deal with complexity in a very different manner than they deal with simplicity. For example, consider this:

trace(5 + 5 / 2 * 3 - 1);

Now, what number would that expression produce? If you answered 14, you are wrong. The answer is

11.5, and it is vitally important to your sanity that you understand how Flash arrives at this answer. The

result depends on something called operator precedence. Generally speaking, expressions are

evaluated from left to right. However, certain calculations take priority over others. This is the concept of

precedence. The rule is simple: multiplication and division take priority over addition and subtraction. A

good way to remember this is to think of how multiplication and division problems quickly reach higher (or

lower) numbers than addition and subtraction do. Let’s slowly walk through that calculation to help you

grasp the precedence concept.

In the preceding expression, various pairings are considered in the order in which they appear, and

operator precedence determines which pairings are evaluated in which order. For example, the first pairing

is 5 + 5, and, sliding over one “slot,” the next pairing is 5 / 2. Between those first two pairings, the

division operation wins. Under the hood, the division is done before the addition, and the “new” expression

reads as follows:

5 + 2.5* 3 - 1

Now the process starts again. The first two pairings at this point are 5 + 2.5 and 2.5 * 3. Of those,

which one wins? Multiplication. The process continues, with the “newest” expression now reading as

follows:

5 + 7.5 - 1

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

245

Here, the pairings have been simplified to 5 + 7.5 and 7.5 - 1. Neither trumps the other in this case, so

the 5 is added to 7.5, making 12.5; and 12.5 has 1 removed, which leaves 11.5.

5 + 7.5 - 1
12.5 - 1
11.5

As you can see, precedence can get pretty complex. Thankfully, there happens to be a way to override the

natural precedence of operators. Unless you aim to specialize in operators (and there’s nothing wrong with

that), we recommend that you use parentheses to group expressions. For example, 3 + 5 * 4 is 23,

because 5 * 4 takes priority and evaluates to 20, and then 3 plus 20 is 23. However, 3 + 5) * 4 is 32,

because (3 + 5) now takes priority and evaluates to 8, and then 8 times 4 is 32.

Here’s another way of wrapping your mind around precedence. It’s one of those tricks

you learn in high school, and the good ones stick. Although the word doesn’t mean

anything on its own, the acronym PEDMAS (Please Excuse My Dear Aunt Sally) is easy

to remember. It spells out the order of operations:

P: Parentheses

E: Exponents

D: Division

M: Multiplication (D and M in the order they appear)

A: Addition

S: Subtraction (A and S in the order they appear)

Thanks to Adam Thomas for the tip!

The addition operator also works for text, in which case it does what’s called concatenation, which is a

fancy word for joining things. For example, the concatenation of the strings "Twin" and "kie" is the

complete word Twinkie, as illustrated here:

trace("Twin" + "kie");
// Outputs the value Twinkie, which is a string

Numbers concatenated with text become text, so be careful of your data types!

trace(5 + 5); // Outputs the value 10, which is a number
trace(5 + "5"); // Outputs the value 55, which is a string

Even though the 55 in the output generated by that second line looks like a number, it’s actually stored by

Flash as a string of two characters that, by coincidence, happen to be numerals.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

246

Another operator you’ll see frequently is the assignment operator (=), which we’ve already used several

times in this chapter. The assignment operator assigns a value to a variable or property. It is an active

thing because it changes the value. In the following lines, the value of the looseChange variable is

updated repeatedly:

var looseChange:Number = 5;
looseChange = 15;
looseChange = 99;

Here, it happens with a string:

var author:String = "Carlos";
author = "Tom";
author = "Tiago";

In plain English, the assignment operator could be described as “equals,” as in “looseChange now equals

99” (hey, that’s almost a dollar!) or “author now equals Tom Clancy.”

Contrast this with the equality operator (==), which is used for checking the value of a variable. Don’t

confuse the two! When you see something like this:

if (looseChange = 67) {
 // buy a Twinkie
}

you’re actually changing the value of that variable, looseChange, to 67. When you want to see if it equals

67, use this:

if (looseChange == 67)

If you want to check for any number but 67, use the inequality operator (!=, think of it as “not equal to”),

like this:

if (looseChange != 67) {
 // buy something else
}

These are examples of a group called comparison operators (as well as conditional statements, which

are discussed in the next section). These particular comparison operators are narrow, though. The equality

operator seeks a very specify value, not a range. The inequality operator seeks a very specific value too,

just from the opposite angle.

What if you don’t know the exact value you’re looking for? As often as not, you’ll find yourself in a position

to make decisions on whole sets of numbers. Think of it in terms of those restriction signs at the theme

park: “You must be at least 42 inches tall to ride this roller coaster.” They’re not looking for people exactly

3.5 feet tall; they’re looking for people greater than or equal to that number. ActionScript offers quite a few

ways to compare values in this manner, including the following:

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

247

 < (less than)

 > (greater than)

 <= (less than or equal to)

 >= (greater than or equal to)

In the next section, you’ll see some of these in action. But be aware there are plenty more operators than

we’ve touched on here. To see the full list, search the term Operators in the documentation.

Conditional statements

One of the cornerstones of programming is the ability to have your code make decisions. Think about it.

You make decisions every day. For example, if you want to visit the authors of this book, you have a

decision to make: do I go to Canada to visit Tom, to Switzerland to visit Tiago, or do I go to England to visit

Ben?

ActionScript provides a handful of ways to make this determination, and the most basic is the if

statement. An if statement is structured like this:

if (condition is true) {
 do something
}

Thus, in ActionScript terms, the decision to visit an author might look somewhat like this (remember, ==

checks for equality):

if (visitBen == true) {
 bookflightToEngland();
}

The condition between the parentheses can be relatively simple, like this:

if (fruit == "apple")

This might mean something like “if the fruit is an apple” (hand it over to Snow White). On the other hand, it

might be a little more complex, such as the following:

if (beverage == "coffee" && dairy == "milk" || dairy == "cream")

This may seem to mean “if the beverage is coffee and the dairy is either milk or cream” but actually means

something quite different. In the preceding expression, two new operators, && and ||, represent “and” and

“or,” respectively. Because of the way precedence works, the expression hinges on the ||. We’re checking

whether the beverage is coffee and the dairy is milk (both must be true) or simply if the dairy is cream. As

stated, the full expression doesn’t actually care what the beverage is (if there even is a beverage).

Contrast that with this:

if (beverage == "coffee" && (dairy == "milk" || dairy == "cream"))

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

248

In the revision, the nested parentheses group the || elements together, and the full expression now

requires that beverage not only be present but be coffee and that dairy be present and be either milk or

cream.

As you may have guessed by now, the only decision an if statement ever makes is whether something is

true or false. Let’s just jump in and take a look at this concept.

In the following example, you’re going to make a draggable star that dims when it’s moved too close to the

moon. The determination will be made by an if statement. Here’s how:

1. Start a new Flash document. Change the name of Layer 1 to sky stuff.

2. Select the Polystar tool—it’s under the same button as the Rectangle and Oval tools—to

draw a polygon or star.

3. Before you draw the shape, click the Options button in the Properties panel to open the

Tool Settings dialog box. In the Style drop-down, list select star, as shown in Figure 4-11.

Then set the Stroke to None and click OK.

Figure 4-11. Click the Options button in the Properties panel to draw a star.

4. Click and drag to create the star shape. Convert this shape into a movie clip, and give it the

instance name star. Position it on the left side of the stage.

5. Use the Oval tool to draw a circle with no stroke and filled with the solid color or gradient of your

choice. Convert it into a movie clip named Circle and, in the Properties panel, give it the

instance name moon. Position it on the right side of the stage.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

249

6. Create a new layer, and name it scripts. Select frame 1 of the scripts layer, open the

Actions panel, and type the following ActionScript:

star.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownHandler);
star.addEventListener(MouseEvent.MOUSE_UP, mouseUpHandler);

star.buttonMode = true;

function mouseDownHandler(evt:Object):void {
 star.startDrag();
 star.addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveHandler);
}

function mouseUpHandler(evt:Object):void {
 star.stopDrag();
 star.removeEventListener(MouseEvent.MOUSE_MOVE, mouseMoveHandler);
}

function mouseMoveHandler(evt:Object):void {
 if (star.x > moon.x) {
 star.alpha = 0.4;
 } else {
 star.alpha = 1;
 }
}

7. Test your movie. When the SWF opens, drag the star, and see it turn semitransparent when you

drag it to the right of the moon, as shown in Figure 4-12.

Figure 4-12. An opaque star turns semi-transparent when dragged to the other side of the moon.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

250

We’ve used what may look like a lot of code, but there really isn’t a whole lot that’s new. Just as you saw

earlier in the “Events” section, you’re calling the star instance by name and assigning a couple event

listeners: one for when the mouse is down (the user presses the mouse button) and one for when the

mouse is up (the user releases the mouse button). Once again, the buttonMode property supplies the

visual clue that star is clickable.

The function that handles the MouseEvent.MOUSE_DOWN event does an interesting thing. First, it invokes

the MovieClip.startDrag method on the star instance. This causes the movie clip to follow the mouse.

(If you poke around the documentation, you’ll find that the startDrag method is inherited from the Sprite

class. This inheritance business happens all over the place.) Second, it adds a new event listener to the

star instance—this time for an event that occurs while the mouse is moving. Just like the other event

handlers, this one has its own function, and that’s where the if statement appears. The event handler

assigned to MouseEvent.MOUSE_UP stops the dragging and tells star to stop listening for the

MouseEvent.MOUSE_MOVE event. So, pressing down starts the dragging, and letting go stops it. That’s

pretty straightforward.

The third event handler is where the decision making occurs. An if statement evaluates the expression

star.x > moon.x by asking whether star’s horizontal position is greater than moon’s horizontal position.

The answer, as you know, can only be true or false. This question is asked every time you move the

mouse inside the SWF. When the star instance moves beyond the right side of the moon instance, as

determined by the registration point of each movie clip, the comparison expression evaluates to true. In

this case, the MovieClip.alpha property (or transparency) of the star instance is set to 0.4 (40 percent),

which makes it partially see-through.

Now, try one more thing with your open SWF file. While the SWF is open, drag the star back to the left

side of the moon. It’s still semitransparent! With the current if statement, the opacity of star is reduced

the first time its path crosses that of moon, but once dimmed, it will never go back. Depending on your

goals, that might suit you just fine, but if you want the star to repeatedly change between both

transparencies, you need to add an else clause to your if statement. An else clause essentially says,

“Do this other thing if the condition is not met.”

8. Close the SWF and update your mouseMoveHandler() function to look like this:

function mouseMoveHandler(evt:MouseEvent):void {
 if (star.x > moon.x) {
 star.alpha = 0.4;
 } else {
 star.alpha = 1;
 }
}

Now, when the expression inside the if statement evaluates to false—that is, when star’s x property is

no longer greater than moon’s x property—star’s alpha property is set back to 1 (100 percent).

In cases where you want to test several conditions in a row, you may want to consider a switch

statement. From a practical standpoint, switch and if do the same thing, so it’s really up to you which

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

251

you use. Compare the two to settle on which looks cleaner or more compact to you. Here’s an example

that demonstrates the use of both (note that else and if can be combined in the same line):

var favoriteColor:String = "deep purple";
if (favoriteColor == "red") {`
 // do something reddish
} else if (favoriteColor == "blue") {
 // do something blueish
} else if (favoriteColor == "green") {
 // do something greenish
} else {
 // do something else, because no one guessed
}

var favoriteColor:String = "deep purple";
switch(favoriteColor) {
 case "red":
 // do something reddish
 break;
 case "blue":
 // do something blueish
 break;
 case "green":
 // do something greenish
 break;
 default:
 // do something else, because no one guessed
}

What are all those break statements? In the context of switch statements, break tells ActionScript to

ignore the rest of the list as soon as it matches one of the case values.

Class files and the document class

With all this talk of objects and classes, you may be wondering if it’s possible to create classes of your

own. The answer is yes and is squarely in the realm of “advanced ActionScript not covered in this book.”

Still, be aware that ActionScript allows you to come up with completely new objects of your own design.

In Flash, classes are stored in external text files and imported as needed during the compile process.

There are many benefits to writing code in this way, not the least of which is that classes allow you to

separate your visual design from your programming design. An experienced programmer might, for

example, program a game in a series of classes—a SpaceShip class, a LaserBeam class, and so on—

which would allow new laser beam objects to be created as needed, regardless of which library assets

might be used to visually portray those lasers. Artwork could be given to a designer and later “married”

with the code with relative ease, because external class files aren’t spread among dozens of keyframes.

It is, in fact, entirely possible to produce a heavily coded SWF without any ActionScript touching the FLA at

all. This is accomplished via something called the document class.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

252

Click somewhere on the stage or work area to put the Properties panel into stage mode. You’ll see a

Class field in the Publish area of the Properties panel, as shown in Figure 4-13. This field allows

you to associate a class file with the Flash document. Technically, it’s how you can redefine the main

timeline, making it more than just a movie clip (or configuring it to be a Sprite and then optionally making

it more than just a sprite).

New to Flash CS5 is the Edit button in the ActionScript Settings area. Click

this, and you will be taken to the Advanced ActionScript 3.0 Settings panel,

which was commonly found in the Flash area of the Publish Settings dialog box.

You can also open this panel by selecting File ➤ ActionScript Settings.

Figure 4-13. Document class files are accessed through the Publish area of the Properties panel.

Think of a document class as the main script that creates all the other ActionScript objects necessary to do

the developer’s bidding. Prior to Flash CS3, and even in Flash CS4 in anything other than ActionScript 3.0,

this sort of association wasn’t possible. Developers could get close, by typing a line or two of ActionScript

into frame 1 and importing the main class there, but ActionScript 3.0’s document class concept allows a

fully programmed FLA file to be code-free in the FLA itself.

On migrating to ActionScript 3.0: the pain and the joy

Kristin Henry is president and lead developer at GalaxyGoo (www.galaxygoo.org), a nonprofit

organization dedicated to increasing science literacy. She specializes in developing educational

applications and interactive visualizations of scientific data using Flash. She has also contributed to Flash

books and has presented at both industry and academic conferences including Flashforward and the

Gordon Research Conference on Visualization in Science and Education. To the authors of this book, it

www.zshareall.com

http://www.galaxygoo.org
http://www.zshareall.com

ACTIONSCRIPT BASICS

253

was a no-brainer to ask such an accomplished developer for an “in the trenches” glimpse at what it’s like to

migrate from ActionScript 2.0 to 3.0. We’re grateful to Kristin for sharing a few of her impressions. Here is

what she had to say:

“Learning AS3, after years of working with Flash, was both exciting and frustrating for me. At first, I was

going back and forth between the versions. That didn’t work well for me. So I jumped in with both feet and

started coding everything in AS3. Once I’d gone through deep immersion in the new language, it was

easier for me to go back and forth to earlier versions when needed.

“The syntax is very similar to previous versions of ActionScript, but subtle differences took some getting

used to. For a while, my fingers twitched into habitually typing an underscore for properties like this._x.

In AS3, most of these properties have lost the underscore and are now this.x.

“In my projects, I use XML to format external data all the time. The way AS3 handles XML is fantastic! It’s

so much simpler to work with, and it’s wonderful for searching and moving through an XML structure.

[Note: This is covered in Chapter 13 of this book.]

“One of my favorite things about AS3 is the display list concept. Instead of attaching a movie clip to the

stage and then building up its content, you can now prepare your movie clip first, build up any content and

computational graphics, assign property values, and then add it to the display list, by way of the

addChild() method, when you’re ready. [Note: This is true not only of movie clips, but also of any class

that extends the DisplayObjectContainer class, including dynamic text fields. You can see an example

in Chapter 6.]

“I’m a bit of a foodie, and to me this is a lot like preparing mise en place before firing up the pots and pans.

Get everything ready first; then add it. It can be much more elegant and clean to code in that style. After

coding with AS3 for a while now, I’m not sure how I got by without it for so long.”

Syntax checking

In Flash 8, and even earlier, the Check Syntax button of the Actions panel’s toolbar was a little more

reliable than it is today. Even in Flash CS5, if you set the document’s publish settings to ActionScript 2.0

(File ➤ Publish Settings ➤ Flash), you can get a taste of the “good old days.” But ActionScript 3.0

documents represent a new era, where all is not as it seems, and the Actions panel hasn’t entirely

caught up yet. Here’s a look at what we mean:

1. Create a new Flash File (ActionScript 2.0) document—that’s right, 2.0; we’re going retro—and

save it as AS2Syntax.fla in the Exercise folder for this chapter. Rename Layer 1 to

scripts.

2. Open the Actions panel, and type the following ActionScript into frame 1:

var str:String = 5;

Can you spot the error?

3. Click the Check Syntax button at the top of the Script pane. Boom! Flash fires up the

Compiler Errors panel, shown in Figure 4-14, which tells you about a ”type mismatch” error:

Flash was looking for a string value in that str variable, but you gave it a number instead.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

254

Figure 4-14. In ActionScript 2.0 documents, the Check Syntax button helpfully provides even the most

basic syntax checking.

4. Click OK, and then save and close the document.

5. Create a new Flash File (ActionScript 3.0) document—yes, this time 3.0—and save it as

AS3Syntax.fla in the Exercise folder for this chapter. You’re about to perform the same

experiment, so rename Layer 1 to scripts.

6. Open the Actions panel, and type the following identical ActionScript into frame 1:

var str:String = 5;

Syntax doesn’t necessarily carry over so easily from one version of the language to

another, but in this case, the variable declaration in question is indeed the same in both

ActionScript 2.0 and 3.0.

7. Click the Check Syntax button. Nothing happens. Obviously the code is wrong. How do you

find out?

8. As you saw in the “Data types” section, Flash does check syntax during a compile, but you must

go as far as creating the SWF before you see the error. To prove it here, select Control ➤ Test

Movie. Keep an eye on the Compiler Errors panel. Sure enough, you get the expected “type

mismatch” error (see Figure 4-15). It’s worded a bit differently, but the gist is the same.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

255

Figure 4-15. Thankfully, syntax is checked when a movie is tested.

The trouble with testing a movie in order to “proof” your syntax becomes clear as soon as your movie

takes on any complexity. There will be times you simply want to “check your bearings” in place, without

having to go to the trouble of generating a SWF file. Does this mean the Check Syntax button is useless

in ActionScript 3.0 documents? Well, the word useless might be a little harsh. To be fair, the Check

Syntax button does report on certain kinds of errors; it’s just that you won’t find them nearly as often.

You have two documents handy, so let’s tag-team between them and look at a few more examples. We

recommend you keep both AS2Syntax.fla and AS3Syntax.fla open and flip back and forth as you test

the following code.

9. Delete the existing code in your ActionScript 3.0 document, and type the following into the

Actions panel in frame 1:

var d:Date = new Date();
d.setMillennium(3);

As you do, you’ll see some code hinting when you get to line 2. Thanks to the strongly typed variable d in

line 1 (the strong typing is provided by the :Date suffix), Flash knows that d is an instance of the Date

class. As a courtesy, the Actions panel gives you a context-sensitive drop-down menu as soon as you

type the dot after the variable. The drop-down menu suggests Date class members (see Figure 4-16).

10. Type s, and the drop-down menu jumps to class members that start with that letter, such as

setDate(), setFullYear(), and so on.

11. Type as far as setM, and you’ll see setMilliseconds(). At this point, you’re going to be a

rebel. Rather than go with any of the suggestions, type setMillennium(3); to complete line 2

of the code shown previously. As you can see from the drop-down menu, the Date class features

no such method. Does Check Syntax agree?

12. Click the Check Syntax button to find out. The ActionScript 3.0 document will beep at you. That

sound is a bit of a shady poker face because that beep means is, “This script contains no errors.”

Shucks, we know better than that ourselves!

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

256

Figure 4-16. Using strongly typed variables gives you useful code hinting.

In this version of Flash, Flash CS5, Adobe has in its “wisdom” removed the alert box that

used to tell you things were fine. In our humble opinion, replacing an alert box with a

beep is a huge usability error. When a button named Check Syntax is clicked, it

should not beep at you. It should actually tell you, “This script contains no errors.”

13. Repeat the same steps in the ActionScript 2.0 document. Once you’ve replaced the existing code

with the two-line Date-related ActionScript—complete with the made-up setMillennium()

method—click the Check Syntax button. Here, the alert sends you to the Compiler Errors

panel, which slams you with the hard truth: There is no method with the name

‘setMillennium’. Hey, even if the truth hurts, it’s good to know.

14. Return one last time to the ActionScript 3.0 document. Delete the last two characters in your code

so that it looks like this:

var d:Date = new Date();
d.setMillennium(2000

15. Click the Check Syntax button. Are you holding your breath? Go ahead and exhale. Ahhh, the

Compiler Errors panel fires up and gives you a message, which reads as, 1084: Syntax

error: expecting rightparen before end of program. Sure, it sounds a little stilted.

You can imagine it intoned by the colossal WOPR computer from the 1980s nerd classic

WarGames, just before it asks Professor Falken about a nice game of chess. But it’s an error

message, and that’s a good thing. Click OK to close the alert box.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

257

16. For good measure, make a final visit to the ActionScript 2.0 document, and remove the closing);

characters there, too. Click the Check Syntax button. What do you get? You get an alert box

that tells you to check out the error message in the Compiler Errors panel: ‘)’ or ‘,’

expected. It’s more or less the same message, just stated more succinctly. Honestly, the

ActionScript 3.0 version is a bit more helpful. Click OK to close the alert box.

What can you learn from this? In ActionScript 3.0 documents, the Actions panel’s Check Syntax

button reports on gross structural problems. If you have a missing parenthesis or bracket, such as in this

expression:

if ((2 + 2) == 4) {
 trace("Yes, 2 + 2 is 4.");
} else
 trace("Oddly, it isn't.");
}

you’ll be warned about it. In the preceding code, the else clause is missing a curly bracket ({) to its right.

This sort of error reporting, even if it’s all you get, is a positive asset. In the words of our mothers, “Be

thankful for what you have.” To that, we add this: if you need a bit of something to lean on in your

programming, use the resources at hand. They include the ActionScript 3.0 Language and Components

Reference and code hinting, at the very least.

Even the Script Assist feature of the Actions panel, which will step you through code writing line by

line, only catches the sort of errors found by the Check Syntax button in ActionScript 3.0 documents. So,

tuck your feet, pretzel-like, beneath you, and then up again over your legs. This is the lotus position. It

encourages breathing and good posture and is said to facilitate meditation. Don’t lose heart! The very best

syntax checker is sitting closer than you think—it’s right there between your shoulders.

How to read the ActionScript 3.0 Language and
Components Reference

Have you ever had to give a presentation in front of a room full of people? If you’re not used to that, it can

be pretty nerve-wracking. In spite of hours of preparation, people have been known to draw a complete

blank. The authors have seen many newcomers to Flash react in the same way to the Help panel,

especially when faced with the ActionScript 3.0 Language and Components Reference. You may have

been following along just fine in this chapter—nodding your head, because things seem to make sense—

but then, when you find yourself sitting in front of an empty Flash document...gosh, where to begin?

The Help panel isn’t especially larger than the other panels you’ve seen, but it contains immeasurably

more information. You may be feeling a sense of the old “dictionary catch-22”—how are you supposed to

look up a word to find out how it’s spelled...if you don’t know how it’s spelled?

Let’s get you past Help panel stage fright.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

258

Getting help

There are several places where you can access the Help files. If you are working in the Flash interface,

select Help ➤ Flash Help. If you have the Actions panel open and want to quickly jump to code-

specific documentation, select Help from the panel’s upper-right menu (see Figure 4-17), or click the

Help button in the Actions panel toolbar. If you really need help in a hurry, press the F1 key or use the

search field in the upper-right corner of the authoring environment (see Figure 4-18).

Figure 4-17. Access help through the Action panel’s context menu.

If you want quick help regarding a specific term in the code, highlight that term in the

Actions panel’s Script pane—in other words, select a keyword in your actual

code—and then press the F1 key, click the Actions panel’s Help button, or select

Help from the panel’s menu. Flash automatically detects which version of ActionScript

you’re using and opens the documentation to the keyword you highlighted. Be aware

that if you go this route, results can sometimes go astray. For example, the TextField

class and the Label class (a component) both feature an htmlText property. In one

particular test, one of the authors highlighted the htmlText property of a TextField

instance and pressed F1. The documentation jumped to the Label.htmlText entry.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

259

Figure 4-18. A search field in the upper-right corner gives you quick access to documentation.

Search tactics

Browsing the ActionScript 3.0 Language and Components Reference is a good thing. We heartily

encourage the practice. Flip open a section, even at random, and dig in; there’s always plenty to learn,

even for the expert. That said, busy schedules often mean that spare moments come at a premium.

Flash’s search field can be a speedy assistant when your manager is breathing down your neck.

Your number-one strategy at all times is to reduce the number of places you need to look. If a book filter is

available, use it to filter the books in which you’re interested. If you’re not looking for ActionScript-related

information, select a choice that doesn’t include ActionScript in the title. If you’re tracking down

programming information, select ActionScript 3.0. If a product filter is available, make sure to filter

results for Flash only, as opposed to Flash and Flex Builder. This prevents Flash from looking at books

you don’t need, which means you won’t need to wade through unnecessary search results, including

results that might steer you down a very wrong path. In fact, the best path is to stay put and select Local

as your search location. This way you don’t get “carpet bombed” with results from the Internet. For

example, remember that if your movie’s publish settings are configured for ActionScript 3.0, you can’t put

code from any other version of ActionScript into the mix.

For the last several versions of Flash, advanced developers have had access to

something called the Flash JavaScript API, also known as JSFL. This special language

is different from ActionScript altogether, because it allows the Flash interface itself to be

manipulated programmatically. For example, you can automate repetitive tasks with

JSFL or even build new drawing tools from scratch. But this language can be used only

with the authoring environment and Flash documents, not SWF files. The last thing you

want to do is search and discover some exciting “new feature” in JSFL and spend hours

trying to figure out why it doesn’t work in your movie.

Take the time to learn two important descriptive ActionScript terms. Write them on a sticky note, if you like,

and keep it taped to your monitor. Why? Because a number of ActionScript keywords match common

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

260

English words used in everyday language. You won’t get anywhere searching the word if, for example,

because although if is an important ActionScript statement, it’s also used all over the place in help

documents that have nothing do with programming. If you want to see the entry on if, if..else, and the

like, look up the sort of ActionScript an if statement is: a conditional. Here’s that helpful two-item cheat

sheet:

 Conditionals, which include if, if..else, switch, and so on

 Operators, which include <, >, +, -, and tons more practically impossible to find otherwise

Perhaps the biggest tip we can give you is this: think in terms of objects. Sounds familiar, right? We hit that

topic pretty hard early in the chapter, so why is it coming up again here? Well, remember that objects are

defined by classes, and the class entry gives you all the owner’s manuals you’ll need. If you’re dealing with

a movie clip instance, think to yourself, “Which class would define this object?” Nine times out of ten, the

answer is a class of the same name. Search MovieClip or MovieClip class, and you’re ushered pretty

quickly to the MovieClip class entry.

A class entry will show you the properties, methods, and events relevant to any instance of that class. No

more hunting and pecking! If you’re dealing with a text field and stumble across a question, search

TextField. If you’re having trouble with audio, look up the Sound class. If your problem involves any of the

user interface components—such as CheckBox, ColorPicker, or ComboBox—look up the class for that

component. The only common object whose class name doesn’t match the item it represents is the class

that defines button symbols. In ActionScript 3.0, button symbols are instances of the SimpleButton class.

(There’s always an exception, right?)

Once you get to a class entry, use the hyperlinks in the upper-right corner to quickly jump to the class

member category you need. Remember that properties are an object’s characteristics, methods are things

the object can do, and events are things it can react to. When you get to the desired category, make sure

to show the inherited members in that category.

Edgar Allen Poe once mentioned something about a “dream within a dream.” It was actually a pretty

tormented poem about not being able to hold onto life or perhaps time. Fortunately for you, it’s not so bad

with Flash. The documentation is in a self-contained AIR application.

Using ActionScript
You are going to be using ActionScript throughout the rest of the book. Ideally, if you have made it to this

point of the chapter, you should feel pretty confident about facing it. In fact, once you have coded a few

projects, you will actually be able to read code. Once you arrive at that point, you are on your way to

mastering the application.

Flash has come a long way from its vector animation roots and has improved significantly with ActionScript

3.0. It’s a more powerful language than ever. The really neat thing about ActionScript is it is relatively

accessible for navigational programming of the sort used in presentations, banner ads, and other

interactive projects you may undertake.

Here’s a recap of our recommendations:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

261

 Get into the habit of creating a Scripts or Actions layer in the main timeline and movie clip

timelines, if you choose to add code to nested symbols. When everything has its place, it’s easier

to find, which means it’s easier to update.

 Take a pragmatic approach. Hard-core programmers may insist that you put all your code in a

single frame, or better, in external files. In complex situations, that may be the best way to go.

When you’re ready to undertake complex coding and the circumstances require it, go for it. In the

meantime, don’t lose any sleep over doing this the old-fashioned way in Flash, which amounts to

little snippets of code among many keyframes. Remember, nobody cares how it was done. They

only care that it works.

 Strongly type your variables.

 Use comments to leave footnotes through your code. Even if you are the only one working on

your files, you’ll appreciate your efforts later, when the client asks for a change. Comments help

you get your bearings quickly.

 Use the trace function to help yourself see where you are in a published SWF.

ActionScript has matured to the point where there are a lot of people making a very

good living from writing ActionScript code. If code isn’t your thing, learn it anyway. The

odds are almost 100 percent that you will eventually work with an ActionScript

programmer, and being able to speak the language will make your design efforts even

smoother.

With the advice out of the way, let’s look at two practical uses for ActionScript by applying it to two very

popular requests on the Adobe support forums.

Your turn: pause and loop with ActionScript
People often want to know how to pause the main timeline for a certain amount of time before moving on,

and they often want to know how to loop a movie a certain number of times before stopping at the end.

Let’s wire them up.

Pausing a timeline

Here’s an example of how a small bit of ActionScript can really make your life easier. Let’s say you’re

building a presentation in which numerous photos advance from one to the next. You have 20 of these on

the main timeline and have added visual interest by tweening the symbols’ alpha property to make each

photo fade in and out. Your instructions are these: after an image fades in, make it hold for 5 seconds

before moving on. Assuming your movie frame rate is the default 24 fps, you’ll need 120 frames for each

hold. Considering the 20 photos, that’s a lot of frames! And what are you going to do when the boss says,

“Ehh, you know what? Change the pause to 10 seconds”? That’s a lot of manual keyframe wrangling. As

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

262

soon as you redo those tweens, just watch...your boss will come back with, “Sorry, make it 3 seconds.”

(We guarantee something like this will happen to you in a real-life office setting. Really, it will.)

The key to a quick solution is understanding Flash’s wristwatch. If you have an analog wristwatch, the

minutes are marked around the dial, and the second hand ticks around the face. Flash doesn’t have a

second hand; it has a millisecond hand. And the watch face is not divided into minutes or seconds; it

sports 1,000 little division marks. This gives you quite a bit of control, which is a good thing.

You’ve already seen how Flash can pay attention to mouse-related events. You’ve seen event handlers for

mouse clicks, rollovers, and the like. Now, you’re going to see an event handler for a timer-related event.

In this exercise, you are simply going to tell Flash, “When you hit this point on the timeline, hang around for

5 seconds (actually, 5,000 milliseconds) before moving on.”

1. Open the PauseTimeline.fla file. If you scrub the playhead across the timeline, images in each

layer fade in and fade out.

2. Click frame 1 of the scripts layer, and open the Actions panel. Enter the following code into

the Script pane:

var timelinePause:Timer = new Timer(5000, 1);
timelinePause.addEventListener(TimerEvent.TIMER, timerHandler);

Did you notice something interesting when you entered that first line of code? Your code

got shifted down to line 3 and a line of code—import flash.utils.Timer;—

“magically” appeared in line 1. All this line says is, When this project flames up, import

the Timer class. This automatic class import feature for “internal” and “external” class

files is new to Flash CS5.

This is new stuff, but the gist should start to look familiar. In the first line, you’re declaring a variable, -
timelinePause, which points to an instance of the Timer class. Think of timer objects as triggers. They

nudge other functions into action at a given (and adjustable) interval. The constructor for the Timer

class—that is, the mechanism that actually creates the object, new Timer()—accepts two parameters.

The first tells timelinePause how long its interval is. In other words, it tells timelinePause to consider

itself a 5,000-millisecond timer. The second parameter tells the timer to trigger its associated function once

and then quit. If you define the second parameter as 0, the timer will trigger its function on an endless loop,

once every interval. If you define the second parameter as 3 (or 10, or 300), the timer will trigger its

function that many times and then quit.

In this case, the associated function is determined in line 4, thanks to addEventListener(). You’ve seen

this method before. Here, it instructs timelinePause to listen for a TimerEvent.TIMER event, and then

perform the timerHandler function when it encounters that event. You haven’t written timerHandler yet,

but you will in just a few milliseconds.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

263

In ActionScript 3.0, nearly every object you’ll use can be created with a constructor (new
SomeClassName()), but a few objects can alternatively be created with the drawing

tools, such as movie clips, buttons, and text fields. When such objects are created by

hand, ActionScript has no reference to them, which explains the need for instance

names. Instance names are nearly interchangeable with the variables, in that both give

you a reference to a class instance.

3. Add the following new ActionScript after the existing code:

function timerHandler(evt:TimerEvent):void {
timelinePause.removeEventListener(TimerEvent.TIMER, timerHandler);
 play();
}

This function is written like any other event handler you’ve seen in this chapter. In this case, the function

simply invokes the MovieClip.play method on the timeline in which this code appears. As mentioned

earlier in the chapter, you could precede the play method with the this keyword (this.play), but even

in its absence, Flash understands that you’re referring to the main timeline. The scope of this function tells

Flash to look in the current object (the main timeline) and see whether it has a play method—and it does.

Obviously, this is the part that restarts the timeline after it’s been halted. To complete the equation, you’ll

need to hit the proverbial pause button a few times.

4. In the scripts layer, add keyframes to frames 5, 14, and 23. These are the frames in which

each symbol’s alpha property is fully opaque (the image is fully visible). Type the following

ActionScript into each of those keyframes (see Figure 4-19):

stop();
timelinePause.start();

Here’s the breakdown. When you test this movie, the playhead begins in frame 1. When it encounters the

ActionScript there, it takes note of its instructions, sets up a timer named timelinePause, and commits a

timerHandler function to memory. Then it notices a graphic symbol with an alpha set to 0 and renders

that. Since nothing tells the playhead to stop, it continues to frame 2, and so on. Until it hits frame 5, the

playhead doesn’t see anything new, code-wise, so it continues updating the alpha of the symbol in each

frame.

In frame 5, it sees the MovieClip.stop method. “Sure thing,” says Flash, and stops the main timeline. It

also sees timelinePause.start, which tells Flash to invoke the Timer.start method on the

timelinePause instance declared in frame 1. Five seconds later, the timer dispatches its event, which is

handled by the timerHandler function, and the playhead restarts. It doesn’t matter that the timer and the

event handler were declared in frame 1: they’re still available afterward to any frame of this timeline.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

264

Figure 4-19. Pausing the Flash timeline

5. Test your movie to verify that each image pauses for 5 seconds. After frame 28, the timeline

naturally loops and the process repeats.

Has the boss told you yet to change the timer interval? You have two ways to do it. Either revise the 5000

parameter in frame 1 to some other number—10 seconds would be 10000, 2.5 seconds would be 2500—

or set the Timer.delay property of the timelinePause instance in later frames. The first approach

updates the interval across the board. The latter approach lets you tweak each frame’s pause individually.

For example, to make frame 5 pause for 5 seconds, leave it as is. To make frame 14 pause for only 1

second and then frame 23 pause for 5 seconds again, change the code in frame 14 to this:

stop();
timelinePause.delay = 1000;
timelinePause.start();

and change the code in frame 23 to this:

stop();
timelinePause.delay = 5000;
timelinePause.start();

Any way you slice it, using ActionScript has considerably reduced the horizontal expanse of your timeline,

and timing changes are easy to make.

pwww.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

265

Looping the Timeline

We’ve all seen banner ads that play two or three times and then stop. As you witnessed in the previous

section, timelines loop on their own without any help. The trouble is that they do it forever. It’s easy enough

to add a quick stop method to the very last frame of the scripts layer. That would keep the timeline

from looping at all. But what if you want to control the looping?

To loop a timeline three times (a popular number for banner ads, but it could be any number), declare a

counting variable in frame 1 (call it loop if you like), and initialize it to 0. Then increment that value in the

last frame, and use an if statement to decide when to quit. Here’s how:

1. Open the LoopTimeline.fla. File in your Exercise folder.

2. Select frame 1 of the scripts layer, and open the Actions panel. You’ll see the Timer code

already in place. Add the following new variable declaration after the existing ActionScript:

var loop:int = 0;

This just introduces a variable, loop, whose data type is int (integer) and whose value is currently 0.

3. In the actions layer, add a keyframe at frame 28. Select that frame, and enter the following new

code. Then save and test the movie.

loop++;
if (loop < 3) {
 gotoAndPlay(2);
} else {
 stop();
}

In the first line, the loop variable is incremented by one. That’s what the increment operator (++) does. If

you prefer, you can swap the expression loop�� with its longhand equivalent—long = long + 1—but

that’s the nice thing about operators: ActionScript has tons of them, and they make light work of your

efforts.

Next is an if statement that checks if the value of loop is less than 3. Naturally, this is true during the first

pass (you declared loop as 0 in step 3). It was just incremented, so at this point, its value is �, but that’s

still less than 3. Therefore, Flash sends the playhead back to frame 2, where it plays through the tweened

animation (complete with scripted pauses) until it hits frame 28 again.

Why go back to frame 2 instead of 1? Frame 1 declares the value of loop as 0, so if the playhead enters

frame 1 again, you negate the increment gained at frame 28. Going back to frame 2 leaves the value of

loop as is. On the playhead’s second visit to frame 28, the value of loop increments again. Now its value

is 2. That’s still less than 3, so it loops for a third pass. This time, when it increments, its value climbs to 3.

At that point, the if statement’s condition no longer evaluates as true (3 is not less than 3), which means

the else clause tells the playhead to stop.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

266

Using movie clips to control the timeline

Movie clips, as you know, can be thought of as Flash movies with timelines independent of the main

timeline. The interesting aspect of this concept is you can use actions in a movie clip to kick off actions

outside of their timeline on the main timeline or another movie clip‘s timeline. Here’s how:

1. Open the carRace.fla file in your Chapter 4 Exercise folder. When the file opens, you will see

a truck on the stage. If you scrub across the timeline a car on the right side of the stage replaces

the truck on the left side of the stage.

2. Test the movie. The truck moves from left to right, and then the car takes over and moves, from

right to left, across the stage. If you close the SWF and look at the main timeline, there is nothing

to indicate the motion of either vehicle. In fact, open the code in frame 1 of the actions layer, and

you will see a stop(); action, which essentially stops the playhead of the main time dead in its

tracks. So, where does the motion come from?

3. Open the car1 movie clip in the Library. The motion tween between frames 1 and 35 solves

the mystery of the moving truck but offers no clue as to how that car roars across the stage.

4. Open the code in frame 35 of the actions layer. When it opens you will see:

MovieClip(root).gotoAndStop(10);

This line says when the truck hits the last frame of the animation in this movie clip, go to frame 10 of the

main timeline—root—and stay put. So, where does the car come into the picture?

5. Click the Scene 1 link to return to the main timeline. The car is sitting in frame 10. If you test the

movie, the truck roars across the stage and then the car, thanks to the code in the previous step,

keeps moving across the stage. Let’s loop this animation and have the truck roar across the

screen.

6. Open the car2 movie clip, select the last frame in the actions layer, and open the Actions

panel.

7. Click once in the Script pane, and enter the following code:

MovieClip(root).gotoAndStop(1);

8. Test the movie. The animation now loops. The truck zooms across the stage, and the car zooms

across the stage in the opposite direction.

Using Code Snippets

New to Flash CS5 is a rather cool panel named Code Snippets. Code snippets are pieces of code you

save and reuse on a regular basis. Code snippets have been a feature of Dreamweaver for years, and

there were a lot of Flash developers who have wondered why this was never introduced to Flash. The wait

is over. Here’s how use a snippet and add one to the panel and delete one that you no longer need:

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

267

1. Open the Snippet.fla file in your Chapter 4 Exercise folder. You will see one of the images

from the Pause and Loop exercise is on the stage.

In that exercise, you essentially had to reenter the same code:

stop();
timelinePause.start();

three times in three different frames on the timeline. That’s a lot of typing. The Code Snippets

panel allows you to save code for subsequent reuse. In this case, we want the image on the

stage to fade in, and when it is clicked, the playhead advances to the next frame. On the surface,

especially if you are new to ActionScript, this could be a daunting challenge. Code snippets to the

rescue.

2. Click the Images layer to select it, and open the Code Snippets panel either by clicking the

Code Snippets button, as shown in Figure 4-20, in the panel strip on the right side of the

interface or by selecting Window ➤ Code Snippets to open the panel.

Figure 4-20. The Code Snippets panel

When the panel opens, it is not terribly difficult to figure out what snippets are available and the purpose of

the buttons in the upper-right corner. The button on the far right, Add to current frame, is how a

snippet is added to the timeline, and the one beside it copies the snippet to the clipboard and allows you to

paste the code into the Script pane, if this is what you need to do.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

268

In this case, you need to do a couple of things:

 Stop the timeline

 Fade the image in

 Allow the user to click the image and go to the next frame in the movie

To accomplish this, follow these steps:

3. Select the image on the stage (it is the Cambridge movie clip in the Library and has the instance

name boston). Then open the Code Snippets panel, and twirl down the Timeline

Navigation folder. You will see a list of code snippets.

4. Click the Stop at this Frame snippet to select it, and click the Add to current frame button.

When you click the button, an Actions layer will be added to the timeline, the code will appear in

frame 1 of the Actions layer, and the Actions panel will open, as shown in Figure 4-21.

Figure 4-21. A code snippet is added to the movie.

If you don’t select the object to which the snippet will be attached, you will be prompted

to make the selection before applying the snippet. This does not apply the code directly

to the selection—not a best practice or good coding habit—but to the instance of the

selected object on the stage within the Actions panel.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

269

5. With the image selected, open the Code Snippets panel, and twirl down the Animation

folder. Select the Fade In a Movie Clip snippet, and click the Add to current frame

button. If you check out the code, you will see that an alpha fade has been applied to the boston

instance.

6. With the image still selected, twirl down the Timeline navigation folder, and apply the Click

to Go to Next Frame and Stop snippet.

7. Test the movie. The image will fade in, and when you click it, the playhead is sent to the next

frame of the movie and stops dead thanks to the snippet that sent it there.

Now that you have discovered how to use code snippets, you need to know that

developing a reliance on them is not exactly going to help you learn how to use

ActionScript. In fact, those who develop Flash movies using a blank stage and nothing

but code are not exactly thrilled with this feature because it does not foster “best coding

practices.” We agree. Use code snippets as a way of learning how ActionScript works,

not as the way to code a movie.

Adding a snippet into the Code Snippets panel

Though we have said a reliance on snippets in the last Focus Point is not exactly a best practice, within

the world of coders, “snippets” are a fact of life. These are blocks of code that developers realize they can

reuse, or need, and instead of entering them into the Actions panel, they save them to the Snippets

panel for reuse. Here’s how:

1. Open the AddSnippet.fla file found in your Chapter 4 Exercise folder. If you test the file, you

will see it does nothing more than add 60 randomly placed balls on the stage.

2. Select the first frame of the Actions layer, and open the Actions panel. Select all of the code

in the Script pane.

3. Open the Code Snippets panel, click the Options button, and select Create New Code

Snippet from the drop-down menu. This will open the Create New Code Snippet dialog box

shown in Figure 4-22.

4. Enter Random Balls into the Title area, and in the Tooltip area enter Creates a

series of random balls on the stage.

5. Click the Auto-fill button where it says Use code selected in Actions Panel? The

code will appear in the Code area. Click OK to accept the snippet and close the dialog box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

270

Figure 4-22. A code snippet is created.

6. Open the Code Snippets panel, and you will see that a folder named Custom, as shown in

Figure 4-23, has been created; your snippet is in the folder.

7. Delete the selected code in the Script pane, and close the Actions panel.

Figure 4-23. An imported snippet has been added to the panel.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

271

8. Select the new snippet, add the snippet to the timeline, and test the movie. A series of randomly

placed balls, as shown in Figure 4-24, will appear in the SWF.

Figure 4-24. The new snippet plays in the SWF.

What if you no longer need the snippet? Here’s how to remove it:

1. Open the Code Snippets panel, and select the snippet you just created.

2. Click the Options button, and select Delete Code Snippet from the menu.

3. A dialog box will open, asking whether you really want to do this. Click OK, and the snippet is gone.

Code completion for custom classes

As we pointed out at the start of this chapter, “think of a class as a sort of blueprint or recipe for a given

object.” Also, in the section on class files, we briefly mentioned how these documents are stored as .as

documents outside of the Flash file. In this final exercise, we are going to give you the opportunity to try

one and discover a new feature of Flash CS5: code hints for custom classes.

As ActionScript has matured over the past few years, a rather robust industry has sprung up. It is the

creation and distribution of custom class files that perform a variety of tasks not bundled into Flash’s own

set of class files. In this exercise, you are going to be using using a custom class than handles tweens—

TweenMax—from Greensock Software. To start, you need to point your browser to www.greensock.com/
tweenmax/ and download the AS3 version of the file. When the download finishes, follow these steps:

www.zshareall.com

http://www.greensock.com
http://www.zshareall.com

CHAPTER 4

272

1. Uncompress the greensock-as3.zip file.

2. Open the uncompressed file, and copy the com folder to the TweenMax folder in your Chapter 4

Exercise folder. The com folder contains all the necessary files to use this class and must be

kept, intact, in this folder. As well, don’t change the name of the folder from com to another name.

3. Open a new Flash ActionScript 3.0 document, and save it as CodeHint.fla to your TweenMax

folder.

4. Rename Layer 1 as Actions, select the first frame, and open the Actions panel.

5. Click in the Script pane, and enter the following:

import flash.display.Sprite;
import com.greensock.TweenMax;
import com.greensock.easing.*;

You start by importing the necessary classes. The first line imports the Sprite class from Flash because

you are going to be creating a movie clip without a timeline, which is a good way of thinking about a sprite.

The next line loads tells Flash to load the TweenMax.as file in the com folder. This file is the class file. The

final line tells Flash to bring in all the properties, events, and methods of the TweenMax easing class.

Without getting overly technical, think of the easing folder as a package. The wildcard character (*) is how

all of the .as files in the easing folder/package are loaded into the Flash Player when you run the SWF

either on your hard drive or on a website.

That first line of code is actually optional. It will get added when you enter the next block

of code and create a Sprite object. This automatic adding of the classes to the Script

pane is new to Flash CS5.

6. Press the Enter (Windows) or Return (Mac) key twice, and enter the following code:

var numItems:int = 60;

for(var i:int = 0; i < numItems; ++i)
{
var ball:Sprite = new Sprite();
ball.graphics.beginFill(0xff0000, Math.random() * 1);
ball.graphics.drawCircle(Math.floor(Math.random() * 400), Math.floor(
Math.random()
 * 400) , Math.floor(Math.random()* 32));
ball.graphics.endFill();
addChild(ball);
ball.name = "ball" + i;
}

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

273

In this exercise, you are going to create 60 balls of various sizes, color them red, put them on the stage,

and then put them in motion. The only thing this code block doesn’t do is put them in motion. TweenMax

will manage that task.

The first line sets a limit to the number of balls that can be created. If you want more balls or fewer balls,

feel free to change the number. The for loop tells Flash that ball creation starts at 0 and says to keep an

eye on the number of balls being created and when it hits 60—++1—to stop creating them. To this point,

all we have done is answer Flash’s first question: “How many balls do you want me to make?”

The rest of the code block answers the next logical question Flash will ask: “What do these balls you want

look like?” Your answer would be somewhat like this:

“First off, Flash, I know you don’t have a clue what a ball is so the first thing I need you to create is a

Sprite named ball.

“This thing named ball will actually be a graphic filled with the color red—0xff0000—and the alpha value

will be a random number between 0 and 1 that I’ll let you pick and assign as a percentage of the red color.

Got that?

“This graphic thing named ball will be a circle that you will draw—drawCircle. This circle is to be

randomly placed anywhere on the stage as a percentage of 400 pixels on the x-axis and 400 pixels on the

y-axis. As well, I want to you change up the sizes of the ball in a random manner as long as they aren’t

more than 32 pixels in diameter. You want to write this down?

“When you figure out what the balls look like and where they will be placed, you can stop creating them.

“I know that’s a lot to remember, so use the addChild method to put them on the stage so I can see them.

“There are a lot of balls on the stage, and your trusty assistant TweenMax needs to know their names.

Please go ahead and name them by putting the word ball and the ball’s number—i—together.” Before

we put them in motion, here’s a little background regarding what you are about to do and what you will be

asked to look for.

Prior to this release of Flash CS5, if you were a developer needing to use an external class file from a third

party, you had a bit of an issue. Though Flash would gleefully use them, you had to spend an hour or so

pawing through the documents, as shown in Figure 4-25, and learning how the properties, methods, and

events for this custom class were used. Even then, the odds were pretty good that you would make a

mistake, and another trip back to the documentation was called for. This wasn’t a case of developers being

unable to grasp what the class did; it was simply trying to remember what went where and how it was

spelled. This resulted in developers watching how Flash displayed the code hints in its own classes and

wondering, “Wouldn’t this be neat for non-Flash classes?” The wait is over.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

274

Figure 4-25. The classes in the TweenMax easing package

7. Press the Enter (Windows) or Return (Mac) key twice, and enter the following code:

animateBalls();

function animateBalls():void {

Did you notice something when you pressed the Enter (Windows) or Return (Mac) key after typing that

curly brace? Flash skipped a line and entered the closing brace on the next line on your behalf. Just like

the automatic class entry, this feature is new to Flash CS5 and is a gift to you if you are new to coding in

Flash. Apart from spelling errors the next, most common ActionScript mistake you will make is forgetting to

close off brackets.

8. Press the Enter (Windows) or Return (Mac) key, and enter the following code into the Script

pane:

var randNum:Number = Math.floor(Math.random() * numItems);

The first thing you need to do is to create a variable that assigns each ball created a random number.

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

275

9. Press the Enter (Windows) or Return (Mac) key twice, and enter the following line:

var tweenmax:TweenMax = new TweenMax(getChildByName("ball" + randNum), 2,

{ scaleX:2, scaleY:2, onComplete:animateBalls });
}

If you are new to Flash, you may have missed the importance of what happened when you entered the

class name, TweenMax. If you are a longtime developer, you are probably smiling and thinking, “At last!”

The code hint shown in Figure 4-26 actually contains the TweenMax class.

Figure 4-26. Custom classes now appear in the code hints.

What will really put a smile on your face is what happened next. When you entered the first bracket after

starting the new TweenMax object, a small code hint, as shown in Figure 4-27, appeared. What this code

hint does is show you the parameters that need to go between the brackets. Again, this is completely new

to Flash CS5 and a welcome addition.

Figure 4-27. You are now shown the methods, properties, and events used by custom classes.

10. Save and test the movie. When the SWF opens, as shown in Figure 4-28, you will see the balls

on the stage are randomly placed and, thanks to the alpha value, have differing shades of red.

Also, the balls are put into motion courtesy of TweenMax.

www.zshareall.com

http://www.zshareall.com

CHAPTER 4

276

Figure 4-28. Watch the circles move around thanks to TweenMax.

What you’ve learned
In this chapter, you learned the following:

 The basics of ActionScript

 The anatomy of the Actions panel

 Why objects are so important and what a class is

 The roles of properties, methods, and events

 Why instance names are needed to reference objects on the stage

 Some syntax rules of thumb

 How to comment your code

 How dot notation and scope help you locate objects

 How to strongly type your variables

www.zshareall.com

http://www.zshareall.com

ACTIONSCRIPT BASICS

277

 How precedence affects operators

 How to use conditional statements

 How to check syntax

 Tips on using the ActionScript 3.0 Language and Components Reference

A lot of ground has been covered in this chapter. We hope that you are eager to start learning how to use

ActionScript in your everyday workflow.

In fact, every chapter from here on out will use it, so feel free to keep returning here to refresh your

knowledge. Also, we recommend that you continue to learn about ActionScript in other reference books.

As noted at the beginning of the chapter, two helpful books are Foundation ActionScript 3.0 with Flash and

Flex and Object-Oriented ActionScript 3.0 (both published by friends of ED).

In Chapter 1, we told you we would get you deep into using audio in Flash. With the basics of ActionScript

under your wing, let’s see what we can do with audio in Flash and how ActionScript and audio make an

ideal pairing.

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

279

Chapter 5

Audio in Flash CS5

If you’re one of those who treat audio in Flash as an afterthought, think again. In many respects, audio is a

major medium for communicating your message. In this chapter, we dig into audio in Flash: where it

comes from, what formats are used, and how to use it in Flash. Regardless of whether you are new to

Flash or an old hand, you are about to discover the rules regarding audio in Flash have changed—for the

better.

We’ll cover the following in this chapter:

 Audio file formats used in Flash

 Adding and previewing audio in Flash

 Playing audio from the Library

 Playing remote audio files

 Using ActionScript 3.0 to control audio

If you haven’t done so already, download the chapter files. You can find them at www.friendsofED.com/
download.html?isbn=1430229940.

www.zshareall.com

http://www.friendsofED.com
http://www.zshareall.com

CHAPTER 5

280

The following are the files used in this chapter:

 PreachersAndThieves.aif (Chapter05/Exercise Files_CH05/Exercise/
PreachersAndThieves.aif)

 Bang.fla (Chapter05/Exercise Files_CH05/Exercise/Bang.fla)

 FrogLoop.fla (Chapter05/Exercise Files_CH05/Exercise/FrogLoop.fla)

 FrogPan.fla (Chapter05/Exercise Files_CH05/Exercise/FrogPan.fla)

 ButtonSound.fla (Chapter05/Exercise Files_CH05/Exercise/ButtonSound.fla)

 kaboom.mp3 (Chapter05/ExerciseFiles_CH_05/Exercise/kaboom.mp3

 CodeButtonSound.fla (Chapter05/Exercise Files_CH05/Exercise/
CodeButtonSound.fla)

 On Borrowed Time.mp3 (Chapter05/Exercise Files_CH05/Exercise/On Borrowed
Time.mp3)

 RemoteSound.fla (Chapter05/Exercise Files_CH05/Exercise/RemoteSound.fla)

 RemoteSound2.fla (Chapter05/Exercise Files_CH05/Exercise/RemoteSound2.fla)

 RemoteSound3.fla (Chapter05/Exercise Files_CH05/Exercise/RemoteSound.fla)

 Pukaskwa.jpg (Chapter05/Exercise Files_CH05/Exercise/Pukaskwa.jpg)

 Rain.flv (Chapter05/Exercise Files_CH05/Exercise/Rain.flv)

 RainStorm.mp3 (Chapter05/Exercise Files_CH05/Exercise/RainStorm.mp3)

 AudioVisualization.fla (Chapter05/Exercise Files_CH05/Exercise/CodeSnippets/
AudioVisualization.fla)

Flash and the audio formats
When it comes to sound, Flash is a robust application in that it can handle many of the major audio

formats, including the more common formats listed here:

 MP3 (Moving Pictures Expert Group Level-2 Layer-3 Audio): This cross-platform format is a

standard for web and portable audio files. In many respects, the growth of this format is tied to the

popularity of iPods and audio players on cell phones. Though you can output these files in a

stereo format, you really should pay more attention to bandwidth settings for your MP3s.

 WAV: If you use a computer to record a voice-over or other sound, you are familiar with the WAV

format. WAV files have sample rates ranging from 8 kilohertz (the quality of your home phone) up

to 48 kilohertz (DAT tapes) and beyond. These files are also available with bit depths ranging

from 8 bits right up to 32 bits. Just keep in mind that a file with a sample rate of 48 kilohertz and a

32 bit depth will result in a massive file size that simply shouldn’t be used with Flash.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

281

 QuickTime: These files have a .qt or .mov extension and can contain audio in many formats. If

you create a QuickTime audio file, you need to make the movie self-contained in QuickTime Pro.

 AIFF (Audio Interchange File Format): AIFF is the standard for the Macintosh and offers the

same sample rates and bit depths as a WAV file. Many purists will argue that the AIFF format is

better than the WAV format. This may indeed be true, but to the average person, the difference

between this format and WAV is almost inaudible.

 AAC (Advanced Audio Coding): AAC is the new “audio kid on the block” when it comes to

working with audio in Flash. It is another lossy codec but is regarded as being far superior to its

MP3 cousin. In fact, AAC was developed as the successor to the MP3 standard. Though you may

not be familiar with the format, if you have ever downloaded a song from iTunes, used the Sony

PlayStation, the Nintendo Wii, or even an iPhone, you have “heard” an AAC-encoded audio file.

 ASND (Adobe Sound Document): In very simple terms, an ASND file is a stereo audio file that

you can use in Premiere Pro CS5, After Effects CS5, or Flash CS5. The format was introduced in

Soundbooth CS4 as a way of easily moving audio between Premiere Pro, After Effects, and Flash

while at the same time saving audio edits in a nondestructive manner. For example, you can

launch Soundbooth CS5 from the ASND file in the Flash CS5 Library and not only make

changes to the stereo audio but get an entire “multitrack environment” as well as the ability to

save multiple versions of your audio edits and move between them. You can even reference

video/animation exports from Flash.

Take this obscure fact to a trivia contest, and you will clean up: AIFF also has a sample

rate of 22,254.54KHz. Why the odd sample rate? This was the original Macintosh

sample rate and was based on the horizontal scan rate of the monitor in a 128KB Mac.

Bit depth and sample rates

We traditionally visualize sound as a sine wave—when the wave rises above the vertical, the sound gets

“higher”; where it runs below the vertical, the sound gets “lower.” These waves, shown in Figure 5-1, are

called the waveform. The horizontal line is silence, and the audio is “measured” from the top of one “blip”

to the top of the next one along the waveform. These blips are called peaks, and the sampling is done

from peak to peak.

For any sound to be digitized, like a color image in Fireworks or Photoshop, the wave needs to be

sampled. A sample is nothing more than a snapshot of a waveform between peaks at any given time. This

snapshot is a digital number representing where, on the waveform, this snapshot was taken. How often the

waveform is sampled is called the sample rate.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

282

Figure 5-1. A typical waveform from Soundbooth CS5

Bit depth is the resolution of the sample. A bit depth of 8 bits means that the snapshot is represented as a

number ranging from –128 to 127. A bit depth of 16 bits means that the number is between –32,768 to

32,767. If you do the math, you see that an 8-bit snapshot has 256 potential samples between each peak,

whereas its 16-bit counterpart has just over 65,000 potential samples between the peaks. The greater the

number of potential samples of a wave, the more accurate the sound. The downside to this, of course, is

the more samples on the wave, the larger the file size. These numbers represent where each sample is

located on the waveform. When the numbers are played back in the order in which they were sampled and

at the frequency they were sampled, they represent a sound’s waveform. Obviously, a larger bit depth and

higher sample rate mean that the waveform is played back with greater accuracy—more snapshots taken

of the waveform result in a more accurate representation of the waveform. This explains why the songs

from an album have such massive file sizes. They are sampled at the highest possible bit depth.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

283

One wave cycle in 1 second is known as a hertz, which can’t be heard by the human ear, except possibly

as a series of clicks. Audible sound uses thousands of these waves, and they are crammed into a 1-

second time span and measured in that span. A thousand waveform cycles in 1 second is called a

kilohertz (KHz), and if you listen to an audio CD, the audio rate is sampled at the frequency of 44.1

thousand waves per second, which is traditionally identified as 44.1KHz. These waves are the sample

rate.

The inference you can draw from this is the more samples per wave and the more accurate the samples,

the larger the file size. Toss a stereo sound into the mix, and you have essentially doubled the file size.

Obviously, the potential for huge sound files is there, which is not a good situation when dealing with

Flash. Large files take an awfully long time to load into a browser, which means your user is in for a painful

experience. One way of dealing with this is to reduce the sample rate or number of waves per second.

The three most common sample rates used are 11.025KHz, 22.05KHz, and 44.1KHz. If you reduce the

sample rate from 44.1KHz to 22.05KHz, you achieve a significant reduction, roughly 50 percent, in file

size. You obtain an even more significant reduction, another 50 percent, if the rate is reduced to

11.025KHz. The problem is reducing the sample rate reduces audio quality. Listening to your Beethoven’s

Ninth Symphony at 11.025KHz results in the music sounding as if it were playing from the inside of a tin

can.

As a Flash designer or developer, your prime objective is to obtain the best quality sound at the smallest

file size. Though many Flash developers tell you that 16-bit, 44.1KHz stereo is the way to go, you’ll quickly

realize this is not necessarily true. For example, a 16-bit, 44.1KHz stereo sound of a mouse click or a

sound lasting less than a couple of seconds—such as a whoosh as an object zips across the screen—is a

waste of bandwidth. The duration is so short that average users won’t realize it if you’ve made your click

an 8-bit, 22.05KHz mono sound. They hear the click and move on. The same holds true for music files.

The average user is most likely listening through the cheap speakers that were tossed in when they

bought their computer. In this case, a 16-bit, 22.05KHz soundtrack will sound as good as its CD-quality

rich cousin.

Flash and MP3

The two most common sound formats used in Flash are WAV and AIFF. Both formats share a common

starting point—they are both based on the Interchange File Format proposal written in 1985 by Electronic

Arts to help standardize transfer issues on the Commodore Amiga. Like video, sound contains a huge

amount of data and must be compressed before it is used. This is the purpose of a codec. Codec is an

acronym for enCODer/DECoder, and the format used by Flash to output audio is the MP3 format, although

you can import both AIFF and WAV files (and others) into Flash.

From your perspective, the need to compress audio for web delivery makes the use of AIFF or WAV files

redundant. The MP3 format is the standard, which explains why WAV and AIFF files are converted to MP3

files on playback. If you are working with an audio-production facility, you will often be handed an AIFF or

a WAV file. Even if you have the option of receiving an MP3, you are better off with the AIFF or WAV file,

for the same reason that you wouldn’t want to recompress a JPG file: because they are both lossy

compression schemes.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

284

Why are MP3 files so small but still sound so good? The answer lies in the fact that the MP3 standard

uses perceptual encoding. All Internet audio formats toss a ton of audio information into the trash. When

information gets tossed, there is a corresponding decrease in file size. The information tossed when an

MP3 file is created includes sound frequencies your dog may be able to hear but you can’t. In short, you

hear only the sound a human can perceive (and this sort of explains why animals aren’t huge fans of

iPods).

All perceptual encoders allow you to choose how much audio is unimportant. Most encoders produce

excellent-quality files using no more than 16Kbps to create voice recordings. When you create an MP3,

you need to pay attention to the bandwidth. The format is fine, but if the bandwidth is not optimized for its

intended use, your results will be unacceptable, which is why applications that create MP3 files ask you to

set the bandwidth along with the sample rate.

So much for theory; let’s get practical.

Adding audio to Flash
Knowing that you can bring all of these formats into Flash and that MP3 is the output format for Flash is all

well and good. But how do they get into Flash, and, more importantly, how does an AIFF or WAV file get

converted to an MP3 file when it plays in Flash? Let’s explore that right now starting with an import.

Importing an audio file

To see what happens when you import an audio file, open a new Flash document, and import

PreachersAndThieves.aif (in the Exercise folder for this chapter) to the Library. Because of the

unique manner in which sound files are added to a Flash movie, they simply cannot be imported to the

stage.

If you select Import to Stage when importing an audio file, it won’t be placed on the

stage. Instead, it will be placed directly into the Library.

When you open the Library and select the file, you will see the file’s waveform in the preview area, as

shown in Figure 5-2. You can click the Play button, which is the triangle located above the waveform in

the preview area, to test the sound file.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

285

Figure 5-2. Select an audio file in the Library, and its waveform appears in the preview area.

Setting sound properties

To set the sound properties for an audio file, double-click the speaker icon next to the audio file’s name in

the Library. Figure 5-3 shows the Sound Properties dialog box for PreachersandThieves.mp3.

Figure 5-3. The Sound Properties dialog box is opened when you double-click an audio file in the

Library.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

286

This dialog box is a really useful tool. You can use it to preview and stop an audio file: click the Test

button to preview the sound file, and then click the Stop button to stop the sound playback. The Update

button is also handy. If an audio file has been edited after being placed into Flash, you can click the

Update button to replace the imported copy with the edited version—as long as its original location on

your hard drive hasn’t changed since the file was imported. If the file has moved, use the Import button to

find it again, or replace this Library asset with a new file.

Speaking of editing an audio file, if you right-click (Windows) or Control+click (Mac) the

file in the Library, the context menu that opens allows you to edit the file directly in

Soundbooth. Though Soundbooth is positioned as an entry-level audio editor, it is widely

regarded as the audio editor for Flash. Once you make your edits in Soundbooth, simply

save the file, and the changes will be reflected in Flash.

Notice the audio information under the path and date. This file—at over 4.0 minutes in duration (243

seconds) and around 3.9MB (3894.7KB)—is rather large.

Don’t worry about the Device sound input field at the bottom. Device sounds are used in PDAs and

other devices that employ Flash Lite.

From our perspective, the Compression drop-down list is of major importance. In this drop-down, you are

asked to pick a codec. In Flash, the default is to export all sound in the MP3 format. Still, the ability to

individually compress each sound in the Library is an option that shouldn’t be disregarded. Your choices

are as follows:

 ADPCM: This type of sound file is best suited for very short clips and looped sound. This format

was the original sound output format in older versions of Flash. If, for example, you are outputting

for use in Flash Player 2 or 3, ADPCM is required.

 MP3: Use this for Flash Player versions 4 or newer. This format is not compatible with Flash

Player 4 for Pocket PC. It is, however, compatible with the Flash Lite player, which is used in

devices such as cell phones and PDAs. MP3s are also not suited for looping sounds because the

end of a file is often padded.

 Raw: No compression is applied, and it is somewhat useless if sound is being delivered over the

Web. If you are creating Flash Player for use on a DVD or CD or a Flash movie for incorporation

into a video, this format is acceptable.

 Speech: Introduced in Flash MX, this codec (originally licensed by Macromedia from Nellymoser)

is ideal for voice-over narrations.

Once you select a codec, additional compression settings will appear. For our example, select MP3 from

the Compression drop-down menu, and the settings change, as shown in Figure 5-4. Click the Test

button and listen to the sound. What you may notice is how flat the audio is compared to the original

version. If you take a look at the Bit rate and Quality settings in the Preprocessing area, you will

see why. That 3.9MB file is now sitting at about 12 percent of its original size, or 487KB.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

287

Figure 5-4. Setting MP3 compression

Change the bit rate to 48 kbps, and select Best in the Quality drop-down menu. Also make sure that

Convert stereo to mono is selected. If you click the Test button, you will hear a marked

improvement in the audio quality.

Unless your audio includes specialized panning or there is some other compelling reason

for using stereo, feel free to convert the stereo sound to mono. The user won’t miss it, and

the audio file size will plummet. Flash even allows mono sounds to be panned.

Asking you to compare the audio quality to the original in the previous two steps is a bit disingenuous on

our part. Our intention was to let you “hear” the quality differences, not compare them with the original

audio. In the final analysis, comparing compressed audio against the original version is a “fool’s game.”

Users never hear the original file, so what do they have as a basis for comparison? When listening to the

compressed version, listen to it in its own right and ask yourself whether it meets your quality standard.

No, you can’t “supersize” an audio file. If the MP3 being used has bit rate of 48Kbps in

the original file imported into Flash, you can never increase the bit rate above that level

in Flash. “Up-sampling” audio will more often than not decrease, not increase, the audio

quality.

One other place where the sound output format can be set is through the Publish Settings panel. To

access these settings, select File ➤ Publish Settings, and click the Flash tab in the panel. Near the

top of this panel, shown in Figure 5-5, are preferences for Images and Sounds, which include Audio

stream and Audio event settings. We’ll get into these two in the next section, but the important thing to

note for now is the Override sound settings check box. If you select this check box, the audio settings

shown for the Audio stream and Audio event areas will override any settings applied in the Sound

Properties dialog box. Think of this as the ability to apply a global setting to every sound in your movie.

Unless there is a compelling reason to select this choice, we suggest you avoid it. It’s better to spend time

with each file rather than apply a setting that may actually degrade quality for a couple of files.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

288

If you do have a compelling reason to use these settings, click the relevant Set button, and you will be

presented with the same options in the Sound Properties dialog box.

Figure 5-5. The Images and Sounds settings

Now that you know what the properties do, let’s move on to using a sound file in Flash. If you have been

following along, close any documents you might have open, and don’t save the changes.

Using audio in Flash
In Chapter 1, you added an audio file of a buzzing fly to enhance the ambience of the movie and to add a

bit of realism to it. We asked you to do a couple of things in that chapter, but we didn’t tell why you were

doing them. The purpose was to get you hooked on Flash, and it obviously worked because you are now

at this point of the book. The time has arrived to give you the answers to the “Why?” questions.

Choosing a sound type: event or streaming

Flash has two types of sound: event and streaming. Event sound tells Flash to load a sound completely

into memory—as soon as the playhead encounters the frame with this audio—before playing it. Once

loaded, the sound continues to play, even if the movie’s playhead stops, which means event sounds are

not locked to the timeline. (Audio can be forced to stop, but that takes specific action on your part.)

In a 24 fps Flash movie, a file like PreachersandThieves.aif from the previous section takes about

5,760 frames to play completely. If you’re hoping to synchronize that with animation in the same timeline,

think again. If the resultant SWF is played back on a slower machine than yours, it’s almost certain the

audio will not conclude on the frame you expect. Also, a movie would take a long time to start playing,

because Flash must load the sound fully before playback can begin.

Event sound is ideal for pops, clicks, and other very short sounds or in situations where the audio will be

played more than once or looped. If you want to synchronize extended audio with timeline animation, use

streaming sound.

Streaming sound is a sound that can begin playing before it has fully loaded into memory. The trade-off is

that it must be reloaded every time you want to play it. This sound type is ideal for longer background

soundtracks that play only once. Because it is locked in step with the timeline, streaming sound is the only

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

289

realistic option for cartoon lip-syncing or any scenario that requires tight integration between audio and

visuals.

Now that you know what to expect, let’s work with both types:

1. Open the Bang.fla file. When it opens, you will see we have included the kaboom.mp3 audio file

in the Library.

2. Rename the layer in the timeline to Audio, and drag the kaboom file from the Library onto the

stage. Audio files are added to the Flash timeline by dropping them on the stage or the

pasteboard where they seemingly vanish—but not by dragging them onto the timeline. When you

release the mouse, you may see a line running through the middle of frame 1 in the timeline. This

line is the start of the waveform.

3. Insert a frame in frame 97 of the timeline. You can now see the entire waveform on the timeline.

4. Right-click (Windows) or Control+click (Mac) the layer name, and select Properties from the

context menu.

5. When the Layer Properties dialog box opens, as shown in Figure 5-6, select 300 percent

from the Layer height drop-down menu, and click OK. When you release the mouse, the layer

view is three times larger, and you can see the full waveform.

Figure 5-6. Use the layer properties to “zoom in” on the timeline.

Being able to see the waveform on the timeline is a huge advantage to you because you can now use the

waveform’s peaks or valleys to time animation of other events to the audio file in Stream mode.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

290

6. Click once in the waveform on the timeline anywhere but frame 1, and in the Sync area of the

Properties panel, select Event from the drop-down menu. Press Enter (Windows) or Return

(Mac). The playback head moves, but the sound doesn’t play. Drag the playback head to frame 1

or frame 96, and press Enter (Windows) or Return (Mac).

What you have just heard is a fundamental truth of an event sound: you can only preview event sounds by

playing them in their entirety.

Being the nice guys we are, you can thank us for not using the PreacherAndThievesmp3

audio file. If it were an event sound, you would be sitting here listening to the full four

minutes of the file. Event sounds play for their entire duration, and you can’t stop playback

by pressing Enter (Windows) or Return (Mac). All that does is to start playing another copy

of the sound over the one that is currently playing. To stop an event sound from playing on

the timeline, press the Esc key.

7. Change the Sync setting to Stream, as shown in Figure 5-7. This time, drag the playhead across

the timeline. Notice you can hear the sound as you scrub across it. Drag the playback head to

frame 2, and press Enter (Windows) or Return (Mac). The sound plays from that point and, for

longer audio files, pressing the Enter (Windows) or Return (Mac) key stops playback.

Figure 5-7. Using stream or event sound in the Properties panel

The downside is the playback is only for the frame span on the timeline. For example, the

PreachersAndThieves.mp3 file would require 5,760 frames on the timeline to play the entire track. If the

span were only 50 frames, you would be able to play only about two seconds of the file, assuming your

frame rate is set to Flash’s default rate of 24 frames per second.

Did you notice the Stop and Start choices in the Sync drop-down menu? They’re similar to the Event

option with the addition that they keep sounds from overlapping. Let’s try them:

8. Add a new timeline layer, and name it audio2. Add a keyframe to frame 20 of the new layer,

select that frame, and drag kaboom.mp3 from the Library to the stage. Now you have two

layers associated with the explosion sound.

9. In the audio2 layer, set the Sync property to Event for the audio in frame 20. Drag the

playhead to frame 1, and press Enter (Windows) or Return (Mac). You’ll hear two explosions.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

291

10. Change the Sync property in frame 20 to Stop. The first thing to notice is that the audio file in the

audio2 layer disappears. Press Enter (Windows) or Return (Mac) again from frame 1, and you’ll

hear only one explosion. Not only that, but the explosion gets cut off right at frame 20. That’s the

playhead encountering the Stop keyframe. It’s important to understand that a Stop keyframe

doesn’t halt all sounds. The halted sound must be specified.

11. Select frame 20, and choose None from the Properties panel’s Name drop-down list. Now you

merely have a keyframe set to Stop, but without an associated sound. Press Enter (Windows) or

Return (Mac) from frame 1, and you’ll hear the full explosion.

12. Reselect kaboom.mp3 from the Name drop-down list.

13. Select frame 20 one last time, and change the Sync property to Start. Press Enter (Windows)

or Return (Mac) from frame 1, and you might be surprised to hear only one explosion. Didn’t you

just tell two of the sounds to play (one as Event and one as Start)? You did, but the Start

option waits until the specified sound has finished before it starts another copy of it.

14. Drag the keyframe at frame 20 until you move it past the waveform in the audio layer—frame

98 should do it. Now that the Start keyframe has moved beyond the previous sound, you should

hear two explosions again when you press Enter (Windows) or Return (Mac) from frame 1. Users

on a slower computer might hear only one explosion, because the first sound may not have

finished by the time the playhead hits frame 98. Like the Stop option, Start relies on an explicit

sound file reference in the Name drop-down list.

Before finishing up with the bang.fla, let’s get an interesting quirk out of the way.

Removing an audio file from the timeline

Audio files simply can’t be deleted from the timeline. Go ahead, try it:

1. Hold down the Shift key, and select frames 1 and 97 on the timeline to select the audio file. Press

the Delete key. Nothing happens.

2. To remove an audio file from the timeline, select a frame in the audio waveform, and in the

Properties panel, select None from the Name drop-down menu. The sound is removed.

3. To put the kaboom.mp3 audio file back on the timeline, open the Name drop-down menu, and

select kaboom.mp3. If you have a number of audio files in your Library, they will all be listed in

this drop-down menu, and you can use it to add or change audio files without deleting them or

dragging them onto the timeline.

4. Close Bang.fla without saving the changes.

Getting loopy

If you want to loop your audio, the Properties panel puts a couple choices at your disposal. Here’s how

to set up looping:

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

292

1. Open FrogLoop.fla in the Exercise folder for this chapter. Press the Enter (Windows) or

Return (Mac) key, and you will hear a frog croak. The waveform shows that the croaking happens

only once, even though the timeline spans 60 frames. Surely, the frog has more to say than that.

Let’s give it something to really sing about.

2. Select anywhere inside the waveform, and change the 1 next to the Repeat drop-down list to 4,

as shown in Figure 5-8. Notice that the waveform now repeats four times.

Figure 5-8. Use the Sync area’s Repeat drop-down list to configure looping.

3. Scrub the timeline to verify that, as an event sound, the audio does not preview until you press

Enter (Windows) or Return (Mac) from frame 1.

4. Change the Sync property to Stream and scrub again. As expected, you can now hear the audio

as you drag the playhead. This tells you that streaming sound can be looped just like event sound.

5. Change the Repeat property value to Loop. The x 4 value next to the drop-down list

disappears, and the waveform changes visually to what looks like a single play-through. In spite

of its looks, this sound will repeat forever unless you stop it with a Stop keyframe later in the

timeline—or until your user closes Flash Player or flees the web page out of desperation. The

Loop setting repeats a sound indefinitely.

6. Close the file without saving the changes.

Be very careful with the Loop setting! If a sound is set to Event and Loop, you can

accidentally cause instant psychosis if the timeline has more than one frame. Timelines

naturally loop when they hit the end of their frame span. If the timeline cycles back to

frame 1 while the audio is still playing, you can quickly produce an unwanted echo

torture chamber.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

293

Adjusting volume and pan

Flash lets you adjust the volume of audio files even after they’ve been imported to the Library. Because

of the way Flash outputs its internal audio mix, this also means you can pan your sounds by adjusting

each speaker’s volume separately. In effect, you can bounce audio back and forth between the two

speakers, even if those audio files were recorded in mono.

Ideally, you’ll want to set a file’s overall volume with audio-editing software, such as

Adobe Audition or Soundbooth. Flash can’t magnify a file’s volume; it can only reduce

the volume. So, the volume of your file as recorded is the volume it plays back in Flash

when the settings are turned all the way up.

You’ll be surprised how easy it is to slowly pan the frog serenade from left to right in the timeline. Here’s

how:

1. Open the FrogPan.fla file in the Chapter 5 Exercise folder. Click into frame 1 of the audio

layer, and verify that the Sync property is set to Event and Repeat x 4.

2. Select Fade to right in the Effect drop-down list in the Properties panel, as shown in

Figure 5-9. Test the SWF so far.

Figure 5-9. The Effect drop-down list lets you change volume and panning.

You’ll hear that the effect works, but the panning moves to the right almost immediately, rather than spread

over the four “ribbits.” This happens because Flash evaluates the actual length of an audio file when

assigning one of its effects presets. It’s easy enough to tweak.

3. Click the Edit button, which looks like a pencil, next to the Effect drop-down list. This opens

the Edit Envelope dialog box, as shown in Figure 5-10.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

294

Figure 5-10. The Edit Envelope dialog box lets you apply volume changes to audio files.

In the Edit Envelope dialog box, the diagonal lines represent a change in volume in the left (top) and

right (bottom) speakers. The volume steadily decreases on the left (moves down) while increasing on the

right (moves up), which gives the illusion that the croaking sweeps across the screen. Note that the effect

applies to only the first occurrence of the waveform.

Notice the series of buttons along the bottom of the dialog box. You can preview your effect settings by

clicking the Play and Stop buttons on the left. On the right, you can zoom in and out to show less or

more of the waveform span. The Seconds and Frames buttons affect how the horizontal number line in

the middle looks: seconds or timeline frames.

4. Click the Zoom Out button until all repeats of the waveform are visible. Drag one of the right-side

squares on the diagonal lines toward the end of the fourth repeat, as shown in Figure 5-11. It

doesn’t matter if you drag in the top or bottom—both will move. The Effect field in this dialog

box changes to show Custom, because you’ve altered one of the presets.

5. Click the Play button to preview the updated effect. Now the panning happens more slowly,

arriving fully in the right speaker only after the fourth “ribbit” ends.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

295

Figure 5-11. The Edit Envelope dialog box lets you apply custom audio effects.

6. Experiment with other Effect drop-down presets. Play around with altering them. Here’s a hint:

you can add new draggable white squares by clicking anywhere along one of the diagonal lines.

Remove white squares by dragging them off the dialog box.

7. Click OK, and save your movie.

A note from a master

Dave Shroeder is regarded by many in this industry as being a master when it comes to the use of audio in

Flash. He has spoken at a number of very important industry conferences, and his company, Pilotvibe

(www.pilotvibe.com), has developed a solid international reputation for supplying the industry with high-

quality sound loops and effects for use in Flash. In fact, his homepage, shown in Figure 5-12, can be

regarded as a master class in the effective use in audio to set the “mood” in a Flash movie.

Figure 5-12. The Pilotvibe homepage is a master class in the effective use of sound in Flash.

www.zshareall.com

http://www.pilotvibe.com
http://www.zshareall.com

CHAPTER 5

296

Who better to talk to you about the use of audio in Flash than the guy who is setting the standard?

“Once you start to play around with adding sound to Flash files, you’ll probably realize that it can

add an incredible dimension to your project. Sound can really tie an experience together.

“It can bring an animation to life. It can create a mood or suggest characteristics that reinforce

your message. It can be entertaining or informative or both.

“If sound is an option for your project, start with some simple planning. First determine why

adding sound makes sense. What purpose does it serve? Does voice-over communicate a story?

Do button sounds make the site easier to navigate? Do sound effects make a game more fun or

easier to play? Does music give it a cool character? Use answers to these questions to generate

a short “sonic mission statement” that outlines why and how you plan to use sound. Do this early

in project planning, not after the Flash work is done.

“Sourcing sounds is easier and cheaper than ever before, thanks to the Internet. There are many

websites that will allow you to search and download files for reasonable fees. Once you’ve found

sounds, use audio-editing software to adjust them to have similar sonic qualities. You want them

to sound like they’re in the same room or in the same canyon or the same secret underground

lair, and so on. Adjust their volumes and equalization (EQ) to achieve this. Use your ears, listen,

and you’ll do fine. Do they sound close or far, light or heavy, fast or slow? Also, trim the heads

and tails of the sound files to be as short as possible without cutting the sound off. The shorter

the file, the better it syncs, and the smaller the file size.

“When you’re picking music, try to find a piece that fits the mood or reinforces the story. Don’t just

use death metal because you like death metal or techno for techno’s sake. Music has emotional

power that transcends genre, and you want to leverage it to make your project as engaging as

possible. If you’re working with loops, trying to use as long a loop as possible given your file size

considerations. Anything under 10 seconds gets old pretty fast unless it’s something minimal like

a drumbeat. Look into layering loops to create the illusion of a longer track with more variation.

“A sound on/off button is a courtesy I always recommend. Compress your sounds so they sound

good. A little bit bigger file is worth it if it means people will listen to it. A tiny file that sounds lousy

is worse than no sound. Also, compress each sound so it sounds good by itself and in relation to

the other sounds. A combination of hi-fi and lo-fi sounds wrecks the illusion of the sounds existing

together.”

Thanks, Dave, and also thank you for supplying our readers with the Pilotvibe clips in the

Exercise folder.

Your turn: adding sound to a button
Now you’ll put what you have learned to practical use. Let’s blow some stuff up. Follow these steps to

accomplish this task:

1. Open the ButtonSound.fla file in your Exercise folder, and import the kaboom.mp3 file into

your Library.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

297

2. Double-click the Blam button symbol in the Library to open it in the Symbol Editor.

3. Add a new layer named Audio, and add a keyframe to the Down area of the Audio layer.

4. With the keyframe selected, drag a copy of the kaboom audio file to the stage. Your timeline

should now resemble that shown in Figure 5-13.

Figure 5-13. You can add sound to buttons.

5. Click in the waveform, and in the Properties panel select Event in the Sync drop-down menu.

This may seem like an odd instruction because all sounds added to the stage are event

sounds by default. We have been around this silly business long enough to embrace the

wisdom of the following rule: trust no one and nothing, especially yourself. Get into the

habit of double-checking everything and never assuming everything is correct.

6. Click the Scene 1 link to return to the main timeline.

7. Select Control ➤ Enable Simple Buttons. Click the button on the stage, and you will hear

an explosion. Deselect Enable Simple Buttons.

8. Test the file. When the SWF opens, click the button. You will hear an explosion every time you

click the button.

So far, so good. If you stopped here, you would have a competent Flash movie—basically a C on your

report card—which isn’t bad. If you want the A, though, you’ll refine this button just a tad, based on what

you’ve already learned in this chapter.

So, what’s wrong with it? Click the button in rapid succession, like a double-click. Heck, click it five times in

a row (you’ll be surprised at what users do when playing with your content). What do you hear? Because

of the numerous triggering of that Event keyframe, you end up with an artillery barrage of explosions. This

may not be what you want. Fortunately, the remedy is simple.

9. Double-click the button symbol to open it again in the Symbol Editor. Change the audio

keyframe’s Sync property from Event to Start.

10. Reselect Enable Simple Buttons.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

298

11. Return to the main timeline, and test the button with repeated clicks. Even though you click a few

times, you hear the explosion only once.

12. Save the file as ButtonSound01.fla, and publish the SWF file. Just as in testing mode, the

explosions don’t overlap when you click the button.

Be careful with this technique, because when you create a SWF file that contains audio, the audio files in

the Library are embedded into the SWF file. The result, depending upon the audio files and their length,

could be an extremely large SWF file that will take a long time to load.

Now that you understand how audio files can be used in Flash, let’s take that knowledge to the next level

and actually control sound using ActionScript. This is where the full power of audio in Flash is handed to

you.

Controlling audio with ActionScript 3.0
Before we start, let’s really get clear on the following: you aren’t going to be fully exploring the nuances

and features of audio controlled by code. We are going to give you the basics in this section:

 Playing a sound in the Library without adding it to the timeline

 Using movie clips and buttons to turn audio on and off

 Using movie clips and buttons to load sound dynamically—from your HTTP server—into your

Flash movie

Still, if you are familiar with controlling sound through ActionScript 2.0, you need to know there have been

some renovations. For example, the Sound.attachSound() method is no longer around, and even

familiar things like creating linkage identifiers have fundamentally changed. Just keep in mind that change

is a good thing. It just takes a bit of getting used to.

Playing a sound from the Library

This technique is ideal for sounds that need to play in the background. Be aware that any sound played

through ActionScript is treated as a streaming sound.

1. Open a new Flash document, and import the PreachersAndThieves.mp3 file into the Library.

The plan is to have this sound play, almost as background audio, when the movie starts.

2. Select the PreachersAndThieves.mp3 file in the Library. Right-click (Windows) or

Control+click (Mac) the audio file, and select Properties from the context menu. When the

Sound Properties dialog box menu opens, click the Advanced button to open the Advanced

properties.

3. When the panel expands, you will see the Linkage area shown in Figure 5-14. If you are going

to play audio files contained in the Library and control them through ActionScript, they must be

given a special label to let ActionScript find them in the Library.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

299

In ActionScript 2.0, “linkage” was accomplished with a linkage identifier. In fact, you’ll

see a disabled Identifier field in the dialog box. What gives? In ActionScript 3.0, the

rules are different. You need to create a custom class that extends the native Sound

class. Fortunately, Flash handles the entire process for you, though advanced

developers may, if they want, go to the expense of writing the actual external text file

normally needed.

Figure 5-14. Establishing a linkage identifier

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

300

4. Select Export for ActionScript, and replace the name of the audio file with the word Tune

in the Class area of the dialog box. Click OK to close the dialog box.

5. You will get a warning dialog box telling you there is no such thing as a Tune class. Click OK to

close it. By clicking OK, you are telling Flash to go ahead and create this class on your behalf.

(The name Tune is arbitrary. but because our audio file is a song, Tune makes good sense.)

6. Rename Layer 1 to Actions, select the first frame in the layer, and open the Actions panel.

Enter the following code:

var audio:Tune = new Tune();
audio.play();

The first line of the code creates a variable named audio and uses the Tune class—from the Linkage

Properties dialog box—as its data type. In Chapter 4, you learned about classes and inheritance, and

this custom Tune class inherits all its functionality from the Sound class. This means it is a bona fide Sound

instance, but a very specific kind. The second line simply uses the Sound class’s play() method to play

the audio file.

7. Save the file as LibrarySound.fla, and then test the movie by pressing Ctrl+Enter (Windows)

or Cmd+Return (Mac). When the SWF opens in Flash Player, the sound will play. To stop the

audio, close Flash Player.

If you are used to using the attachSound() method from ActionScript 2.0, understand

that it doesn’t apply in ActionScript 3.0. All you need to do now is to specify a subclass—

Tune (or whatever name suits your fancy)—that extends the Sound class.

Using a button to play a sound

In an earlier example, you added the kaboom sound directly to the timeline of the button symbol. This time,

you are going to use a button—though you can just as easily use a movie clip. Also, instead of embedding

a sound in the button, you will have the sound play from the Library. Follow these steps:

1. Open the CodeButtonSound.fla file in this chapter’s Exercise folder. In the Library, you will

see a button and the kaboom.mp3 audio file.

2. Select the kaboom.mp3 audio file in the Library. Use the Advanced Sound Properties

dialog box, as in the previous exercise, to give this audio file a linkage class named Blam.

3. Click the button symbol on the stage, and give it the instance name of btnPlay. (Remember that

symbols controlled by ActionScript need an instance name.)

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

301

4. Add a new layer named scripts to the timeline. Lock the scripts layer, select the first frame,

and open the Actions panel. Enter the following code:

var audio:Blam = new Blam();

btnPlay.addEventListener(MouseEvent.CLICK, clickHandler);
function clickHandler(evt:MouseEvent):void {
 audio.play();
};

The first line creates an instance of the Blam class—actually a Sound instance that has been extended by

an automatically generated custom class—and stores a reference to that instance in a variable named

audio. After that, an event handler function, mouseUpHandler(), is associated with the

MouseEvent.CLICK event for the btnPlay button.

The event handler works the same as you saw in Chapter 4, even though the object in question—an

instance of the Blam (Sound) class—is different from movie clips and buttons. In ActionScript 3.0, event

handling is consistent across the board (with very few exceptions, and you’ll see those in the chapter on

video). When the MouseEvent.CLICK event occurs, the clickHandler() function is triggered. In turn, the

clickHandler() function makes a reference to the Blam instance, by way of the audio variable, and

invokes the Sound.play() method on it. The result is that you hear an explosion when you click the

button.

5. Save the file and test the movie.

Playing a sound from outside of Flash

You know that embedding sound into a SWF file adds to its file size. Is there a way to play a sound that

isn’t inside the SWF file? The answer is absolutely.

The best use for this technique is to play any audio file that is longer than a couple of seconds. In this

case, we will be using a ten-minute radio documentary produced by two radio broadcast students from the

School of Media Studies at the Humber Institute of Technology and Advanced Learning in Toronto. This

track, created by Andre Jeremiah and Shauna McCreedy, won Best of Show – Radio at the 2009 Media

Advisors Convention in New York and is quite typical of the type of audio podcasts that Flash is now

delivering on the Web.

1. Open the RemoteSound.fla file in this chapter’s Exercise folder. You will see that we have

placed a button symbol on the stage and given it the instance name of btnPlay.

2. Add a new layer named actions, select the first frame in the actions layer, open the Actions

panel, and enter the following code (we’ll review it after you test the movie):

var audio:Sound = new Sound();
var req:URLRequest = new URLRequest("On Borrowed Time.mp3");
audio.load(req);
audio.play();

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

302

3. Test the movie to create your SWF. The audio starts to play.

The second and third lines of the ActionScript you entered handle the external sound. In ActionScript 3.0,

you can’t simply tell Flash, “There’s an audio file in this folder that you need to play.” Instead, you need to

use an instance of the URLRequest class to specify the file’s location. That object, referenced by a variable

named req, gets passed as a parameter to the load() method of the Sound instance created in the first

line of the code.

In ActionScript 3.0, most things brought into a Flash movie—audio, images, and even SWF files—need to be

“called in” through a URLRequest instance (one notable exception is video, which is covered in Chapter 10).

If the MP3 is in the same folder as the HTML document that contains the SWF, you can simply name the

MP3 without a file path. Of course, you can just as easily use an absolute path to a folder on your server.

In that case, the syntax would be something like this:

var req:URLRequest = new URLRequest("http://www.domain.com/audio/On Borrowed
Time.mp3");
audio.load(req);

The authors would like to thank both Andre and Shauna for permission to use this file in

our book. We would also like to acknowledge William Hanna, dean of the School of

Media Studies, and Jerry Chomyn, who manages the college’s radio station for their

assistance in allowing us to include this file in the book.

Turning a remote sound on and off

The previous exercise contained a rather nasty usability flaw. The audio file played, and there was no way,

other than closing the SWF, to turn it off. Let’s address this oversight. In this exercise, you will code up two

buttons: one button will play the sound, and the other will turn it off. The really neat thing about these

buttons is that they aren’t buttons. You are about to learn how movie clips can be used as buttons instead.

Let’s get started:

1. Open the RemoteSound2.fla file. Again, we have provided you with the raw material, as shown

in Figure 5-15. The Start button with the instance name playMC will be used to turn the sound

on. The Stop button, stopMC, will be used to turn the sound off.

The choice of instance names is deliberate. Many Flash designers and developers try to

use contractions that tell the coder what type of object is being used. This explains why

you may see code elsewhere and the instance names somehow contain an indication of

exactly what object is being used. For example, playMC could also be written as

Play_mc or mcPlay. The key is the mc, which indicates it is a movie clip.

www.zshareall.com

http://www.domain.com/audio/OnBorrowedTime.mp3
http://www.domain.com/audio/OnBorrowedTime.mp3
http://www.zshareall.com

AUDIO IN FLASH CS5

303

Figure 5-15. Two movie clips are used to turn a sound on and off.

The plan for this project is to have the user click the Start button to have the audio file play and then click

the Stop button to turn off the audio.

2. Create a new layer named actions, click the first frame in the actions layer, and open the

ActionScript Editor. When the Script pane opens, enter the following code:

var audio:Sound = new Sound();
audio.load(new URLRequest("On Borrowed Time.mp3"));

var channel:SoundChannel = new SoundChannel();

playMC.buttonMode = true;

playMC.addEventListener(MouseEvent.MOUSE_UP, playIt);
function playIt (evt:MouseEvent):void {
 channel = audio.play();
};
stopMC.buttonMode = true;

stopMC.addEventListener(MouseEvent.MOUSE_UP, stopIt);
function stopIt(evt:MouseEvent):void {
 channel.stop();
};

3. Save and test the movie by clicking the Start and Stop buttons.

The first thing to notice is the use of the buttonMode() method to change a movie clip to a button. This

doesn’t “change” it to a button when the movie plays. What it does is to turn the cursor to the “Pointing

Finger” icon, which tells the user, “Hey, you can click this to make stuff happen.”

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

304

Other than that, the only major difference between this code and that used in the previous example is the

addition of a SoundChannel object. The SoundChannel class controls a sound in an application. Each

sound playing in a Flash movie now has its own sound channel, which means you can have up to 32

concurrent sound channels playing different audio files. Flash mixes them down to a two-channel stereo

mix (or a mono mix) for you that can be mixed together. The SoundChannel class features a stop()

method for turning sound off, but you need to assign the sound to a SoundChannel instance first.

In this case, the Play button does just that. When clicked, its event handler associates the remote sound

represented by the audio object (a Sound instance) with the SoundChannel instance named channel.

The Stop button, when clicked, will use the stop() method to stop playing the sound in that channel.

Adjusting volume with code

What if you don’t want to stop the audio but simply allow the user to temporarily mute it? Providing your

users with this option is a courteous thing to do. Fortunately, it’s not very hard to do.

To see how muting is accomplished, open the RemoteSound3.fla file in this chapter’s Exercise folder.

By this point, you should be feeling a sense of déjà vu. The file looks nearly the same as in the previous

exercise, but the instance names have changed. The buttons now have instance names muteMC and

unmuteMC. The code has also changed, but not by much.

1. Click into frame 1 of the scripts layer, and take a look in the Actions panel. You’ll see the

following code:

var audio:Sound = new Sound();
var req:URLRequest = new URLRequest("On Borrowed Time.mp3");
audio.load(req);
var channel:SoundChannel = audio.play();
var xform:SoundTransform = new SoundTransform();

muteMC.buttonMode = true;

muteMC.addEventListener(MouseEvent.CLICK, muteSound);
function muteSound (evt:MouseEvent):void{
 xform.volume = 0;
 channel.soundTransform = xform;
}

unmuteMC.buttonMode = true;

unmuteMC.addEventListener(MouseEvent.CLICK, unmuteSound);
function unmuteSound (evt:MouseEvent):void{
 xform.volume = 1;
 channel.soundTransform = xform;
}

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

305

This time, the channel instance is associated with the audio instance right away in line 4. No button click

is needed to play this song; it just plays. Just as before, the Sound.play() method, as invoked on audio,

lets channel know which sound it controls.

The new part is an instance of the SoundTransform class, stored in a variable named xform. Check out

the muteSound() function, which acts as the event handler for the btnMute button’s MouseEvent.CLICK

event. The SoundTransform class features a volume property, and this property is referenced in terms of

the xform instance. It is given a value of 0 (silence). In the next line, the xform instance is assigned to the

SoundChannel.soundTransform property of the channel instance. That’s all there is to it.

In the unmuteSound() function, the same process takes place, except that the volume property is set to 1

(full volume). Want to turn down the volume instead of muting it? That’s easy.

2. Inside the muteSound() function, change the 0 to 0.5. Your code should now look like this:

btnMute.addEventListener(MouseEvent.CLICK, muteSound);
function muteSound(evt:MouseEvent):void {
 xform.volume = 0.5;
 channel.soundTransform = xform;
};

3. Test the movie, and click the buttons. Then close the SWF. Change the 0.5 back to a 0, and test

again. Neat stuff!

For those of you wondering why we stop with this exercise and don’t get into using a

slider to adjust the volume, the reason is simple: you need a bit more ActionScript

experience before you tackle that. You will add such a slider to a full-bore MP3 player in

Chapter 14.

Your turn: storm over Lake Superior

One of the really neat aspects of being a Flash designer is that you get to bring otherwise static media to

life. A great example of this is turning a photograph into a motion graphics piece and then using audio to

“seal the deal” and bring it to life. You are going to do just that in this exercise.

One of the authors is an avid hiker and camper. Living in Canada, he has lots of opportunities to indulge in

his passion. On the North Shore of Lake Superior is a National Park named Pukaskwa (pronounced “puck-

ah-squaw”). In this exercise, you are going to stand with him on the top of a cliff and “experience” a

thunderstorm that rolled in off of the lake during his hike. Let’s get started:

1. Open a new Flash document, and import the Pukaskwa.jpg image in the Chapter 5 Exercise

folder to your Library. Save the file to your Chapter 5 Exercise folder.

2. Add two more layers to the movie, and name them Rain and actions. Rename Layer 1 to

Image.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

306

3. Select the first frame of Layer 1, and drag the image from the Library to the stage. Select

Modify ➤ Document to open the Document Properties dialog box, and select Contents.

Click OK, and the stage resizes to fit the image. Lock the Image layer.

The rest of this project will be assembled “over” the image on the stage. The next step will involve adding

the rainstorm to the movie, and before we start, there are a couple of things you need to know. The first is

we are going to import an FLV, which is a Flash Video file, directly into Flash. This is not exactly regarded

as a best practice in the industry because these files can be quite large in file size. We tend to agree, but

in the Flash universe, rules can be broken. In this case, if the FLV were a couple of seconds in length and

physically small, this is not an issue. In this case, we wouldn’t do what we are asking you to do if the

project were destined for the Web. The next thing you need to know is you don’t always need code to

obtain some rather interesting effects. In this case, the rainstorm was created in After Effects CS5. So

much for the chat; we standing on a cliff overlooking Lake Superior, and there is a rainstorm headed our

way. Let’s add the rain:

4. Select File ➤ Import ➤ Import Video, as shown in Figure 5-16. This will open the Import

Video dialog box.

Figure 5-16. Video files can be imported directly into Flash.

5. When the Import dialog box opens, click the Browse button, and navigate to your Chapter 5

Exercise folder. Locate the Rain.flv file, and click Open.

6. The next decision you need to make is how the file will be handled. Select the Embed FLV in

SWF and play in timeline option. This will add the rather stern warning shown at the

bottom of the Import Video dialog box, as shown in Figure 5-17. Click Continue to open the

Embedding options.

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

307

Figure 5-17. The stern warning is not be taken lightly.

7. When the Embedding options opens, select Movie clip, as shown in Figure 5-18, from the Symbol

Type drop-down, and deselect Place instance on stage. Click the Continue/Next button to

open the Finish Video Import section of the Import Video dialog box.

Figure 5-18. The video is to be imported into a movie clip.

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

308

8. When the Finish Video Import dialog box closes, click the Finish button. The dialog box

will close, and a movie clip and the video (the video camera), as shown in Figure 5-19, will be

placed in the Library.

Figure 5-19. The video and the movie clip containing the video are imported to the Library.

9. Select the Rain layer, and drag the Rain.flv movie clip from the Library to the stage. Save

and test the movie. Welcome to our rainstorm.

This will be the first and last time we will be visiting the Import Video feature of Flash

CS5. As we said, embedding video directly into the timeline of a Flash movie is a rather

dangerous habit to develop. It is ideal for techniques such as this where the video is very

short and physically small, but other than that, professional Flash designers rarely, if ever

treat video in this manner. We’ll show you how the pros work with video in Chapter 10.

Now that we are standing on a cliff overlooking Lake Superior and getting wet, let’s add that last little bit of

realism: rain and thunder.

10. Select the first frame of the actions layer, and open the Actions panel. When it opens, enter

the following code into the Script pane:

import flash.media.Sound;
import flash.net.URLRequest;

var audio:Sound = new Sound();
var req:URLRequest = new URLRequest("RainStorm.mp3");
audio.load(req);
audio.play();

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

309

11. Save and play the movie. As you may have noticed, the simple addition of an audio track makes

this project much more powerful.

Code snippet: visualize audio

In the previous chapter, we introduced you to code snippets. As you may recall, these are pieces of code

that, once added to the panel, can be reused on a regular basis. From this point on in this book, we will be

adding the occasional code snippet that allows you add functionality, or widgets, to your movies. These

snippets will be heavily commented, and we will explain which values you can change to “customize” the

snippet to your needs.

This snippet creates an audio visualization movie clip and puts it on the stage. As shown in Figure 5-20, a

series of bars rise or fall based upon the loudness (amplitude) of the audio track. This feature was added

to Flash CS3 and falls squarely into the realm of intermediate to advanced ActionScript. The addition of

code snippets gives us the opportunity to let you try some advanced techniques without getting yourself

into trouble. To add the snippet, follow these steps:

Figure 5-20. Create a snippet that adds the audio visualization bars on the right of the stage.

1. Open the AudioVisualization.fla file in your Chapter 5 in the CodeSnippet folder found in

your Chapter 5 Exercise folder.

2. Select the first frame of the actions layer, and open the Actions panel to see the following

code:

import flash.net.URLRequest;
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.utils.ByteArray;
import flash.display.Sprite;
import flash.utils.Timer;
import flash.events.Event;
import flash.events.TimerEvent;

var url:String = "On Borrowed Time.mp3";
var req:URLRequest = new URLRequest(url);
var audio:Sound = new Sound();

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

310

audio.addEventListener(Event.COMPLETE,completeHandler);
audio.load(req);

var track:SoundChannel = audio.play();
audio.addEventListener(Event.SOUND_COMPLETE,soundCompleteHandler);
var ba:ByteArray = new ByteArray();

var gr:Sprite = new Sprite();
gr.x = 300;
gr.y = 100;
addChild(gr);

var time:Timer = new Timer(50);
time.addEventListener(TimerEvent.TIMER,timerHandler);
time.start();

function completeHandler(evt:Event): void{
 evt.target.play();
}

function soundCompleteHandler (evt:Event):void{
 time.stop();
}

function timerHandler(evt:TimerEvent):void {
 SoundMixer.computeSpectrum(ba,true);
 var i:int;
 gr.graphics.clear();
 gr.graphics.lineStyle(0, 0xFFFFFF);
 gr.graphics.beginFill(0xFFFFFF);
 gr.graphics.moveTo(0, 0);
 var w:uint = 2;
 for (i=0; i<512; i+=w) {
 var t:Number = ba.readFloat();
 var n:Number = (t * 25);
 gr.graphics.drawRect(i, 0, w, -n);
 };
};

3. Select the code, and open the Code Snippets panel.

4. Click the Options button, and select Create New Code Snippet to open the Create New

Code snippet dialog box.

5. Name the snippet Audio Visualizer, and enter Create an audio visualization

widget in the Tooltip area.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

311

6. Click the Auto-fill button to add the selected code to the snippet, and click OK to add it to your

Code Snippets panel.

7. To use the snippet, add it to the timeline or your Script panel if you are already there and

simply make the changes regarding audio file, color, location, and size where indicated in the

code.

If you are new to ActionScript, you may be looking at all of that code and be wondering: what does it do?

The whole thing starts with the declaration of a bunch of variables:

var url:String = "Chill.mp3";
var request:URLRequest = new URLRequest(url);
var tune:Sound = new Sound();

tune.addEventListener(Event.COMPLETE,completeHandler);
tune.load(request);

var song:SoundChannel = tune.play();
song.addEventListener(Event.SOUND_COMPLETE, soundCompleteHandler);
var ba:ByteArray = new ByteArray();

The first three lines identify the audio file that will play and where the file is located and creates the

Sound() object that will play it. The next two lines tell Flash to reload the audio file when it finishes. The

final three lines start the audio file playing, tell Flash what to do when the sound ends, and create a

ByteArray().

That last line may have you scratching your head, but it is how the sound is eventually turned into the

bouncing bars. A ByteArray() is a series of numbers between -1 and 1 that can contain up to 512 values.

The first 256 values represent the left audio channel, and the remaining 256 values represent the right

channel. These are the numbers that put the graph in motion. High frequencies are on the right side of the

graph, and the low frequencies are on the left side. As we move deeper into this code, you will discover

the spikes are strictly a function of the values in that array.

The next code block starts by creating the movie clip that you are seeing and puts it on the stage:

var gr:Sprite = new Sprite();
gr.x = 20;
gr.y = 200;
addChild(gr);

var time:Timer = new Timer(50);
time.addEventListener(TimerEvent.TIMER, timerHandler);
time.start();

function completeHandler(evt:Event):void {
 evt.target.play();
};

www.zshareall.com

http://www.zshareall.com

CHAPTER 5

312

function soundCompleteHandler(evt:Event):void {
 time.stop();
};

The movie clip is a special type of object called a Sprite. Sprites are nothing more than movie clips

without a timeline. The next chunk tells Flash how often to update the graph. In this case, the Timer()

object will check what is going on every 50 milliseconds and run the final function, timerHandler, as long

as the song is playing. If it isn’t playing, the soundComplete handler turns off the timer, which is why

things flat line at the end of the documentary.

The final function is where the magic happens:

function timerHandler(evt:TimerEvent):void {
 SoundMixer.computeSpectrum(ba,true);
 var i:int;
 gr.graphics.clear();
 gr.graphics.lineStyle(0, 0x000000);
 gr.graphics.beginFill(0x000000);
 gr.graphics.moveTo(0, 0);
 var w:uint = 2;
 for (i=0; i<512; i+=w) {
 var t:Number = ba.readFloat();
 var n:Number = (t * 100);
 gr.graphics.drawRect(i, 0, w, -n);
 };
};

Audio visualization is accomplished through the SoundMixer() class introduced into ActionScript 3.0. One

of the methods in this class is the computeSpectrum() method, which takes a snapshot of the sound

wave every 50 milliseconds and places it in a ByteArray(ba) object.

The computeSpectrum() method has three parameters:

 outPutArray: This is the ByteArray that is used to create the spikes.

 FFTMode: This Boolean value indicates whether a Fourier transform is performed on the sound

data. Like you, we really didn't have a clue what a Fourier transform was. It took a quick side trip

to Wikipedia to learn it is simply a bunch of math that turns the audio into a frequency graph

instead of a sound wave. The default value is false. This is how the graph bounces up and

down. Change it to false, and the graph, as shown in Figure 5-16, is turned into a wave that

bounces up and down on both sides of the line.

 stretchFactor: This is a number that sets the resolution of the audio. The default value is 0,

meaning the audio will be sampled at a rate of 44.1KHz. Use a value of 1, and the sound is

sampled at 22.05KHz, and so on, as you slice the proverbial salami.

The balance of the code uses Flash’s Drawing API to draw the black lines—gr.graphics.lineStyle(0,
0x000000);—and to fill them with black—gr.graphics.beginFill(0x000000); . From there, the lines

www.zshareall.com

http://www.zshareall.com

AUDIO IN FLASH CS5

313

are positioned within the sprite—moveTo()—and used to create the boxes through the use of the

drawRect() method.

This will be the only place in this book where we present a basic use of the Drawing API

in Flash. It is a rather complex subject and is well out of the scope of this book. Still,

exposing you to it should give you an idea of the creative possibilities open to you. If you

want to learn more about this feature, we suggest you check out our sister volumes,

Foundation ActionScript 3.0 for Flash and Flex by Darren Richardson and Paul

Milbourne and Foundation ActionScript 3.0 Animation by our good friend Keith Peters.

What you’ve learned
In this chapter, you learned the following:

 How to add audio to Flash

 The difference between an event and a streaming sound

 How to set the preferences for sound output in Flash CS5

 Various approaches to playing a sound in the Flash Library and one located outside of Flash

 The various classes, properties, and methods ActionScript 3.0 uses to control and manage sound

in Flash

 How to create a simple audio visualization in Flash.

As you discovered, there is a lot more to audio in Flash than simply tossing in some sort of electronica

beat and becoming a “cool kid.” Audio in Flash is a powerful communications tool, and savvy Flash

designers and developers who realize this are leveraging audio in Flash to its full potential. Speaking of

communications tools, text is no longer that gray stuff that goes around your animations. To find out more,

turn the page, because text is the focus of the next chapter.

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

315

Chapter 6

Text

“Letterforms that honor and elucidate what humans see and say deserve to be
honored in their turn. Well-chosen words deserve well-chosen letters; these in
their turn deserve to be set with affection, intelligence, knowledge and skill.
Typography is a link, and it ought, as a matter of honor, courtesy and pure
delight, to be as strong as the others in the chain.”

—Robert Bringhurst

This quote from Bringhurst’s master work, The Elements of Typographic Style, Second Edition (Hartley

and Marks, 2002), sums up the essence of type in Flash. The words we put on the stage and subsequently

put into motion are usually well chosen. They have to be, because they are the communication

messengers, providing the user with access to understanding the message you are trying to communicate.

In this chapter, we focus on using type to do just that.

The introduction of the Adobe CS5 product line puts some powerful typographic tools in your hands, such

as a new application programming interface (API) called the Text Layout Framework (TLF). In addition, as

more tools in the Adobe lineup nudge closer to a confluence point with Flash, the field of typographic

motion graphics on the Web is about to move into territory that has yet to be explored. To start that

exploration, you need to understand what type is in Flash and, just as importantly, what you can do with it

to honor the communication messengers of your content.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

316

We’ll cover the following in this chapter:

 The basics of type

 The new Text Layout Framework

 Creating multicolumn text

 How to flow text between containers on the stage

 Using ActionScript to create, format, and present text

 Creating hyperlinks

 Using the spell checker

 Creating scrollable text blocks

The following files are used in this chapter:

 Containers.fla (Chapter06/Exercise Files_CH06/Exercise/Containers.fla)

 TLF_hyperlink_AS.fla (Chapter06/Exercise Files_CH06/Exercise/
TLF_Hyperlink_AS.fla)

 SpellItOut.txt (Chapter06/Exercise Files_CH06/Exercise/SpellItOut.txt)

 ScrollComponent.fla (Chapter06/Exercise Files_CH06/Exercise/
ScrollComponent.fla)

 TLF_Scrollable_AS.fla (Chapter06/Exercise Files_CH06/Exercise/
TLF_Scrollable_AS.fla)

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

Fonts and typefaces
Before we define what a font is and what a typeface is, let’s get really clear on one point: type is not that

gray stuff that fits around your “whizzy” Flash animations. It is your primary communications tool.

Reading is hardwired into us. If it wasn’t, you wouldn’t be looking at this sentence and assimilating it in

your brain. You have a need for information, and the printed word is how you get it. The thing is, the choice

of font and how you present the text not only affects the message but also affects the information. You can

see this in Figure 6-1. The phrase “Flash rocks” takes on a different meaning in each instance of the

phrase. Using the same Times typeface but with the bold and italic variants, the message “changes”

depending on the style applied.

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.zshareall.com

TEXT

317

Figure 6-1. It is all about the message.

You can take this to the next level and see that not only variants but typeface has an effect upon the

message. Figure 6-2 shows five examples of the same information presented using different typefaces.

You can see how the message changes even more dramatically.

Figure 6-2. It is all about the message and the typeface chosen.

When choosing your fonts, you also have to be aware of their impact upon readability and legibility. Both

are achieved by an acute awareness of the qualities and attributes that make type readable. These

attributes include the typeface, the size, the color, and so on.

To illustrate this point, take a look at a small exercise one of the authors uses in his classes. What word is

shown in Figure 6-3? Don’t be too hasty to say legibility. What are the sixth, seventh, eighth, and ninth

characters? What letters are the first and second letters? Suddenly things become a bit disorienting.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

318

Figure 6-3. What word is this?

This disorientation is important for you to understand. Our visual clue to legibility and readability, as shown

in Figure 6-4, is the flow along the tops of the letters. This is why text that consists of all capital letters is so

hard to read.

Figure 6-4. We get our clues to letterforms from the tops of the letters.

We include this exercise because there is a huge temptation on the part of people new to Flash to prove

they’re one of the “cool kids” and use font and color combinations that make otherwise legible text

impossible to read. A good example of this is Figure 6-5. The word is set in a medium gray color on a dark

gray background, and the size for the text is 10 pixels. The text is very difficult to read, and yet somehow

the “cool kids” think this is some sweet action. Wrong! They just killed all access to the information

contained in the text. The next figure, Figure 6-6, goes in the opposite direction. Type is used as a clear

communications vehicle for the message.

Even though paying attention to design is critical, from a type perspective, font-rendering technology in

Flash was a huge issue until the introduction of CoolType in Flash CS4.

Figure 6-5. It is all about the message and the font chosen.

www.zshareall.com

http://www.zshareall.com

TEXT

319

Figure 6-6. The message—“Opel drives on natural gas”—comes through loud and clear.

Adobe CoolType
Flash CS5 contains a rather major change “under the hood” that was introduced in Flash CS4, and we

suspect that not a lot of people will pay much attention to it. The change? The inclusion of CoolType

technology.

Designers are an odd bunch. They can pick out something that doesn’t “look quite right” with what seems

to be a cursory glance at the page or the screen. For years, designers have noted that type in Flash just

doesn’t “look right,” and as strange as this may seem, they were correct. This was an odd situation

because Adobe has always been in the lead with font technologies, and yet one of its flagship applications

seemed to be lagging in this important area. We won’t get into the reasons why—they are complex and

tediously technical—but font rendering and management in Flash has always been a sore point with

designers. CoolType may have just put that one to rest.

To understand how big a deal this is, you have to go back into the gray mists of time to around 1984 and

the introduction of the Macintosh. For many of you, 1984 is a murky year in your childhood. For some of

us, especially one of the authors, it was the year that graphic layout started its move from art boards,

waxers, and X-Acto knives to the computer screen. Two players—Apple and Adobe—made this possible.

Apple supplied the computer and the LaserWriter printer, while Adobe supplied PostScript.

To that point, layout on a computer was interesting, but the problem was that stuff called type. A letter

would show up on the computer screen, but it would be blocky. There was essentially no way to

differentiate a capital letter A using Garamond from its Times counterpart. This was because of the way

computers rendered on-screen type. Essentially, the letters were constructed in a grid of pixels that gave

them the rather blocky, pixelated look we have come to call the jaggies. PostScript, developed by Adobe,

somewhat solved this problem by creating a language—PostScript—that, in very simple terms, “drew” the

letter over the pixels and gave designers what they wanted: Garamond As that actually looked like

Garamond As on the screen. The fact that they looked even crisper when run through the LaserWriter was

also a huge factor in moving the graphics industry to computers.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

320

Still, designers spent a lot of time complaining about on-screen resolution and font crispness. They had a

point because, no matter how you cut it on the screen, text had some serious readability issues because

pixels were still being lit up to create letters. As the Web took hold and Flash took off, designers noticed

the fonts they used still didn’t look “quite right” because the text was being displayed on-screen and

subject to the lingering problems inherent in on-screen text.

As we have stated, the relatively poor readability of text on-screen compared to its paper counterpart has been a

significant sticking point with designers almost from the word “Go.” The source of the problem is low-resolution

computer screens. While the resolution of the typical printer is often 600 dots per inch (dpi) or more, the

resolution of the average laptop, PDA device, or desktop screen is only 72 (Macintosh) or 96 (Windows) dpi on

a screen. This means type that looks crisp and smooth on paper appears coarse and jagged on-screen.

To combat the jaggies, traditional grayscale font anti-aliasing (also called font smoothing) buffs out the

corners in text by filling in the edges of bitmapped characters with various shades of gray pixels, which can

make text at small point sizes appear blurry. Flash attempted to address this issue when it introduced a

number of anti-aliasing features into Flash in 2004. Though a huge improvement, Flash designers were

still unhappy because their text still didn’t look “quite right.” They looked at the introduction of CoolType to

Acrobat in 2000 and asked, “Uh, what about us?” The thing is, a lot of our work was in color, and adding

fuzzy gray pixels around colorful letters wasn’t making life easier for either party.

CoolType to the rescue

What CoolType does is create clearer, crisper type using a font-rendering technique Adobe calls color

anti-aliasing, which works on digital liquid crystal display (LCD) screens such as those in laptops,

handheld devices, and flat-panel desktop monitors. Unlike conventional anti-aliasing, which manipulates

only whole pixels, CoolType controls the individual red, green, and blue subpixels on a digital LCD screen.

The key word here is subpixels. The hundreds of thousands of squares on the screen, which are the

pixels, are actually further subdivided into even more squares. These are the subpixels, which are

something like quarks in the realm of the formerly indivisible atom.

According to Adobe, by adjusting the intensity of the subpixels independently, the strokes of a character can be

aligned on any subpixel boundary, thus achieving sharper, more precise smoothing along the edges of

characters. Using this subpixel technique, CoolType can dramatically increase horizontal resolution for improved

readability. Again, the keyword in that last sentence is horizontal. We read text across the page, which means

the characters are even sharper, which, in turn, makes them even more legible and readable. Figure 6-7, taken

from the Adobe CoolType web page, shows you how subpixels reinterpret character display.

Figure 6-7. On the left is regular pixelated type, and on the right is the same character using subpixels.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

TEXT

321

Typefaces and fonts

What is a typeface, and what is a font? Technically speaking, a typeface is an organized collection of

glyphs (usually letters, numbers, and punctuation) that shares stylistic consistency. A font is one particular

size or variety of a typeface. So, Arial 10 and Arial 12 represent two distinct fonts but belong to the same

typeface. The same goes for Arial and Arial Bold or the fonts—Times, Times Italic, Times Bold, Times Bold

Italic—used in Figure 6-1: separate fonts that belong to the same font family. In everyday talk, for better or

worse, most people simply use the word font for all the of preceding.

Flash offers an interesting advantage when it comes to typography: although HTML is capable only of

displaying fonts that are installed on the viewer’s computer, Flash can display whatever font you like. Want

to use some zany dingbat characters or an extravagant cursive font you designed yourself? Have at it.

Even input text fields—the sort typed into by the user—can be displayed in whatever font suits your fancy.

Flash text fields even support the filters encountered in Chapter 3.

Does this sound too good to be true? Well, everything has a price. Fonts can add to a SWF’s file size—the

more ornate, the greater the penalty. Take a moment to consider what fonts are, and you’ll see that this

makes sense. Most fonts store a mathematical description of the lines and curves that define each glyph.

Simple shapes require less description than complex shapes.

Does that sound oddly familiar? It should because most fonts today are drawn in a

PostScript drawing application. In fact, Illustrator CS5 is rapidly becoming the tool of

choice among the type design community.

Flash CS5 supports the following font formats: TrueType, OpenType, PostScript Type 1, bit (Macintosh),

and device fonts.

Staying with PostScript, you know the more complex the shape (that is, shapes with a lot of points), the

larger the file size. Let’s try a little experiment to prove it:

1. Head over to www.lipsum.org, a terrific site for generating placeholder text, and copy a

paragraph of Lorem Ipsum (we’ll call it lipsum for fun) to the clipboard.

2. Open a new Flash document, and select the Text tool. In the Properties panel, choose a

simple sans-serif font, like Arial, and confirm that Classic Text is being used and the type of

text is Static Text. Click in the upper-left corner of the stage, and, with the mouse still down,

drag to the other side of the stage and let go.

3. Paste the lipsum text into this text field.

www.zshareall.com

http://www.lipsum.org
http://www.zshareall.com

CHAPTER 6

322

4. Test your movie; when the SWF opens, select View ➤ Bandwidth Profiler to see the file

size information. Your SWF should be in the neighborhood of 4KB to 8KB.

5. Close the SWF, and change your text field’s font to something more elaborate, such as

Blackadder ITC, Brush Script, or whatever decorative typeface in your font list catches

your fancy. Test again, and compare file sizes. Your mileage will vary, of course, but experiment

a bit to see how different fonts carry different weights. You also might want to try this using more

than one font in the text field. This is very common practice, and this is a good place to start

learning how fonts affect the “weight” of a SWF.

Where did Lorem Ipsum originate? Being a wealth of absolutely useless information, we

are glad to oblige you with an answer. The earliest known example of its use is from an

unidentified type specimen produced in the 1500s. A printer jumbled up the text from

Cicero’s de Finibus Bonorum et Malorum, Liber Primus, sections 1.10.32 and 1.10.33,

and used it to show off his typefaces. It stuck and has been used ever since.

By the end of this chapter, you’ll know what your options are and will be equipped to make informed

choices. For starters, let’s look at how to dial back to zero the weight that a font adds to a SWF.

Working with device fonts
If you want, you certainly can go with fonts that are installed on the user’s machine, just like HTML does.

The benefit is that your SWF’s weight will be completely unaffected by text content. The drawback is that

you have to count on your audience having the same font(s) installed as you do (not a good idea) or

choose among three very generic font categories: _sans (sans-serif), _serif, and _typewriter

(monospace). These are the device fonts, and they are ideal for use on mobile devices.

In the Properties panel, take a look at your font choices in the font drop-down list. The top two, shown

in Figure 6-8, are preceded by an underscore. That’s the tip-off. If you select one of these fonts, Flash will

choose on your behalf whatever it thinks is the closest fit on the viewer’s computer. _sans will probably be

Arial or Helvetica, _serif will probably be Times New Roman or Times, and _typewriter will probably

be Courier New or Courier—but who knows for sure?

If you used Flash prior to this release, you may have had the same reaction we did when

we saw the font menu: “Whoa!!!” This reorganized font menu is part of the inclusion of

CoolType.

www.zshareall.com

http://www.zshareall.com

TEXT

323

Figure 6-8. The device fonts work everywhere but have limitations.

Another place where you can use device fonts is in those situations where you choose a font, such as

Helvetica, and you aren’t sure whether the user has the font. As shown in Figure 6-9, you can select Use

device fonts in the Anti-alias pop-down menu, and the fonts will be substituted at runtime.

Figure 6-9. Device fonts can be used to override the fonts in the movie at runtime.

Currently Flash can’t treat device fonts as graphics. Tweening stuff containing a device font is going to be

unpredictable.

Also realize the term device font is a “weasel word” for “pick the closest approximation.” This means you

lose all control over the spacing and length of the text on the screen at runtime. Depending on the font

chosen by the user’s machine, you may wind up having the user view your work through a font that has a

bigger x-height than your font. If you need an exact match, device fonts aren’t the way to go.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

324

X-height? What’s that? It is the height of the letter X in the font, and this proportional

characteristic can vary widely in different typefaces of the same size. Tall x-heights are

two-thirds the height of a capital letter and short when they are one-half the height of a

capital letter. Staying with our useless information theme, the trend to the larger x-height

in the sans category was sparked by a Swiss typographer, Adrian Frutiger, when he

released Univers 55.

Embedding fonts
We need to deal with this subject before we dive into the Text Layout Framework and Classic Text. The

reason is both types will embed a font into a SWF.

As you have learned, fonts are PostScript outlines of the letters and glyphs contained in a font. You buy

fonts, and as such, it is a copyright violation if you were to hand the user the opportunity to install a font in

order to see your amazing work. This is one of the reasons Matthew Carter designed the classic web

fonts. They were automatically installed on practically every computer on the planet in order to give

designers a bit of typographic variety and to keep them out of court. Apart from the web fonts, device fonts

are one solution and embedding is the other.

Matthew Carter may have designed the web fonts—Arial, Verdana, Georgia, and so

on—but it was Microsoft that put them into play when they asked Matthew to design

them. The fonts were released when Microsoft introduced Internet Explorer 4 in 1997.

How does embedding work? Let’s assume you are creating a rather grunge-looking design for a

skateboard company and the design specification calls for the use of a font named 28 Days Later. Your

decision is to use TLF Text, and the Anti-alias option chosen is Readability. You click the text

tool and enter Check out our decks. Just the letters in those four words will get embedded into the

SWF. Duplicates, in this case o, e, c, u, and k, will be ignored, which means a smaller SWF. Let’s try it:

1. Open a new Flash ActionScript 3.0 document, and select the Text tool. Click the stage, open the

Properties panel, select TLF Text from the Text Engine drop-down, and select Read

Only from the Text Type drop-down.

2. Choose a font in the family drop-down—we chose 28 Days Later, but you can use any font in

your list. Set the size to 48 points and the color to black (#000000). Make sure the Anti-alias

drop-down shows Use Device Fonts.

3. Click, and enter Check out our decks, as shown in Figure 6-10.

www.zshareall.com

http://www.zshareall.com

TEXT

325

Figure 6-10. We start with a simple line of text that uses a grunge-type font.

4. With the text box selected, choose Readability from the Anti-alias drop-down menu. The

alert shown in Figure 6-11 will appear. You actually have a couple of choices. Clicking the Not

now button will dismiss the alert, and Flash won’t embed anything into the SWF. Click the Embed

button, and the characters will be embedded into the SWF once you finish with the Font

Embedding dialog box that will open. Click the Embed button.

Figure 6-11. You make the decisions regarding embedding.

5. The Font Embedding dialog box that opens, as shown in Figure 6-12, may, at first, appear to

be a bit overwhelming. Let’s go through various bits and pieces of this dialog box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

326

Figure 6-12. The Font Embedding dialog box

On the left side of the dialog box is the name of the font. Click it, and everything on the right side grays out.

This is because, as we pointed out earlier, the name of the font is the family name. The fonts in the family

or style—Regular (Font 1)—are listed underneath. Select it, and the right side lights up.

The Options area allows you to give the font a name. Do this, and that name will be used in the resulting

font symbol in the Library. Your Character range choices allow you to control which glyphs are

embedded into the font symbol. The more glyphs added, the larger the SWF. As you make your choices,

the number in the Estimated Choices area will change.

Glyph? Each character in the font is called a glyph. In some fronts, the number of

characters can range into the hundreds. A good example of this concept are these two

glyphs: e and é. Notice the accent? That letter, with the accent, is a variation on the

letter e and is a character in the font set.

You can skip the selections and include only selected letters. For example, if you use the contents of the

text just entered, you would type chekoutrds, which, according to the Estimated glyphs total, would

add only ten characters to the embedded font.

www.zshareall.com

http://www.zshareall.com

TEXT

327

The bottom box gives you information regarding the font. This information is pulled from the font’s

metadata. Clicking the More Font Info button will launch the browser, take you to the Adobe site, and

open a Font License page. This page gives you a bit of information regarding the end user license

agreement (EULA) of the font. This would include whether the font can or cannot be embedded into a

SWF. This works really well for Adobe fonts, but fonts such as the one used here will result in the page

telling you, in a nutshell: “We can’t find the font, so you make the licensing call.” Why this legal stuff? It is

there to ensure that copyright is obeyed.

Here’s a little Mac trick if you want to remain “purer than pure” with embedding. Open

Font Book, select your font, and select Preview ➤ Show Font Info. If there is a

Yes in the Embeddable category, you are good to go.

If you click the ActionScript tab, a rather familiar area opens. The Linkage area should tell you that

the resulting font symbol can be used by ActionScript.

The Outline format area at the top of the ActionScript area lets you choose the

format used to draw the screen outlines of the glyphs. There are now two methods that

are tied to the Classic or TLF text engines. Select the Outline method that matches

your chosen text engine.

6. Click OK to accept the changes, and close the Font Embedding dialog box. Open your

Library, and you’ll see that a font symbol, as shown in Figure 6-13, has been added to your

Library.

Figure 6-13. A font symbol in the Library tells you a font has been embedded.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

328

The two text engines: TLF and Classic
If you clicked the Text Engine drop-down, you were presented with two choices: TLF Text and

Classic Text. Let’s deal with each one before moving on to how to use them.

If there has been one issue around Flash that designers have found frustrating, it would be how Flash

handles text. Considering that Adobe has always been a huge name in the font universe—both on the print

and digital sides of the fence—it was a mystery to designers as to how typography was so inconsistently

handled by Flash. These were things like ligatures, character formatting, text flow, and other typographic

nuances that were relatively unimportant to the casual user but a never-ending source of frustration for

designers who understood the importance of typography.

Flash CS5 marks the first major step to finally getting this issue out of the way. The Text Layout

Framework allows you to use ActionScript or the Properties panel in such a way as to make the old

way of managing text—Classic Text—look like a creaking machine on its last legs. You can do the

following with TLF Text:

 Highlight text

 Underline text

 Use strikethroughs, superscript, and subscript

 Control case, ligatures, and baseline shift

 Flow text between text containers to create columns

 Have text run from left to right or right to left depending upon the alphabet used

 Apply padding, borders, and background colors to the columns

Just keep in mind that TLF Text works only with projects aimed at Flash Player 10 or newer and only with

TrueType and OpenType fonts. If your project scope targets any player older than this version or uses a

PostScript font, you have to use Classic Text.

The best way of regarding Classic Text is to consider it as being the way text was formatted in previous

versions of Flash. Another way of seeing the differences is to simply compare the differences in formatting

options presented in the Properties panel. As shown in Figures 6-14 and 6-15, they are significant.

www.zshareall.com

http://www.zshareall.com

TEXT

329

Figure 6-14. TLF Text puts some powerful typographic tools in your hands.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

330

Figure 6-15. Classic Text is how text was formatted in previous versions of Flash.

Now that you are able to distinguish between the two methods of text handling, you can turn your attention

to the three types of text that both work with. Once you understand this concept, then you can start playing

with text.

Types of text
If you select Classic Text in the Properties panel and open the Text Types drop-down, you will be

presented with three ways to classify text on the stage: Static, Dynamic, and Input. Select TLF Text

and do the same thing, and your choices are Read Only, Selectable, and Editable. In a sense,

Dynamic, Input, Selectable, and Editable are actually the same thing, but that only matters in

terms of ActionScript. In relation to the Properties panel, static and read-only text fields contain text that

won’t be edited after the SWF is published, dynamic text fields contain text that will (or can), and input text

fields contain text that is entered by the user. Each classification carries its own characteristics, much of

which is shared among all three. Let’s get to our penmanship!

From this point onward in this chapter, we are going to work with the TLF feature rather

than Classic Text. This is not because TLF is so “cool.” It is strictly because TLF is so

new that dealing with both Classic and TLF text would require more than one chapter in

the book.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

TEXT

331

Read-only text properties

Read-only text is the least powerful sort of text in Flash, but don’t let its humble nature fool you. If you’re

into racing, it’s also true that horses run slower than cheetahs, but why split hairs?

As with most other tools in the Tools panel, the Properties panel, shown in Figure 6-16, controls text

field properties in a big way, so let’s take a look at each configurable item outside of the already familiar

Position and Size properties.

Figure 6-16. The Properties panel and read-only text

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

332

Character properties

The following properties are in the Character category:

 Family: This lets you select from the list of fonts installed on your computer. With static text, in

most cases, font outlines are included with the SWF. For that reason, it doesn’t matter whether

your audience has the same font installed. The only exception is when you use the first three

device fonts (the ones with the underscores). This setting marks the first of many that may be

applied more than once, and in various ways, in the same text field.

TLF Text does not support PostScript Type 1 fonts. It only supports TrueType and

OpenType fonts. If you choose a PostScript font, Flash will substitute the PostScript font

for a device font such as _sans.

 Style: Most typefaces contain Regular, Bold, Italic, and other variants. To apply a style to the

whole text field, choose the Selection tool, click the text field, and then make your selection. To

apply a style to individual words or characters, use the Text tool to select the text field, highlight

the desired glyphs, and then select the desired variant. Bold and italic versions of the chosen font

must exist on your computer for this styling to occur.

The Style drop-down menu replaces the B and I buttons traditionally used to specify

bold or italic variants. It also groups the font families. Prior to this release, each font was

its own entry in the Font drop-down list. If you are a font junkie, this resulted in a font list

that seemed to stretch for meters. Now the variations of the font, such as the Italic

shown in Figure 6-16, are in one neat, tidy package.

 Size: This sets the selected font’s size, in points. Multiple font sizes are allowed within the same

text field. The scrubber ranges from 8 points to 96 points, but you may type in other values

directly, anywhere from 0 (invisible) to 2,500 (jaw-droppingly way huge). This includes noninteger

values, such as 12.75. In cases between 1,800 points and 2,000 points, the glyphs of most fonts

“jump outside” the bounding box of their text fields, but this doesn’t seem to affect text rendering;

it merely makes the text field harder to select.

 Leading: This determines the uniform distribution of space between lines of text. The higher the

number, the wider apart the lines, and vice versa. You get to choose between specifying leading

as a percentage of the type size or as points. For example, you can choose to add 2 points or 20

percent leading to 10-point text. Be careful with this because the values between the two option

scan be different.

 Color: Want fuchsia text? Here’s where to make that statement. Multiple colors are allowed

within the same text field.

 Highlight Color: Think of this as being able to choose the color of a highlighter pen.

www.zshareall.com

http://www.zshareall.com

TEXT

333

 Tracking: Also known as letter spacing, this value determines the uniform distribution of space

between glyphs. The higher the number, the wider apart the characters, and vice versa. If you

want, you can even squish letters together by using a negative number. Typographers have a

term for this: crashing text. Multiple Letter Spacing settings may be applied to the same text

field.

 Auto kern: This check box toggles auto-kerning. What is kerning? This is in the same ballpark

as letter spacing, except kerning refers to individualized spacing between pairs of glyphs.

Consider the capital letters A and V: the bottom of the A’s right side extends out, which fits neatly

under the “pulled-in” bottom of the V. Kerning reduces the space between these and other glyphs

that “fit together” in this way, which tends to provide greater visual balance.

 Anti-alias: Flash Player 8 introduced a number of new visual effects, and one of those was

improved text rendering. This enhancement lives on in Flash Player 10, the player that

corresponds to the default publish settings for Flash CS5. You have three anti-aliasing choices for

font rendering:

 Use device fonts: This relies on the user having your chosen font installed. Unlike the

three device fonts mentioned earlier (_sans, _serif, and _typewriter), this setting uses

exactly the font you specify—provided it is available on the computer playing the SWF file. If

not, Flash makes the choice.

 Readability: New since Flash 8, this format improves readability of small- and regular-

sized fonts. Text animates smoothly because alignment and anti-aliasing are not applied

while the text animates (it is reapplied when animation stops). This advanced anti-aliasing is

not supported in Flash Player 7 or earlier SWFs, in skewed or flipped text (rotated is OK), in

printed text, or in text exported as PNG. Under these circumstances, the normal anti-aliasing

(Anti-alias for animation) is applied.

 Animation: This provides normal text anti-aliasing. Glyphs appear smooth (no jaggies) and

may be applied to text fields in older versions of Flash Player.

 Rotation: You get three choices: Auto, 0, and 270. This feature is not exactly what you would

assume it is used for. It is to be used where there is a combination of Roman and Asian text

where characters must be rotated to display properly in a vertical layout. Referred to as tate-chu-

yoko (also called kumimoji and renmoji), this feature makes it easier to read half-width

characters such as numbers, dates, and short foreign words in vertical text.

 Underline, Strikethrough, Superscript, and Subscript: Select a word or glyph, and

click one of these buttons to apply these styles.

To see a Read Only text field in action, start a new Flash document, select the Text tool, choose TLF as

the Text type in the Properties panel, and click somewhere on the stage. Type your name. Select

the second letter of your name by dragging the mouse from one side of the letter to the other. Change the

font. Select the third letter, and change the font again.

Notice that the text field automatically widens as you type. The indicator for this is the little white circle in

the bottom-right corner of the text field, as you can see in Figure 6-17. If you keep typing, the text field will

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

334

eventually extend past the stage and off into the wild blue yonder. To set a specific width, which causes

text to wrap, hover over that white circle until you see the double-headed arrow cursor. Click and drag to

the desired width. The white circle turns into a white square. To switch back to auto-widen mode, double-

click that square.

Figure 6-17. A white dot tells you the text field will widen as you type.

Advanced character properties

These choices, with one exception, are new to Flash CS5. Here’s what they do:

 Link and Target: These settings, which have been around for a very long time, allow you to

create hyperlinks inside text fields. Either select the whole text or use the mouse to select

individual glyphs or words, and then type a URL into the Link field (such as

http://www.VisitMe.com/). Entering anything at all into the Link field activates the Target

field below it, which gives you the same four choices available to HTML anchor tags (<a>):

 _blank: Opens the URL in a new browser window.

 _parent: Opens the URL in the parent frameset of an HTML frameset (this assumes the

SWF is embedded in an HTML page that appears in multiple framesets).

 _self: Opens the URL in the same window or frame as the current HTML document that

holds this SWF. This is the default behavior.

 _top: Opens the URL in the topmost window of a frameset, replacing the frameset with the

new URL.

Hyperlinks in the Link field do not change the appearance of the text in any way, even though a dashed

line appears under hyperlinked text during authoring. This differs from HTML hyperlinks, which are

traditionally differentiated by an underline and a change in color. Flash hyperlinks are primarily meant for

www.zshareall.com

http://www.VisitMe.com
http://www.zshareall.com

TEXT

335

loading HTML documents, which may or may not contain additional Flash content. As a general rule, this

is not the place to load external SWFs into the current movie.

 Case, Digit Case, Digit Width: These three choices allow you to format numbers. When

used with OpenType fonts (the ones with an O in the Family drop-down) that offer both lining

and oldstyle numbers, you choose the style to apply in the Case drop-down and whether to use

proportional or tabular numerals using the Digit Case and Digit Width options in their

respective drop-down menus. So, how does all of this work?

Oldstyle figures, shown in Figure 6-18, are a type of numeral, which approximates lowercase letterforms

by having an x-height and varying lengths in their ascenders and descenders. They are considerably

different from the more common “lining” (or “aligning”) figures shown in Figure 6-18 that are all-cap height

and typically monospaced in text faces so that they line up vertically on charts. Oldstyle figures have what

is considered to be a traditional, classic, almost calligraphic look. They are available only for certain

typefaces, sometimes as the regular numerals in a font, but more often within a supplementary or expert

font. The figures are proportionately spaced, eliminating the white spaces that result from monospaced

lining figures, especially around the numeral one.

Figure 6-18. The fundamental differences between oldstyle and lining numerals are evident in the

numbers 4 and 7.

 Ligatures: This moves into the realm of advanced typography for people new to the subject.

Ligatures are typographic replacement characters for certain letter pairs, such as fi and fl,

when they are available in a given OpenType font. With OpenType fonts, when you choose

Common from the Ligatures drop-down menu, you will see the standard ligatures built into the

font, as determined by the font designer. However, some fonts, such as Hypatia Pro, shown in

Figure 6-19, include more ornate, optional ligatures, which can be produced when you choose the

Minimum, Uncommon, or Exotic Ligatures options. As you can see from Figure 6-19, the

ligature style chosen tends to tighten up or appear to condense a line of text.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

336

Figure 6-19. A selection of ligatures and how the various Ligature options affect the ligatures

 Break: You can prevent words from breaking at the end of lines—for example, proper names or

words that could be misread when hyphenated. You can also keep multiple words or groups of

words together—for example, clusters of initials and a last name. To use the options in the drop-

down menu, select the word or group of words you don’t want to break and select an option.

Be very careful with this option. If you apply the No Break choice to too many adjacent

characters, the text may wrap in the middle of a word.

 Baseline Shift: Select a range of letters or an entire line of text, and by changing the value,

the selection moves above or below the baseline. The drop-down menu allows you to choose

points or a percentage for the amount as well as to treat the selection as superscript or subscript

text.

 Locale: This has absolutely nothing to do with spelling or localization. The language chosen will

set the typographic rules that apply to the language chosen.

Paragraph properties

These are the Paragraph properties:

 Align Left, Align Center, Align Right, Align Justify: These buttons in the Format

area only make practical sense when applied to fixed-width text fields. In cases where your words

wrap, this determines how they do it. Align Left means the left edge of your lines of text will

be even. Align Center means your lines will be centered inside the text field. Align Right

means the right edge will be even. Align Justify means both the left and right edges will be

even. The four justification buttons to the right let you determine how the last line or word of a

paragraph will be justified. Different alignments may be applied to each line of text in a text field.

 Margins: Scrub across these values, and you can add space to the right and the left of a text

block.

www.zshareall.com

http://www.zshareall.com

TEXT

337

 Indent: Select the first line of a text block and scrub across the indent value, and the selection

will move inward (positive values) or outward (negative values).

 Spacing: Scrub across the spacing values to add spacing between paragraphs to the top or

bottom line of the paragraph. This adds space between paragraphs to make the text look less

cramped.

 Text Justify: Your two choices are word and letter spacing if text is to be justified. Letter

spacing spreads all the letters out across the text block. Word spacing adds the space between

the words. Both are dangerous choices, and our advice is to apply text justification with care and

to keep the added spacing between words or letters to a minimum.

Container and flow

If any one aspect of text management in Flash hits the proverbial “sweet spot,” this just may be it. This

feature of the Text Layout Framework allows you to create multicolumn text and flow text between the

columns. The really neat thing is you can create your own columns or break a single text box into multiple

columns. Here’s how:

1. Open the Containers.fla document in your Chapter 6 Exercise folder. When it opens, you

will see a text block containing the first three paragraphs that opened this chapter.

2. Select the Selection tool, click the text block to select it, and, in the Properties panel, twirl

down the Container and Flow options, as shown in Figure 6-20.

Figure 6-20. A single block of text is about to become a single block of multicolumn text.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

338

3. Open the Behavior drop-down. The three choices—Single Line, Multiline, and

Multiline no break—determine how the text will flow within the text box. Select each one,

and see what it does. When you finish, make sure you have Multiline selected.

4. Double-click the hot text in the Columns category, and enter 2. Press the Enter key, and the

text is now in two columns. Notice, too, that the Gutter Width now sports a value of 20 pixels.

This value is the space between the columns.

5. Click the Link icon in the Padding area to apply the changes uniformly. Scrub across the Left

padding hot text to see how padding affects the flow of the text in the columns.

6. Click the Stroke and Fill color chips, and select different colors. A stroke color is added to the

edge of the text box, and you can scrub across the hot text to make the stroke thicker or thinner.

The fill choice fills the text box or container. Set both the Stroke and Fill colors to None.

7. The final area is 1st Line Offset, and the drop-down menu offers you a variety of choices

ranging from manually setting a value to letting the software handle the duties for you. If you

select pt from the drop-down menu and scrub across the hot text, you will see the top line of

each column move down. This should tell you this feature lets you set the distance between the

top edge of the container and the text. When you finish, select Auto from the drop-down.

8. Select File ➤ Revert to revert to the original one-column version of this file.

Now that you have had a chance to try this new feature, let’s explore another, even cooler aspect of

working with columns in Flash.

If you are familiar with InDesign or even QuarkXPress, you are quite aware of how multicolumn text is

created. You draw out the text boxes, add some text, and then link them together. When you do this, all of

the text in that first column flows into the other linked columns. This is exactly how it now works in Flash.

Let’s give it a try:

9. You should have the Containers.fla file open. Click the Selection tool, and click the text

box. The text box or container sports those familiar handles.

10. Click the bottom-center handle of the text box, and drag it up to a point just under Robert

Bringhurst in the text block. When you release the mouse a red box, the Flow icon shown in

Figure 6-21, appears on the left edge of the text box. This tells you that there is more text in this

text block than you see.

Figure 6-21. The location of that red Flow icon tells you there is more text below the last line.

www.zshareall.com

http://www.zshareall.com

TEXT

339

11. Click the Flow icon. Your cursor will change from the pointer to what looks like a text box. Click

the stage just under the text box. That new icon told you the text was “loaded,” and when you

clicked the mouse, another text box appears. Inside that new box is the loaded text, and an

arrow, shown in Figure 2-22, appears, which shows you the text is flowing from the top container

to the new one.

To remove a link, double-click the Flow icon on either side of the connecting line.

Figure 6-22. An arrow indicates how the text flows from one container to another.

12. Click the new text box, and in the Container and Flow options choose 2 columns. You now

have the quote in a single text box and the paragraphs after it spanning two columns. Let’s make

the quote in the top text container a little prettier.

13. Select the quote (including the quotation marks), twirl down the Character properties, and

choose Italic from the Style drop-down. Change the size to 14 points, and set Leading to

120%.

If text moves between linked containers, expand or contract the containers by clicking

and dragging one of the resize handles. The text that shifted will move back into its

proper location.

14. Twirl down the Paragraph settings, and set the Indent value to 3 pixels and the Space after

paragraph value to 4.5.

15. Twirl down Container and Flow. Click the Lock icon in the padding area, and change the

Left value to 10 pixels. Set the 1st Line Offset value to 10 points.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

340

16. Select the words Robert Bringhurst, and in the Character area, choose Bold Italic

from the Style drop-down. The entire text block shown in Figure 6-23 is a lot more inviting than

the one we started with in Figure 6-22.

Figure 6-23. The Text Layout Framework drops some amazingly powerful tools into your hands.

Selectable and editable text

What makes selectable text and editable text different from their read-only counterpart? From the point of

view of the Properties panel, not a whole lot. Change the text type setting to Dynamic Text, and

nothing really changes. Change it to Editable, and the Link and Target areas of the Advanced

Character properties area of the Properties panel disappears.

The major difference is not when you create the text; it becomes evident at runtime when the SWF is

playing. Selectable text lets your user select the text in the container and copy it to the clipboard. All of

the formatting applied in the Properties panel is in play when you run the SWF, but it is lost when the

text is copied from the container to the clipboard. Use selectable text when you want the user to be able to

grab text from your SWF and use it elsewhere. A good example would be tutorial sites where you can copy

the code presented, paste it into a text document, and get back to it later.

Editable text is text that can be edited in the SWF. The best way of thinking of this type is as an input box

in a form. This means you can enter text, change words, and so on, while the SWF is running. That’s the

good news. The bad news is changes are hardwired into the SWF, which means you can’t choose Undo or

use Ctrl+Z (Windows) or Cmd+Z (Mac) if you make a mistake.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

TEXT

341

TLF and ActionScript

A lot has changed between how text was handled in Flash CS4 and Flash CS5. We think now is a good

time to pull up a stool, sit down, and review, in very broad terms, what one needs to know before “wiring

up” an exercise or project using ActionScript.

As you have seen, text is found in these things called containers. They either can be physically drawn on

the stage using the Text tool and given an instance name or, as is more common, can be created at

runtime. You also know that the text can be formatted and manipulated using the Properties panel. The

neat thing here is the word properties. If there is a property in the panel, its counterpart is found in

ActionScript. The bad news is, ActionScript is stone, cold stupid. It doesn’t have a clue, for example, what

a container is until you tell it to create one. It won’t format text until you tell it what to do. It won’t even put

the text on the stage until it is told to do so.

Most projects will start with you telling Flash to create a Configuration() object, which is used to tell

Flash there is a container on the stage and how to manage the Text Layout Framework for the stuff in the

container. The actual appearance is handled by the TextFlow() class, which takes its orders, so to

speak, from the Configuration() object.

Naturally, being stupid, the Configuration() object needs to be told exactly how to manage the text in

the container. The default format is set through a property of the Configuration class called

textFlowInitialFormat. To change it, you simply use the TextlayoutFormat () class to set the fonts,

colors, alignment, and so on, and then tell the boss—Configuration ()—that its

textFlowInitialFormat has changed to the ones you set using TextLayoutFormat().The boss will get

that, but he isn’t terribly bright, so you next need to tell him to hand the actual work to another member of

the management team, the TextFlow() class. This class has overall responsibility for any words in a

container. Being just as dim as the boss, TextFlow() needs to be told what a paragraph is

(ParagraphElement), how wide the paragraph is (SpanElement), whether any graphics are embedded in

the paragraph (InLineGraphicElement), whether any of the text contains links (Link Element), and so

on. Not only that, but it needs to be told what text is being added to the container so it can handle the line

length and to add any children (addChild) that contain that formatting so the user can actually see it.

The TextFlow() class, again not being too terribly bright, will then hand the job over to another member

of the management team, the IFlowComposer() class, whose only job is to manage the layout and

display of the text flow within or among the containers. The flow composer finishes the process by deciding

how much text goes into a container and then adds the lines of text to the sprite. This is accomplished

through the use of the addController() method, which creates a ContainerController() object

whose parameters identify the container and its properties.

The usual last step is to tell the FlowComposer to update the controllers and put the text on the stage

according to how the other members of the team have told the Configuration() object how their piece of

the project is to be managed.

With this information in hand, let’s move on to working with TLF in ActionScript.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

342

Creating a column of text with ActionScript

To create a column of text with ActionScript, follow these steps:

1. Open a new Flash ActionScript 3.0 document, rename Layer 1 to actions, select the first

frame of the actions layer, and open the Actions panel.

2. Click once in the Script pane, and enter the following:

var myDummyText:String = "The introduction of the Adobe CS5 product line puts some
powerful typographic tools in your hands—notably, a new API (Application Programming
Interface) called Type Layout Framework (TLF)—and with as more tools in the Adobe
line up nudge closer to a confluence point with Flash, the field of typographic
motion graphics on the Web is about to move into territory that has yet to be
explored. To start that exploration, you need understand what type is in Flash and,
just as importantly, what you can do with it to honor the communication messengers
of your content.";

You need some text to add to the stage. This string is the third paragraph of this chapter.

3. Now that you have the text to go into the container, you need to load the class that will manage it.

Press the Enter (Windows) or Return (Mac) key, and add the following line of code:

var config:Configuration = new Configuration();

As you may have noticed, as soon as you created the Configuration() object, Flash imported the

class—flashx.textLayout.elements.Configuration—whose primary task is to control how TLF

behaves. The next code block tells TLF how the text will appear on the stage.

4. Press the Enter (Windows) or Return (Mac) key twice, and enter the following:

var charFormat:TextLayoutFormat = new TextLayoutFormat();
charFormat.fontFamily = "Arial, Helvetica, _sans";
charFormat.fontSize = 14;
charFormat.color = 0x000000;
charFormat.textAlign = TextAlign.LEFT;
charFormat.paddingLeft =100;
charFormat.paddingTop = 100;

The TextLayoutFormat class, as we said earlier, is how the text in a container is formatted. The

properties in this class affect the format and style of the text in a container, a paragraph, or even a single

line of text. In this case, we are telling Flash which fonts to use, the size, the color, how it is to be aligned

(note the uppercase used for the alignment), and the padding that moves it off the edges of the container.

www.zshareall.com

http://www.zshareall.com

TEXT

343

Before you move on, you need you to do something. There is a coding issue. Scroll up

to the import statements. If you see this line—import flashx.textLayout.elements.
TextAlign;—proceed to the next code block. If you don’t, delete this line in the code

block just entered: charFormat.textAlign = TextAlign.LEFT;. Reenter

charFormat.textAlign =. Type in the first two letters of the class (Te), press

Ctrl+spacebar, and the code hint should appear. Find TextAlign, and double-click it.

This should add the missing import statement. To preserve your sanity, we will be

providing a list of the import statements that should appear at the end of each exercise.

We strongly suggest that you compare your list of import statements against the list

presented and, if you are missing any, add them into your code.

5. Now that you know how the text will be formatted, you need to tell the Configuration() object

to use the formatting. If you don’t, it will apply whatever default setting it chooses. Press the Enter

(Windows) or Return (Mac) key twice, and enter the following:

config.textFlowInitialFormat = charFormat;

6. Press the Enter (Windows) or Return (Mac) key, and enter the following code block:

var textFlow:TextFlow = new TextFlow(config);
var p:ParagraphElement = new ParagraphElement();
var span:SpanElement = new SpanElement();
span.text = myDummyText;
p.addChild(span);
textFlow.addChild(p);

The TextFlow () object needs to be here because its job is to manage all the text in the container. The

constructor—TextFlow (config)—lets TLF know that it is to use the config object created earlier so it

now knows how to format the contents of the container and even the container itself.

The next constructor—ParagraphElement()—essentially tells Flash how a paragraph is to be handled.

There is only one here, so it really doesn’t need a parameter.

7. The final step is to get all the formatting and layout into the container on the stage. Press the

Enter (Windows) or Return (Mac) key, and add these final two lines:

textFlow.flowComposer.addController(new ContainerController(this, 500, 350));
textFlow.flowComposer.updateAllControllers();

The first line adds the ContainerController and tells Flash the container being managed is the current

DisplayObject (this), which currently is the stage, and to set its dimensions to 500 pixels wide by 350

pixels high.

8. Save the project, and test the movie. The text, as shown in Figure 6-24, appears using the

formatting instructions you set.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

344

Import statements for this exercise

These are the import statements for this exercise:

import flashx.textLayout.elements.Configuration;
import flashx.textLayout.formats.TextLayoutFormat;
import flashx.textLayout.formats.TextAlign;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.elements.ParagraphElement;
import flashx.textLayout.elements.SpanElement;
import flashx.textLayout.container.ContainerController;

Figure 6-24. Using ActionScript to create and format the container and its text

The completed file for this exercise—TLF_simple_AS.fla—can be found in the

Complete folder in this Chapter’s Exercise folder.

Though this coding task may, at first, appear to be a rather convoluted process, we can assure it isn’t; it

will become almost second nature as you start using ActionScript to play with text in the containers.

With the introduction of the Text Layout Format, your ability to create text, format text, put it in columns,

and generally manipulate it using ActionScript has greatly expanded your creative possibilities. Before you

get all excited about this, you need to know that the word Framework is there for a reason.

www.zshareall.com

http://www.zshareall.com

TEXT

345

Any TLF text objects you create will rely on a specific TLF ActionScript library, also called a runtime

shared library (RSL). When you work on the stage in the Flash interface, Flash provides the library. This

is not the case when you publish the SWF and place it in a web page. It needs to be available, much like

Flash Player, on the user’s machine. When the SWF loads, it is going to hunt for the Library in three

places:

 The local computer: Flash Player looks for a copy of the library on the local machine it is playing

on. If it is not there, it heads for Adobe.com.

 Adobe.com: If no local copy is available, Flash Player will query Adobe’s servers for a copy of

the library. The library, like the Flash Player plug-in, has to download only once per computer.

After that, all subsequent SWF files that play on the same computer will use the previously

downloaded copy of the library. If, for some reason, it can’t grab it there, it will look in the folder

containing the SWF.

 In the folder containing the SWF: If Adobe’s servers are not available for some reason, Flash

Player looks for the library in the web server directory where the SWF file resides. To provide this

extra level of backup, manually upload the library file to the web server along with your SWF file.

We provide more information around how to do this in Chapter 15.

When you publish a SWF file that uses TLF text, Flash creates an additional file named

textLayout_X.X.X.XXX.swz (where the Xs are replaced by the version number) next to your SWF file. You

can optionally choose to upload this file to your web server along with your SWF file. This allows for the rare

case where Adobe’s servers are not available for some reason. If you open the file where you saved this

exercise, you will see both the SWF and, as shown in Figure 6-25, the SWZ file.

Figure 6-25. The .swz file contains the Text Layout Framework.

Using TLF text as a button

It should come as no surprise that you can use TLF text as a button to kick off an event in your movie. For

example, you could have a text block on the stage that talks about a visit to Times Square in New York,

and when the user clicks the phrase Times Square, a photo appears on the stage. In this example, you

are going to click some text, and a yellow star you will create on the stage starts spinning. Here’s how:

1. Open a new Flash ActionScript 3.0 document, and save it to your Chapter 6 Exercise folder as

TLF_eventLink_AS.fla. Change the name of Layer 1 to Star, and add a new layer named

actions.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

346

2. Click once in the first frame of the Star layer. Click and hold on the Rectangle tool on your

toolbar, and select the Polystar tool.

3. In the Properties panel, twirl down the Fill and Stroke properties and set the Stroke

value to None and the Fill value to Yellow (#FFFF00).

4. Twirl down the Tool Settings, and click the Options button to open the Tool Settings

dialog box shown in Figure 6-26. Select Star from the Style drop-down, and enter 5 for the

Number of Sides. Click OK to close the dialog box.

Figure 6-26. Use the PolyStar tool to create stars.

5. Draw a star somewhere in the bottom half of the stage, convert it to a movie clip named Star,

set its registration point to Center, and in the Properties panel give the Star movie clip the

Instance name of starMC.

6. Click the first frame of the actions layers, and open the Actions panel. When the panel

opens, click once in the Script pane, and enter the following code block:

var containerSprite:Sprite = new Sprite();
this.addChild(containerSprite);
containerSprite.x = 25
containerSprite.y = 50;

As we pointed out in Chapter 4, a Sprite is a virtual movie clip with no timeline. We start by creating a

Sprite named containerSprite, which will be used to hold the text. The reason we need this is

because there is going to be some interactivity involved. This Sprite is placed 25 pixels from the left edge

of the stage and 50 pixels from the top.

7. Press the Enter (Windows) or Return (Mac) key twice, and enter the following code:

var container :ContainerController = new ContainerController(containerSprite, 400,
300);
var config :Configuration = new Configuration();

var charFormat:TextLayoutFormat= new TextLayoutFormat();

www.zshareall.com

http://www.zshareall.com

TEXT

347

charFormat.fontFamily= "Arial, Helvetica,_sans";
charFormat.fontSize = 14;
charFormat.color = 0X000000;
charFormat.textAlign = TextAlign.LEFT;
config.textFlowInitialFormat = charFormat;

Nothing new here. The container for the text is created along with the Configuration() object, and the

formatting for the text to be placed in the container is created.

8. Press the Enter (Windows) or Return (Mac) key twice, and enter the following:

var textFlow :TextFlow = new TextFlow();
var p :ParagraphElement = new ParagraphElement();
p.linkHoverFormat = { color:0XFF0000 };
p.linkNormalFormat = { color:0x0000FF,textDecoration:TextDecoration.NONE };

The last two lines are new, and their purpose is to let you change the color of a word or group of words

when the user rolls over them. The linkHoverFormat property belongs to the TextFormat class and is

used to tell Flash what color the text identified as a link will be when the mouse rolls over it. In this case,

the color will change to Red.

As you may have guessed, the second line tells Flash what color the link is to be when the mouse rolls off.

In this case, it will be blue. Naturally, links are traditionally underlined. The way the underline is removed is

to use the NONE constant, which is part of the TextDecoration class. If you want the underline, it would

be TextDecoration.UNDERLINE.

9. The next step in the process is to tell Flash what to do when the colored text is clicked. Press the

Enter (Windows) or Return (Mac) key twice, and enter the following:

var link:LinkElement = new LinkElement();
link.addEventListener(FlowElementMouseEvent.CLICK, linkClicked);

10. There is, of course, nothing to click. Let’s deal with that issue. Press the Enter (Windows) or

Return (Mac) key a couple of times, and add the following:

var linkSpan:SpanElement = new SpanElement();
linkSpan.text = "Click here" ;
link.addChild(linkSpan);

var span:SpanElement = new SpanElement();
span.text = " to see your star spin on the stage";
p.addChild(link);
p.addChild(span);

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

348

11. The next step is to get the text flowing into the container. Press the Enter (Windows) or Return

(Mac) key, and add the following:

textFlow.addChild(p);
textFlow.flowComposer.addController(container);
textFlow.flowComposer.updateAllControllers();

12. The final code bit is the function that gets the star spinning when the text is clicked. Enter the

following:

function linkClicked(evt:FlowElementMouseEvent) :void{
 evt.preventDefault();
 var tween :Tween = new Tween(starMC, "rotation", Elastic.easeOut, 0, 180, 2,
true);
}

The first line of code tells Flash to ignore any default settings there might be in regards to the mouse and

the text in the container.

The magic happens in that second line. The parameters tell the Tween class to work with the rotation

property of the star (starMC) and to apply an easeOut to the star when it finishes rotating. Naturally, Flash,

being stupid, needs to be told that the rotation starts with the star at 0 degrees and to rotate across 180

degrees. It does this two times and uses seconds as the measure of time.

13. Click the Check Syntax button as your first skim through the code looking for errors. If there are

none, your computer will ding. If errors are found, they will be shown in the Compiler panel. The

most common error will be spelling or a missing import statement.

Here’s a quick tip. If a class doesn’t show up as an import, the Compiler panel will tell

you the property is undefined. Select the class in the code where it appears, and

delete the text. Type in the first two letters of the class, and press Ctrl+spacebar. The

class will appear in the resulting code hint. Double-click the class to add it back into the

code. This also creates the missing import statement.

14. Save and test the movie. The text, as shown in Figure 6-27, is colored. When you click the

mouse, the star spins. A completed version of this file—TLF_eventlink_AS.fla—can be found

in the Complete folder located in your Chapter 6 Exercise folder.

www.zshareall.com

http://www.zshareall.com

TEXT

349

Figure 6-27. Text can be used to initiate events on the Flash stage.

Import statements for this exercise

These are the import statements for this exercise:

import flash.display.Sprite;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.elements.Configuration;
import flashx.textLayout.formats.TextLayoutFormat;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.elements.ParagraphElement;
import flashx.textLayout.elements.LinkElement;
import flashx.textLayout.elements.SpanElement;
import flashx.textLayout.events.FlowElementMouseEvent;
import fl.transitions.Tween;
import flashx.textLayout.formats.TextDecoration;
import fl.transitions.easing.Elastic;
import flashx.textLayout.formats.TextAlign;

Hyperlinks and TLF
Every type of TLF text in Flash—Read Only, Selectable, and Editable—supports hyperlinks. All it

takes to add a link in a text container is to type in your text, select a few words, and enter the desired URL

into the Properties panel, as shown in Figure 6-28. Optionally, you can enter a target as well. If you

want the whole text container hyperlinked, use the Selection tool to select the container itself, and then

use the Link and Target properties in the Advanced Character options area of the Properties

panel in the same way.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

350

Figure 6-28. Applying a hyperlink to text

As easy as this approach is, a downside is the hyperlink underline added to the text. It simply can’t be

removed. Still, hyperlinks may be absolute, such as http://www.SuperSite.com/thisPageHere.html,

or relative, such as../thisOtherPage.html. For relative paths, it’s important to know that the path will be

determined not from the point of view of the SWF, but from the HTML file that contains it. For example, you

may choose to keep all your HTML files in the root of your website. Because you’re an organized

developer, you may choose to put all your image files in their own subfolder of the root, and you may just

do the same with your Flash content. From a SWF’s point of view, the relative path to all HTML files

requires stepping back one folder. So, if a SWF links to one of those pages, you might be tempted to

precede the destination’s filename with ../, but don’t! The HTML file that contains the SWF in question is

already in the same folder as the destination page, and it’s the containing HTML file’s point of view that

matters.

Using ActionScript to add hyperlinks to TLF text

As you saw in the previous example, you can use a piece of text in a container to trigger an event on the

Flash stage. It goes without saying that the same piece of text can be used to launch a web page. Rather

than rehash everything done previously, open the TLF_Hyperlink_AS.fla file in your Chapter 6

Exercise folder, and let’s see how this is accomplished.

1. Scroll down to line 32 of the Script pane. Select the word NONE, and change it to UNDERLINE.

The result of this change is to actually have the clickable text look like a common HTML hyperlink

that uses an underline.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.SuperSite.com/thisPageHere.html
http://www.zshareall.com

TEXT

351

2. Press the Enter (Windows) or Return (Mac) key twice, and enter the following code block:

var link:LinkElement = new LinkElement();
link.href = "http://www.friendsofed.com";

var linkSpan:SpanElement =new SpanElement();
linkSpan.text = "Click here ";
link.addChild(linkSpan);

var span:SpanElement = new SpanElement();
span.text = " to download the files for this book.";

p.addChild(link);
p.addChild(span);
textFlow.addChild(p);

As you may have gathered, all items in a TLF container are influenced or managed by elements. The first

two lines establish that a variable called link will be managed by a LinkElement and will be placed in a

LinkElement() object. The next line uses the common href tag from HTML to identify the link.

Now that you have established where the link is going—to the friends of ED website—you create a span

for the text that will be clicked, put the text into the span, and use the addChild() method to put the

linkSpan on the stage.

The rest of the code adds the remaining text, associates the link to the text in the sentence (p), puts the

sentence on the stage, and flows it into the textFlow container.

3. Save the file, and test the movie. The text containing the link, as shown in Figure 6-29, is blue

and sports a rather spiffy underline. Click the link, and the friends of ED homepage opens.

Figure 6-29. Using the UNDERLINE constant adds the common HTML underline users are used to.

www.zshareall.com

http://www.friendsofed.com
http://www.zshareall.com

CHAPTER 6

352

Import statements used for this exercise

These are the import statements used for this exercise:

import flash.display.Sprite;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.elements.Configuration;
import flashx.textLayout.formats.TextLayoutFormat;
import flashx.textLayout.formats.TextAlign;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.elements.ParagraphElement;
import flashx.textLayout.edit.EditManager;
import flashx.undo.UndoManager;
import flashx.textLayout.formats.TextDecoration;
import flashx.textLayout.elements.LinkElement;
import flashx.textLayout.elements.SpanElement;

Checking spelling
We’ll admit it: if we enter text, we will inevitably use the wrong spelling for a word or two. Flash CS5

contains a tool that checks the spelling of all the text in a document. You don’t have heartless editors

peering over your shoulders as we do, so spell checking your work before sending it to the Web is a really

good idea. It should therefore not come as too much of a surprise to discover that the spell-checking

feature of Flash is quite robust. It allows you to check not only the spelling of the text in your text fields but

also the spelling in your layer names.

If you have never used the spelling features of Flash CS5, you need to set up the spelling checker before

you undertake your first spell check. Open a new Flash document, and select Text ➤ Spelling Setup

to open the Spelling Setup dialog box, as shown in Figure 6-30. The Document options area sets

up what spelling is to be checked, including any strings you may use in ActionScript. You can choose from

a number of dictionaries and even create your own for commonly used words not found in a dictionary.

The Checking options area permits you to decide which words or groups of words will be included or

omitted from any spell checks.

www.zshareall.com

http://www.zshareall.com

TEXT

353

Figure 6-30. The Spelling Setup dialog box

It is heartening for one of the authors to see a Canadian dictionary and a British English

dictionary. Canadian and British English are understandably similar, but writing for

publishers based in the United States can be a bit disorienting. For example, the word

color, which is used extensively throughout this book, is not correct in the United

Kingdom or Canada, where it is spelled colour. Another word used in the American

English dictionary is the word check. This important method of payment is spelled

cheque in the Queen’s English.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

354

Let’s bring in some text—with typos—and check the spelling:

1. Open the SpellItOut.txt document in this chapter’s Exercise folder in a word processor,

select the text, and copy it to the clipboard. Large amounts of text are pasted into Flash. For

better or worse, there is no ability in the application to import text into the library. Close the word

processor.

2. Return to Flash, select the Text tool, and draw a container on the stage. Select Edit ➤ Paste

to add the text to the container.

3. Select Text ➤ Check Spelling. The Check Spelling dialog box will appear, as shown in

Figure 6-31. If the word is not recognized, the checker will provide you with a suggestion, which

you can choose to either change or ignore.

Figure 6-31. Using the Check Spelling dialog box

4. When you complete your spell check, click the Close button.

Although there is no language known as Adobe, the Flash dictionary is full of terms

exclusively used by the Adobe products. A great example of an “Adobian” word is

ActionScript. It wouldn’t be flagged by the Adobe spelling checker but will be considered

an error by most other spelling checkers.

www.zshareall.com

http://www.zshareall.com

TEXT

355

Your turn: scrollable text
The final two exercises in the chapter deal with one of the more frequently asked questions regarding text:

“How do I scroll a large amount of text?” In fact, there are several ways of approaching this one. We’ll look

at two. The first is to use the UIScrollBar component, which, to quote a friend of ours, is “easy-peasy.”

The second is to “roll your own” scroller using ActionScript.

Before you start, let’s get clear on the fact that the TLF container using a ScrollBar component will

require you to embed all the fonts into the SWF if your Anti-alias option is Readability. This is

ignored if the Anti-alias option is Use device fonts.

Using the UIScrollBar component

Let’s start with the “easy-peasy” method: using the UIScrollBar component. We will talk about

components in great depth in Chapter 11. For now, just work with us. In this particular case, no

ActionScript is involved, which is why we’re showing you the UIScrollBar component early.

Components usually require a bit of programming.

1. Open the ScrollComponent.fla file in the Chapter 6 Exercise folder. You will see we have put

some formatted text on the stage in a TLF container.

2. Select Window ➤ Components. From the Components panel, open the User Interface

components, and select the UIScrollBar component, as shown in Figure 6-32. Drag a copy of

it onto the text.

Figure 6-32. The UIScrollBar component is found in the User Interface components.

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

356

3. Depending on which side of the text field you chose, the component will spring to the closest side

of the text field. Switch to the Selection tool, and move it to the opposite side of the field. Now

move it back to the right side of the field, and release the mouse.

4. Save and test the movie. You will see that you can scroll the text up and down, as shown in

Figure 6-33.

Figure 6-33. The UIScrollBar component in action

It would be a really good idea, if you are using this component to use the Padding

and/or Margins options in the Properties panel, to pull the text away from the edges

of the component. Select the text on the stage, and check out how we did it in the

Properties panel.

Rolling your own scroller

In this final exercise of the chapter, you are going to wire up a scroller using ActionScript. Just keep in

mind that there are several hundred ways of doing this, and the method you are going to use is a very

basic example of creating scroll buttons. In this example, you use a simple button created in Fireworks

CS5 that has been converted to a movie clip. This button is found in the Library.

In this example in which the whole process is managed by ActionScript, the text moves up or down a short

distance (one line) with each mouse press. Others may have the text move up or down until the mouse is

released. Regardless, the text is scrolling, which is the point of this exercise. Let’s get busy:

1. Open the TLF_scrollable_AS.fla file in this chapter’s Exercise folder.

2. Open the Library, and right-click the arrow movie clip. When the context menu opens, select

Properties to open the Symbol Properties dialog box.

www.zshareall.com

http://www.zshareall.com

TEXT

357

3. Twirl down the Advanced options, and select Export for ActionScript. The word arrow

should appear in the Class area. Click OK, and when Flash tells you there isn’t such a thing as

an arrow class, just click OK. By doing this, you have given the movie clip an instance name and

let Flash know that it can be pulled out of the Library and used.

4. Select frame 1 of the actions layer, and open the Actions panel. Being the nice guys that we

are, we have entered the text that will appear in the container. Everything else, though, is up to

you. Click once in line 1 of the Script pane, and enter the following code that creates the sprites

that will hold the arrow movie clip in the Library:

var upArrow:Sprite = new arrow();
var downArrow:Sprite = new arrow();

5. Next up you have to create the sprite that will hold the text container and put it on the stage. Click

at the end of the text string, press the Enter (Windows) or Return (Mac) key twice, and enter the

following:

var containerSprite: Sprite = new Sprite();
this.addChild(containerSprite);
containerSprite.x = 25;
containerSprite.y = 50;

6. Now that you have a sprite to hold the container, you need to put that container under the control

of the ContainerController class and to set the size of the container. Press the Enter

(Windows) or Return (Mac) key twice, and enter the following:

var container:ContainerController = new
ContainerController(containerSprite,400,300);

7. Scrolling can be accomplished by having the text move up and down (vertically) or from side to

side (horizontally). You have to tell Flash that the text is to scroll vertically. Enter this line of code

to accomplish that task:

container.verticalScrollPolicy = ScrollPolicy.ON;

8. With the ScrollPolicy out of the way, the next task is to let the Configuration class take over

the management of the text in the container. Enter the following code:

var config:Configuration = new Configuration();
var myEditManager :EditManager = new EditManager(new UndoManager());

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

358

The second line is optional but answers a question that may have occurred to you as you went through

these exercises: how does TLF text controlled by ActionScript switch from Read Only to Selectable or

Editable? This line is how that task is accomplished.

9. Press the Enter (Windows) or Return (Mac) key twice, and let’s format the text going into the

container:

var charFormat: TextLayoutFormat = new TextLayoutFormat();
charFormat. fontFamily = "Arial,Helvetica,_sans";
charFormat.fontSize = 14;
charFormat.lineHeight = "160%";
charFormat.color = 0x000000;
charFormat.textAlign = TextAlign.LEFT;
config.textFlowInitialFormat = charFormat;

That fourth line is new. One of the TLF Character properties in the Properties panel is Leading. By

setting the lineHeight property to 160%, you are essentially spreading out the lines of text by 22 points

and making the text more readable.

10. With the text formatted, it needs to be treated as a paragraph. Enter the following code to

accomplish that task:

var textFlow:TextFlow = new TextFlow(config);
textFlow.interactionManager = myEditManager;
var p:ParagraphElement = new ParagraphElement();
var span:SpanElement = new SpanElement();
span.text = myDummyText;
p.addChild(span);
textFlow.addChild(p);
textFlow.flowComposer.addController (container);
textFlow.flowComposer.updateAllControllers();

With the text out of the way, you can now turn your attention to the arrow movie clip and give it the ability

to handle the vertical scrolling. Enter the following code:

createScrollButtons();
function createScrollButtons() :void{
 addChild(upArrow);
 upArrow.rotation = 180;
 upArrow.x = 500;
 upArrow.y = 75;
 upArrow.buttonMode = true;
 upArrow.addEventListener (MouseEvent.CLICK,downScroll);
 addChild(downArrow);
 downArrow.x = 500;
 downArrow.y = 325;
 downArrow.buttonMode = true;
 downArrow.addEventListener (MouseEvent.CLICK, upScroll);
};

www.zshareall.com

http://www.zshareall.com

TEXT

359

function downScroll(evt:MouseEvent) : void{
 container.verticalScrollPosition -= 15;
}

function upScroll(evt:MouseEvent) : void{
 container.verticalScrollPosition += 15;
}

There isn’t much new here except for one little “trick” and how to set how much the text scrolls with a

mouse click.

The “trick” involves the upArrow sprite. The actual movie clip in the Library has the arrow pointing down.

The rotation property applied to the upArrow sprite created in the first code line simply flips the arrow by

rotating it 180 degrees.

The upScroller and downScroller functions that finish off the code use the verticalScrollPosition

property to move the text up (+=15) or down (-=15) by 15-pixel increments each time the arrow is

clicked. If you need larger or smaller increments, simply change the number.

11. Save and test the movie. When the SWF opens, as shown in Figure 6-34, note how much space

there is between the lines of text and how it moves up or down when the arrow is clicked.

Import statements used for this exercise

The following are the import statements used for this chapter:

import flash.display.Sprite;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.container.ScrollPolicy;
import flashx.textLayout.elements.Configuration;
import flashx.textLayout.edit.EditManager;
import flashx.undo.UndoManager;
import flashx.textLayout.formats.TextLayoutFormat;
import flashx.textLayout.formats.TextAlign;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.events.TextLayoutEvent;
import flashx.textLayout.elements.ParagraphElement;
import flashx.textLayout.elements.SpanElement;
import flash.events.MouseEvent;

www.zshareall.com

http://www.zshareall.com

CHAPTER 6

360

Figure 6-34. The UIScrollBar component in action

What you have learned
In this chapter, you learned the following:

 How to add text to Flash

 The various text-formatting features available to you in Flash CS5

 How to choose and work with the Text Layout Format

 The ActionScript necessary to create, format, and provide interactivity through the use of text

 When to embed font outlines into a SWF and how to accomplish that task

 How to create scrolling text in Flash

We suspect you are more than a little confounded at the possibilities open to you when it comes to using

text in Flash. If you are one of those who saw text as the gray stuff hovering around your animations, we

hope you have seen the error of your ways. And, if you are one of those who want to get going and turn

out really cool motion graphics pieces, we hope you paid close attention to what Bringhurst was saying in

the quote that opened this chapter. Regardless of which camp you fall into, we know that you are now

aware that adding text to a Flash CS5 animation doesn’t stop with a click of the Text tool and the tapping

of a few keys on the keyboard.

Now that you know how to work with text and put it in motion, the time has arrived to put objects in motion.

Animation in Flash is covered in the next two chapters, and to find out more, turn the page.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

361

Chapter 7

Animation, Part 1

Ah, animation! Where would we be without the likes of Disney, Warner Bros., Walter Lanz, Hanna-

Barbera, and dozens more like them? For many people, animation is the reason to get involved with Flash

as a creative outlet. This makes perfect sense, because Flash began life more than a decade ago as an

animation tool. Supplemental features like ActionScript, XML parsing, and video integration—every one of

which is a tremendous addition—all followed. What hasn’t changed in all these years is Flash’s

increasingly productive ability to help you create high-quality, scalable animation for the Web, and even for

television and film.

You caught the faintest whiff of tweening in Chapters 1, 2, and 3. It gets considerably more complex—read

considerably more fun!—because Flash CS5 gives you a double-dose of animation apparatus. You now

have two independent tweening models to work with, the newer of which will make users of Adobe After

Effects feel right at home. Each of these tweening models gets its own chapter in this book.

The original Flash approach, now called classic tweening, is covered here in Chapter 7. Chapter 8 delves

into the new stuff. To get the most out of animation in Flash, you should read both chapters, starting with

this one. As you’ll discover, you can use both models in the same movie. You’ll learn enough in these

chapters to help you comfortably choose which approach, or combination of approaches, works best for

your particular needs.

Here’s what we’ll cover in this chapter:

 Shape tweening

 Shape hinting

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

362

 Classic motion tweening

 Easing

 Using the Custom Ease In/Ease Out editor

 Animating symbols

 Combining timelines

 Applying motion tween effects

 Using ActionScript to create and manage animations

The following files are used in this chapter (located in Chapter07/ExerciseFiles_Ch07/Exercise/):

 PepperShape.fla

 StarStar.fla

 StarCircle.fla

 Ant.fla

 LogoMorphNoHints.fla

 FlowerWeed.fla

 GradientTween1.fla

 GradientTween2.fla

 BitmapFillTween.fla

 PepperSymbol.fla

 MalletNoEasing.fla

 MalletCustomEasing.fla

 CustomEasingComparison.fla

 CustomEasingMultiple.fla

 CuriousRabbit.fla

 SyncPropertyGraphic.fla

 EditMultipleFrames.fla

 CombineTimeline.fla

 Grotto.fla

 MotionGuide.fla

 MaskTween.fla

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

363

 MaskTweenMotionGuide.fla

 BlueMoon.fla

 CreateMotionAS3.fla

 KeyboardControl.fla

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

Because this chapter has a lot of moving parts, let’s cut straight to the “without further ado” and jump

directly into the fray!

Shape tweening
As useful as symbols are, both in organizing artwork and reducing SWF file size, they shouldn’t

overshadow the importance of shapes. After all, unless a symbol is the result of text or an imported image

file, chances are good it was constructed from one or more of Flash’s most basic of visual entities: the

shape.

Shapes differ significantly from symbols, although many of their features overlap. Like symbols, shapes

are tweened on keyframes. Tweening may be finessed by something called easing and can affect things

such as position, scale, distortion, color, and transparency. The difference comes in how these changes

are achieved. In addition, shapes can do something symbols can’t: they can actually morph from one set

of contours to another!

Scaling and stretching

Let’s start with the basics:

1. Open the PepperShape.fla file in the Chapter 7 Exercise folder. You’ll notice that there is

nothing in the Library. This is because the hot pepper on the stage is composed entirely of

shapes.

2. Select Insert ➤ Timeline ➤ Keyframe to insert a keyframe at frame 10. This effectively

produces a copy of the artwork from frame 1 in frame 10 and makes the copy available for

manipulation. Any changes you make to frame 10 will not affect the shapes in frame 1, so you

can always remove that second keyframe (Modify ➤ Timeline ➤ Clear Keyframe) and start

again from scratch if you desire.

If you prefer, you can insert a blank keyframe at frame 10 (Insert ➤ Timeline ➤

Blank Keyframe) and then copy and paste the artwork from frame 1. It makes no

practical difference, but clearly the approach in step 2 requires less effort. You may even

draw completely new shapes into frame 10, and Flash will do its best to accommodate—

but that’s skipping ahead. There’s more on that in the “Altering shapes” section.

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.zshareall.com

CHAPTER 7

364

All of these menu choices have right-click (Windows) or Control+click (Mac) equivalents,

available from the context menu of any timeline frame.

3. With frame 10 selected, choose the Free Transform tool, and drag the right side of the

pepper’s bounding box to the right. As you do this, you’ll see a live preview of the shapes—stem,

leaves, and pepper—in their new stretched size, as shown in Figure 7-1.

Figure 7-1. Changing a shape’s shape in preparation for a shape tween

You might find that you have accidentally selected either only the pepper or only its cap.

The Free Transform tool’s bounding box will let you know at a glance which shape(s)

you have selected, because either it will encompass the full surface area of the artwork

or it won’t. To ensure you’ve grabbed all the shapes, use the Selection tool to first

draw a marquee (that is, a selection) around the whole pepper. An even simpler

technique is to click the keyframe at frame 10, which selects everything on that layer in

that keyframe.

4. Select Edit ➤ Undo Scale to undo. (You might need to undo twice: once to reselect and once

to remove the widen transform.)

5. Reapply the transform and hold down the Alt (Windows) or Option (Mac) key while dragging to

the right. Notice how the artwork now scales out from the center.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

365

This feature often comes in handy, but it’s important to understand what’s really going on. When the Alt

(Windows) or Option (Mac) key is used, it’s not the center of the artwork that becomes the pivot, but rather

the transformation point, which is that small white circle in the middle of the pepper. You can drag this

circle where you like, even outside the confines of the shape’s bounding box. With or without the Alt

(Windows) or Option (Mac) key, the transformation point acts as the fulcrum of your modifications, but

using the key changes how the fulcrum is applied.

Because you’re dealing with shapes, you can even use the Free Transform tool’s Envelope and

Distort options (shown in Figure 7-2), which aren’t available for symbols. Right-click (Windows) or

Control+click (Mac) the object selected by the Transform tool, and the options are shown in the

Context menu. If you do, just be aware that things can quickly fall apart with such transformations unless

you use shape hints, which are covered later in the chapter.

Figure 7-2. Shape transformations include Envelope and Distort.

6. Now that you have two keyframes prepared, it’s time for the magic. Make sure the pepper is

changed in frame 10 (for example, the widening applied in step 5). Right-click (Windows) or

Control+click (Mac) anywhere in the span of frames between both keyframes, and select Create

Shape Tween from the context menu (see Figure 7-3). Two things will happen:

 The span of frames will turn green, which indicates a shape tween. They will also gain an
arrow pointing to the right, which tells you the tween was successful.

 The pepper will update to reflect a visual state between the artwork in either keyframe,
depending on where the playhead is positioned.

7. Drag the playhead back and forth to watch the pepper seem to breathe.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

366

Figure 7-3. Applying a shape tween

If your tweened frames fail to turn green, don’t worry. By default, they should, but crazier things have been

known to happen. Click in the Timeline panel’s upper-right corner to open its context menu and make

sure Tinted Frames is selected, as shown in Figure 7-4. (All the hot rods have ’em.)

Figure 7-4. The Tinted Frames option helps you recognize tweened frames.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

367

If you applied the tween while in frame 1—a perfectly legal choice, by the way—you

wouldn’t immediately see the pepper change. Why? Because the tweening is applied

between the two keyframes, and frame 1 still represents the artwork as it was before

tweening changed it. Drag the playhead back and forth, and you’ll see the tween.

8. Right-click (Windows) or Control+click (Mac) anywhere between the two keyframes, and choose

Remove Tween. The tween goes away.

9. Let’s try another tween. Right-click (Windows) or Control+click (Mac) your frame span, and

choose Create Motion Tween. Motion tweening is not supported for shapes, and Flash gives

you an unmistakable sign that you’ve gone wrong. You’ll see an alert box that offers to convert

your shape into a symbol, as shown in Figure 7-5. Click OK, and you’ll see most of your frame

span turn blue, along with the appearance of a new movie clip in the Library.

Figure 7-5. Tweens other than the shape variety require symbols.

It’s nice that Flash does this for you, but generally speaking, you’ll want to decide on your own what sort of

symbol to create: movie clip, graphic, or button. Unfortunately, this automated process does the choosing

for you.

Motion tweens are part of the new After Effects–like tweening model you’ll learn about in Chapter 8.

Motion tweens are nothing like shape tweens; they are an altogether different concept.

10. Select Edit ➤ Undo Create Motion Tween to step back. That sets the frames back and

automatically removes the Library’s movie clip.

11. Time for another mistake. Right-click (Windows) or Control+click (Mac) your frame span, and

choose Create Classic Tween.

Instead of green, the span of frames will become purple, and you’ll see two new symbols in the Library

(this time, graphic symbols)—without even a warning! Purple frames indicate a classic tween, which you’ll

learn about later in this chapter. These, too, are nothing like shape tweens.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

368

12. Perform an undo, and the frames will revert to a nontweened state. You’ll need to delete the

graphic symbols by hand, though. Go ahead and do that by selecting them in the Library and

clicking the Trash Can icon at the bottom of the Library panel.

13. Reapply a shape tween, and scrub to frame 10.

14. Select the Free Transform tool, and drag around one of the bounding box corners to change

both the horizontal and vertical scales. If you like, hold down Shift to constrain the aspect ratio,

and Alt (Windows) or Option (Mac) to apply changes from the center of the transformation point.

Make the pepper a good bit bigger than the original size. This shows that it’s possible to adjust

keyframes even after they’re already part of a tween.

Another way to apply shape tweens is to click between two keyframes and select

Insert ➤ Shape Tween. To remove a shape tween, select Insert ➤ Remove

Tween. You’ll see that you can do the same with motion and classic tweens.

Modifying shape tweens

There are a couple ways to refine a shape tween once it’s applied. These are shown in the Properties

panel when you click in a tweened span of frames: Ease and Blend.

Easing tends to make tweens look more lifelike because it gradually varies the amount of distance traveled

between each frame. If an astronaut throws a golf ball in outer space, the ball flies at a constant rate

until...well, until it hits something. That’s not how it works on a planet with gravity. The ball flies faster at

first and then gradually slows down. This deceleration is called easing out. A ball dropped from a tall

building begins its descent slowly and then gradually increases speed. This acceleration is called easing

in.

Click anywhere between two key frames of a tween, and adjust the Ease hot text in the Properties

panel to see how easing affects the shape tween applied to the pepper in the previous exercise.

Supported values range from 100 (strong ease out), through 0 (no easing), to –100 (strong ease in). As

shown in Figure 7-6, easing can have a profound effect upon an object in motion. We’ll cover easing in

greater detail in the “Classic tweening” section.

If you don’t see much of a difference after experimenting with easing, try lengthening the

duration of your shape tween. To do so, click somewhere in the tween span between the

two keyframes, and then press the F5 key several times to insert new frames.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

369

Figure 7-6. Examples of easing, from top to bottom

The Blend pop down, directly under the Ease hot text, is a much subtler matter. There are two Blend

settings: Distributive (the default) and Angular. According to Adobe, Distributive “creates an

animation in which the intermediate shapes are smoother and more irregular,” and Angular “creates an

animation that preserves apparent corners and straight lines in the intermediate shapes.” In actual

practice, the authors find this distinction negligible at best. In short, don’t worry yourself over this setting.

Feel free to use the one with which you are most comfortable. We’re willing to bet our hats you won’t be

able to tell one from the other.

So far, so good. These tweens have been pretty straightforward. In fact, as you’ll find later in the chapter,

everything you’ve seen to this point can be accomplished just as easily with classic tweens. This raises a

good question: what makes shape tweens so special? Why not just use classic tweens or the motion

tweens you’ll learn about in Chapter 8?

The answer comes in two parts: gradients and shape. Let’s tackle shape first, because it has the potential

to set your teeth on edge if you aren’t prepared for it.

Altering shapes

The compelling reason to use shape tweens is their ability to manipulate the actual form of the artwork

itself, beyond scaling and stretching. Let’s keep playing:

1. Continuing with PepperShape.fla, use the Free Transform tool at frame 10 to rotate the

pepper about 90 degrees in either direction.

2. You should still have a shape tween applied (if not, add one). Drag the playhead back and forth to

see a result that may surprise you. Rather than rotating, the pepper temporarily deforms itself as

it changes from one keyframe to another (see Figure 7-7).

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

370

Figure 7-7. Sometimes shape tweens perform unexpected transformations.

What on Earth is going on here? Though it may look like an absolute mess, what you are seeing is the key

distinction between shape tweening and the other kinds of tweening. Believe it or not, this behavior can be

a very useful thing. You’ll see an example in just a moment. First let’s take a quick field trip to frame 10 in

order to illustrate a point.

In case you’re worried, we’ll put your mind at ease without further ado: it is entirely

possible to rotate artwork with tweens in Flash. In fact, it’s easy. In contrast to shape

tweens, classic and motion tweens maintain a strict marriage between the vector anchor

points of one keyframe and the next. We’ll show you why later in this chapter and in

Chapter 8. When you understand what each approach does best, you’ll know which one

to use for the task at hand.

3. Choose the Subselection tool, and click the edge of the pepper in frame 10. You’ll see dozens

of tiny squares that act as anchor points among the various lines and curves that make up the

pepper’s shape. All those points exist in frame 1 as well, of course, but they’re in different

positions relative to one another.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

371

With shape tweens, Flash does not think of artwork in terms of a whole; instead, it manipulates each

anchor point separately. What seems like a rotation to you is, to a shape tween, nothing more than a

rearrangement of anchor points—sometimes a chaotic one, at that!

Think of it like a square dance. If a particular point happens to be in the upper-left corner on frame 1, it has

no idea that its corresponding point may be in the upper-right corner on frame 10. It simply changes a

partner—do-si-do!—and moves to a new spot during the tween. Like square dancing, there are

sophisticated rules at play, and movement across the dance floor may appear unpredictable. It’s possible,

for example, that two keyframes may even present a completely different number of anchor points. Let’s

look at that next.

Examining anchor points

Open the StarStar.fla file in this chapter’s Exercise folder, and examine the 22-point star in frame 1.

Use the Subselection tool, if you like, to see the individual anchor points (there are 44). Click in frame

20 to see a seven-point star (14 anchor points). Note that a shape tween has already been applied

between these two keyframes. Drag the playhead back and forth to watch the promenade (shown in

Figure 7-8). Flash handles the reduction in anchor points in a neat, organized way. In this case, by the

way, the star in the second keyframe was drawn as new artwork into frame 20.

Figure 7-8. The 44 anchor points artfully become 14.

Now open the StarCircle.fla file in this chapter’s Exercise folder and run through the same steps to

see a 22-point star become an 8-point circle. These are some nifty transformations that are simply not

possible with classic tweens.

In Chapter 2, we described a vector circle as having five points: four on the perimeter

and one in the center. So, why does the circle in this exercise have eight perimeter

points? Frankly, because the Flash engineers know more about vectors than we do. Our

discussion in Chapter 2 was for illustrative purposes.

This opens up a whole avenue of vector-morphing possibilities, from sunshine gleams to water ripples to

waving hair and twitching insect antennae.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

372

Shape changing

For anything where you need the actual shape of an item to change—where anchor points themselves

need to be rearranged—shape tweens are the way to go. Keep in mind that tweens happen on a keyframe

basis, and timeline layers are distinct. If you have a complex set of shapes and you want to tween only

some of them, move those shapes to a separate layer. In fact, you may want to put every to-be-tweened

shape on its own layer, because that reduces the number of anchor points under consideration for each

keyframe. Let’s try it by setting some antennae in motion:

4. Open the Ant.fla file in this chapter’s Exercise folder, and insert a keyframe in frames 15 and

30 of the antenna1 layer.

5. Select the Subselection tool, and change the shape of the antenna in frame 30 of the antenna

1 layer.

6. Add a shape tween between the keyframes, and scrub through the timeline. The antennae move

around (see Figure 7-9).

Figure 7-9. Need to change the shape of those antennae? Shape tweens to the rescue!

As you’ve seen, Flash can make some fairly stylish choices of its own in regard to the repositioning of

anchor points. Well, that’s true most of the time. The earlier pepper rotation demonstrates that Flash’s

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

373

choices aren’t always what you might expect. Fortunately, Flash provides a way to let you take control of

shape tweens gone awry. The solution is something called shape hints.

Shape hints

What are shape hints? Often overlooked or misunderstood, these useful contraptions allow you to specify

a partnership between a vector region of your choosing from one keyframe to the next. They are a means

by which you can guide an anchor point, curve, or line toward the destination you’ve determined is the

correct one. Let’s take a look.

1. Open the LogoMorphNoHints.fla file in this chapter’s Exercise folder. Take a look at frame 1

to see a lowercase i that has been broken apart from a text field into two shapes. In frame 55,

you’ll see an abstract shape that represents a hypothetical logo.

2. The aim here is to morph between the shapes in an appealing way, but something has gone

horribly wrong (see Figure 7-10). Drag the playhead along the timeline, and note the atrocities

committed between frames 20 and 35.

Figure 7-10. Something has gone horribly wrong.

This looks as bad as (if not worse than) the hot pepper rotation, but why? On the face of it, this should be a

basic shape tween. Seemingly, the letter and logo shapes aren’t especially intricate, and yet, the timeline

doesn’t lie.

At this point, the authors look deftly side to side, and with a sly, “Hey, pssst,” invite you

to step with them into a small, dimly lit alley. (Don’t worry, we’re here to help.) “The thing

is,” begins the first, “honestly, there’s often a bit of voodoo involved with shape tweens,

and that’s the truth.” “That’s right,” chimes in the other, lowering his voice. “To be frank,

if I may”—you nod—“we don’t know why these anchor points sometimes go kablooey.

It’s just a thing, and you have to roll with it.” There is a slight pause, and suddenly a

cappuccino machine splooshes in the distance. The first author draws a finger across

his nose. “Keep that in mind as we continue,” he says. Another pause. “You wanna see

the shape hints?” You nod again.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

374

3. Click in frame 20, and select Modify ➤ Shape ➤ Add Shape Hint (see Figure 7-11). This puts

a small red circle with the letter a in the center of your artwork. Meet your first shape hint.

Figure 7-11. Inserting a shape hint

4. You can check to ensure object snapping is on, either by selecting Snap to Objects in the

Tools panel or by ensuring that a check mark is present under View ➤ Snapping ➤ Snap to

Objects. Snapping helps the placement of shape hints significantly.

5. Drag and snap a circle to the lower-left corner of the letter’s upper serif, as shown in Figure 7-12.

If you are a stickler for detail, feel free to zoom the stage before you try snapping the circle.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

375

Figure 7-12. Positioning a shape hint

This next point is important: what you’ve done is placed one half of a shape hint pair. The other half—the

partner—is on the next keyframe, frame 35.

6. Drag the playhead to frame 35, and position the second a circle on the corresponding serif on this

keyframe’s shape, as shown in Figure 7-13.

Figure 7-13. Positioning the shape hint’s partner

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

376

7. When this partner snaps into place, it will turn green. Return to frame 20, and notice that the

original shape hint has turned yellow. It’s a dramatic improvement, but there are still a few trouble

spots.

It may be that shape hints have a thing for stoplights (not that there’s anything wrong with that), but the

point is that the color change indicates something. It tells you that this shape hint pair has entered into a

relationship. You have now indicated to Flash your intentions that these paired regions now correspond to

each other.

8. Slide the playhead along the timeline again, and you’ll see a remarkable improvement (as shown

in Figure 7-14).

Figure 7-14. It’s a dramatic improvement, but there are still a few trouble spots.

The improvement is so remarkable, in fact, that the authors look deftly side to side, wink, and silently

mouth the word “voodoo.” To be frank, if we may, the placement of shape hints often makes a noticeable

difference, but the decision on placement is something of a dark art. We encourage you to reposition your

first shape hint pair at other corners to see how the remaining trouble spots ripple to other areas.

You should get the idea by now that shape hints are a bit like cloves (you know, the star-shaped things

you poke into your ham during the holidays)—a little goes a long way. Let’s add a few more, but do so

sparingly.

9. To get rid of the kink in the upper curve, add a new shape hint to the upper-right corner of the i

on frame 20. This time, you’ll see a small b in a circle. Snap its b partner to the upper-right corner

of the logo at frame 35, and drag the playhead again to see your progress.

10. Add shape hints c and d to the lower-left and right corners, and you should see a very smooth

morph along this span of frames.

11. The only problem remaining, if you’re a perfectionist, is a slight wrinkle along the bottom of the

“egg” between keyframes 37 and 55. Remedy this by adding a new shape hint at frame 37. It will

start again at a, because this is a new pair of keyframes, and snap in place to the corresponding

curve at frame 55.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

377

Compare your work with the LogoMorph.fla file in this chapter’s Complete folder, if you like. When you

open a file that already contains shape hints, you’ll need to take one small step to make them show,

because they like to hide by default. To toggle shapes hints on and off, select View ➤ Show Shape

Hints.

Even with the benefit of shape hints, we caution you to keep simplicity in mind. Certain collections of

shapes are simply too intricate to handle gracefully. Remember that not every website visitor will have as

powerful a computer as yours. It is entirely possible to choke Flash Player through the use of an

overwhelming number of anchor points. To see what we mean, open the FlowerWeed.fla file in this

chapter’s Exercise folder, and drag the playhead along the timeline. The morph isn’t especially polished

(see Figure 7-15), but it certainly doesn’t count as a complete eyesore. Test the SWF (Control Test

Movie), and—depending on the power of your computer—you may see that playback slows or skips

during the most complex portions of the tween. If that doesn’t happen for you, count yourself lucky! But

generally speaking, try to avoid asking this much of your users. Why do we mention this? The reason is

because it is a “bad experience” for the user. In the case of this exercise, you are the only user. Now

extrapolate this out to the flower being in a banner ad and your bad experience is now being shared by

thousands of others.

Figure 7-15. Moderation in all things! Although this transformation doesn’t look awful, it nearly chokes

Flash Player.

Altering gradients

If you want to animate gradients, shape tweens are the only way to do it. You may not immediately think of

gradients as shapes, but when you select the Gradient Transform tool and click into a gradient, what

do you see? You see the handles and points shown in Figure 7-16.

That center point, to Flash, is not much different from an anchor point. The resize, radius, and rotate

handles are not much different from Bezier control point handles. In effect, you are manipulating a shape—

just a special kind. When animating a gradient, you simply change these gradient-specific features from

keyframe to keyframe, rather than a shape’s corners, lines, and curves.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

378

Figure 7-16. Gradients, like anything else, can be edited on keyframes, and those keyframes are

tweenable.

Open the GradientTween1.fla file in this chapter’s Exercise folder, and drag the playhead along the

timeline to see an example in action. Frame 1 contains a solid red fill. Frame 10 contains the built-in

rainbow gradient, which is rotated 90 degrees in frame 20. Frames 20 through 30 provide a bit of interest

because they demonstrate a limitation of gradient shape tweens: it is not possible to tween one type of

gradient to another. Well, we take that back. You certainly can, but the results are unpredictable. Flash

tries its best to convert a linear gradient into a radial one, but between frames 29 and 30, the gradient pops

from one type to the other.

Next, open the GradientTween2.fla file in this chapter’s Exercise folder. This example shows a

combination of a gradient and a shape change at the same time. Not only does the gradient fill transform,

but anchor points move, and even stroke color (and thickness!) changes from keyframe to keyframe.

Experiment with solid colors as well as the Color panel’s Alpha property. When you finish, close the file

without saving the changes.

Even bitmap fills are tweenable, which makes for some interesting visual possibilities, as shown in Figure

7-17. Open the BitmapFillTween.fla file in this chapter’s Exercise folder, and press the Enter (Return)

key to see some roller-coaster camera work using an image of a sculpture sitting on a window sill in Bern,

Switzerland. As with other types of gradients, use the Gradient Transform tool to manipulate gradient

control handles at each keyframe, and then let the shape tween handle the rest. Easing works the same

way.

Figure 7-17. Shape tween your bitmap fill transformations for some real zing!

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

379

Classic tweening
When we left that hapless hot pepper hanging, it had been hoping to rotate. It didn’t and instead found its

molecules tumbling in a frenzied jumble. We told you there was a much easier way to handle that rotation,

and classic tweening is one of them. Shape tweens are for rearranging anchor points and animating

gradients. Classic tweens and motion tweens are for everything else, from enlivening text and imported

photos to animating vector artwork drawn directly in Flash or imported from another application like

Illustrator CS5 or Fireworks CS5. As we’ve said, we’ll cover motion tweening in Chapter 8. Here, we’ll

continue with classic tweens only, but keep in mind that you’ll have additional choices.

In contrast to shape tweens, classic tweens require self-contained entities. These include symbols,

primitives, drawing objects, and grouped elements, which many designers find easier to work with than

raw shapes. Open PepperSymbol.fla in this chapter’s Exercise folder, for example, and you’ll see that

it’s easier to select the whole pepper without accidentally omitting the cap.

Be aware that primitives and drawing objects blur the lines somewhat between what

constitutes a shape and what constitutes a symbol. It is possible to apply both shape

tweens and motion tweens to primitives and drawing objects. However, many properties,

such as color, alpha, and the like—and in primitives, shape—are properly animated only

with shape tweens. These “gotchas” tend to steer the authors toward a path of least

resistance: use shapes for shape tweens and symbols for classic tweens. Within those

symbols, use whatever elements you like.

One fundamental point: when it comes to classic tweens, always put each tweened

symbol on its own layer. If you apply a classic tween to keyframes that contain more

than one symbol, Flash will try to oblige—but will fail. It’s a simple rule, so abide by it,

and you’ll be happy.

Rotation

Let’s pick up with that rotation, shall we?

1. Open the PepperSymbol.fla file in this chapter’s Exercise folder. You’ll see a pepper symbol in

the Library (the shapes from the earlier PepperShape.fla example have been placed inside a

graphic symbol).

2. Add a keyframe in frame 10. Then select the Free Transform tool, and rotate the artwork 90

degrees in either direction in that keyframe you just added in frame 10. Sounds familiar, right?

Here comes the difference.

3. Right-click (Windows) or Control+click (Mac), and select Create Classic Tween from the

context menu. There it is!

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

380

4. Drag the playhead back and forth to see a nice, clean rotation of the pepper. As you saw with shape

tweens, the span of frames between the two keyframes changes color (to purple this time), and a

solid arrow appears within the span to indicate a successful tween, as shown in Figure 7-18.

Figure 7-18. Classic tweens, indicated by purple and an arrow between the keyframes, make rotations a

snap.

Now, let’s think about real rotation: topsy-turvy—a full 360-degree spin. How would you do it? (Hint: This is

something of a trick question.) In a full spin, the pepper ends up in the same position at frame 10 as it

starts with in frame 1, so there’s not really a transformation to tween, is there?

Rotation is set through the Rotate drop-down menu in the Tweening area of the Properties panel.

Notice that the Rotate drop-down is currently set to Auto, as shown in Figure 7-19. This is because you

have already rotated the pepper somewhat by hand. The choices are CW (clockwise) and CCW

(counterclockwise). The hot text immediately to the right of the drop-down menu specifies how many times

to perform the rotation.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

381

Figure 7-19. The Rotate property makes quick work of rotations.

5. Click the pepper in frame 10, and select Modify ➤ Transform ➤ Remove Transform to reset

the symbol’s rotation.

6. Click once in frame 1. In the Rotate drop-down menu, change the setting to CW (clockwise), and

drag the playhead back and forth. Pretty neat!

Classic tween properties

While we’re looking at the Tweening area of the Properties panel, let’s go through the other settings.

Here’s a quick overview of classic tween properties:

 Ease and Edit: These settings apply a range of easing to the tween. The Edit button (a pencil

icon) allows for advanced, custom easing. More on this in the “Easing” section of this chapter.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

382

 Rotate and [number]: These settings control the type of rotation and the number of times the

rotation occurs. Only CW and CCW support the [number] setting.

 Snap: This Snap check box helps position a symbol along its motion guide (discussed in the

“Motion guides” section later in this chapter).

 Orient to path: This check box applies only to tweens along a motion guide. It determines

whether a symbol points toward the direction in which it moves.

 Scale: If a check mark is present, tweening for the current span of frames will include a

transformation in scale (size), if such a transformation exists. If you haven’t scaled anything, it

doesn’t matter what state the check mark is in. If scaling and other transformations are combined

in a given classic tween, only the other transformations will show if the check mark is deselected.

 Sync: In our experience, most people don’t even realize this property exists, but it can be a real

time-saver when you’re dealing with graphic symbols. Unlike movie clips, which have their own

independent timelines, graphic symbols are synchronized with the timeline in which they reside.

Even so, there is a bit of flexibility: graphics can be looped, played through once, or instructed to

rest on a specified frame of their own timeline. If a particular graphic symbol has been tweened

numerous times in a layer, the presence of the Sync check mark means you can update these

timeline options for all keyframes in that layer simply by making changes to the first graphic

symbol in the sequence. In addition, Sync allows you to swap one graphic symbol for another

and have that change ripple through all the synced keyframes in that layer. More on this feature

in the “Editing multiple frames” section of this chapter.

Scaling, stretching, and deforming

We visited this topic in the “Shape tweening” section, and honestly, there’s not a whole lot different for

classic tweens. The key thing to realize is that scaling, stretching, and deforming a symbol is like doing the

same to a T-shirt with artwork printed on it. Even if the artwork looks different after all the tugging and

twisting, it hasn’t actually changed. Shake it out, and it’s still the same picture. Shape tweening, in

contrast, is like rearranging the tiles in a mosaic. For this reason, the Free Transform tool disables the

Distort and Envelope options for symbols. These transformations can’t be performed on symbols and

therefore can’t be classic tweened.

Symbol distortion can be performed with the 3D tools (Chapter 9) and can even be

animated, but the animation requires motion tweens (Chapter 8), not classic tweens.

Let’s take a quick look at the other transform options:

1. Return to the PepperSymbol.fla file, select frame 1, and set the Rotation setting for the

tween to None.

2. Use the Free Transform tool to perform a shear transformation at frame 10.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

383

Shear? What’s that? Something you do with sheep, right? Well, yes, but in Flash, shearing is also called

skewing, which can be described as tilting.

3. With the Free Transform tool active, click the Rotate and Skew option at the bottom of the

Tools panel, and then hover over one of the side transform handles (not the corners) until the

cursor becomes an opposing double-arrow icon. Click and drag to transform the pepper (see

Figure 7-20).

Figure 7-20. Classic tweening a symbol transformation. The “shear” cursor is just under the transformation

point.

The live preview gives you an idea what the symbol will look like before you let go of the mouse. Note that

the skew occurs in relation to the transformation point, indicated by the small white circle.

4. Drag the white circle around inside or even outside the bounding box of the pepper, and then

skew the pepper again to see how its placement affects the transformation. Hold down Alt

(Windows) or Option (Mac) while skewing to temporarily ignore the transformation point and skew

in relation to the symbol’s opposite edge.

We’ve been using the Free Transform tool quite a bit, so let’s try something different.

5. Open the Transform panel (Window ➤ Transform) and note its current settings. You’ll see the

skew summarized near the bottom and, interestingly, the change in scale summarized near the

top (see Figure 7-21). From this, it becomes clear that skewing affects scale when applied with

the Free Transform tool.

6. To see the difference, select Modify ➤ Transform ➤ Remove Transform or click the Remove

Transform button in Figure 7-21 at the bottom right of the Transform panel to reset the

symbol. The scale area of the Transform panel returns to 100 percent horizontal and 100

percent vertical.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

384

Figure 7-21. The Transform panel provides access to precision measurements.

7. Click the Skew radio button, and scrub the hot text of either skew value to 38. Notice that the

scaling stays at 100 percent, which subtly changes how the skew looks.

8. Enter 200 into the scale input fields at the top. (The Constrain check mark means you need to

enter this number into only one of them.) Slide the playhead back and forth to see two

transformations tweened at once.

Easing

Here’s where classic tweening begins to pull ahead of shape tweening. Easing is much more powerful for

classic tweens, thanks to the Custom Ease In/Ease Out editor. Before we delve into that, though, let’s

look at a sample use of the standard easing controls for a classic tween, so you can see how much easier

things are with the custom variety.

1. Open the MalletNoEasing.fla file in this chapter’s Exercise folder. You’ll see a hammer

graphic symbol in the Library and an instance of that symbol on the stage. Select the hammer,

and note that the transformation point—the white dot in the handle—is located in the center of the

symbol.

2. We’re going to make this hammer swing to the left, so select the Free Transform tool.

Selecting this tool makes the transformation point selectable. Click and drag that point to the

bottom center of the mallet (see Figure 7-22).

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

385

Figure 7-22. You’ll need to move that transformation point to make the movement realistic.

3. Insert a keyframe at frame 10 (Insert ➤ Timeline ➤ Keyframe), and rotate the mallet at

frame 10 to the left by 90 degrees.

4. Apply a classic tween to the span of frames between 1 and 10, and scrub the timeline to see the

effect. That’s not bad but not especially realistic. How about some easing and bounce-back?

5. In the Tweening area of the Properties panel, scrub the Ease hot text all the way to the left

to specify a full ease in. The number should be –100. This causes the hammer to fall slowly as it

begins to tip and increase speed as it continues to fall (see Figure 7-23).

Figure 7-23. Ease in (right) vs. no easing (left). On the right, the hammer falls in a more natural manner.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

386

This is a good start. To push the realism further, let’s embellish the animation. We’re going to provide

some tweening that makes the hammer rebound on impact and bounce a few times.

6. Add new keyframes at frames 15, 20, 23, and 25. At frame 15, use the Free Transform tool or

the Transform panel to rotate the hammer to approximately northwest; in the Transform

panel, this could be something like –55 in the Rotate area. At frame 23, set the rotation to

roughly west-northwest (something like –80 in the Rotation area). A storyboard version of the

sequence might look like Figure 7-24.

Figure 7-24. Using several keyframes to make the hammer bounce

The fading image trails—visual echoes of the mallet—are the result of something called

onion skinning, which is very helpful in animation work. It’s used here for illustrative

purposes and is covered later in the chapter.

7. Now that the mallet has been positioned, it just needs to be tweened and eased. You can click

separately into each span of frames and apply a classic tween, or you can click and drag across

as many spans as you need (as shown in Figure 7-25). That way, you can apply the tweens all in

one swoop.

Figure 7-25. Tweens can be applied to more than one frame span at a time.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

387

8. Click into each span of frames to apply easing, for the final touch. Remember that span 1 through

10 already has –100. Apply the following easing to the remaining spans:

 Span 10 to 15: 100 (full ease out)

 Span 15 to 20: –100 (full ease in)

 Span 20 to 23: 100

 Span 23 to 25: –100

9. Drag the playhead back and forth to preview the action, and then test the movie to see the final

presentation. If you like, compare your work with MalletNormalEase.fla in the Complete

folder.

This exercise wasn’t especially arduous, but wouldn’t it be even cooler if you could perform all the

preceding steps with a single classic tween?

Custom easing

Introduced in Flash 8, the Custom Ease In/Ease Out dialog box unleashes considerably more power

than traditional easing. Not only does it provide a combined ease in/out—where animation gradually

speeds up and gradually slows down, or vice versa—but it also supports multiple varied settings for

various kinds of easing, all within the same classic tween. Let’s take a look.

To perform custom easing, select a span of motion-tweened frames, and then click the Edit button (a

pencil icon) in the Tweening area of the Properties panel. You’ll see the Custom Ease In/Ease

Out dialog box, as shown in Figure 7-26. This dialog box contains a graph with time along the horizontal

axis, represented in frames, and percentage of change along the vertical axis.

Figure 7-26. The Custom Ease In/Ease Out dialog box

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

388

Here’s a quick rundown of the various areas of the dialog box:

 Property: By default, this is disabled until you deselect the check mark next to it. If the check

mark is present, custom easing—as specified by you on the grid—applies to all aspects of the

tween symbol. If the check mark is absent, this drop-down menu lets you distinguish among

Position, Rotation, Scale, Color, and Filters.

 Use one setting for all properties: When selected, this allows multiple properties to

be eased individually.

 Grid: The Bezier curves on this grid determine the visual result of the custom easing applied.

 Preview: Click the two buttons in this area to play and stop a preview of the custom easing.

 OK, Cancel, and Reset: The OK and Cancel buttons apply and discard any custom easing.

Reset reverts the Bezier curves to a straight line (no easing) between the grid’s opposite

corners.

So, how does the grid work? Let’s look at a traditional ease in to see how the Custom Ease In/Ease

Out dialog box interprets it.

1. Open the CustomEasingComparison.fla file in the Chapter 7 Exercise folder, and set the

Ease property to –100 (a normal full ease in) for the tween in the top layer.

2. Scrub the timeline to confirm that the upper symbol starts its tween more slowly than the lower

one but speeds up near the end. The lower symbol, in contrast, should advance the same

distance each frame (see Figure 7-27).

Figure 7-27. An ease in causes the upper symbol to start slower and speed up (artwork by Steve

Napiersk).

3. Click the Edit button in the Tweening area of the Properties panel to see what an ease out

looks like on the grid. The curve climbs the vertical axis (percentage of change) rather slowly and

then speeds its ascent near the end of the horizontal axis (time in frames). Hey, that makes

sense!

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

389

4. Click Cancel, apply a full ease out (100), and then click the Edit button to check the grid again.

Bingo—the opposite curve.

It follows that a combination of these would produce either a custom ease in/out (slow, fast, slow) or a

custom ease out/in (fast, slow, fast). Let’s do the first of those two.

5. Click the upper-right black square in the grid to make its control handle appear. Drag it up to the

top of the grid and about two-thirds across to the left, as shown in Figure 7-28.

Figure 7-28. Dragging a control handle to create a custom ease

6. Click the bottom-left black square, and drag its control handle two-thirds across to the right. The

resulting curve—vaguely an S shape—effectively combines the curves you saw for ease in and

ease out (see Figure 7-29).

7. Click OK to accept this setting, and scrub the timeline or test the movie to see the results.

8. Let’s inverse this easing for the lower symbol. Select the lower span of frames, and click the

Edit button. This time, drag the lower-left control handle two-thirds up the left side. Drag the

upper-right control handle two-thirds down the right side to create the inverted S curve shown in

Figure 7-30. Click OK, and compare the two tweens.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

390

Figure 7-29. An S shape produces an ease in/out (slow-fast-slow) tween.

Figure 7-30. An inverted S shape produces an ease out/in (fast-slow-fast) tween.

Think this is cool? We’re just getting started!

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

391

Adding anchor points

By clicking anywhere along the Bezier curve, you can add new anchor points. This is where you can

actually save yourself a bit of work.

1. Open the MalletNoEasing.fla file in this chapter’s Exercise folder again. If you saved your

work earlier, remove the tween, and delete all frames except for frame 1. To do this, click and

drag from frame 2 to the right until you’ve selected all the frames, and then use Edit ➤

Timeline ➤ Remove Frames.

2. Confirm that the mallet’s transformation point is positioned at the bottom center of its wooden

handle. Now add a new keyframe at frame 25, and apply a classic tween to the span of frames

between 1 and 25.

3. Using the Free Transform tool at frame 25, rotate the mallet 90 degrees to the left. Because a

tween is already applied, you can preview the falling mallet by scrubbing the timeline.

This may seem like déjà vu, but things are about to change. You’re going to emulate the same bounce-

back tween you did earlier, but this time, you’ll do it all in one custom ease.

4. Click in frame 1—or anywhere inside the tween span—and click the Edit button in the

Tweening area of the Properties panel.

5. In the Custom Ease In/Ease Out dialog box, click the Bezier curve near the middle, and

you’ll see a new anchor point with control handles. Click that new anchor point and press the

Delete key—it disappears. Add it again and straighten the control handles so that they’re

horizontal, as shown in Figure 7-31.

Figure 7-31. Starting a more complex custom ease

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

392

6. Repeat this process three more times, up the hill, as shown in Figure 7-32. This prepares the way

for the sawtooth shape you’ll create in the next step.

Figure 7-32. Continuing to add anchor points for a sawtooth curve

7. Leave the corner anchor points where they are. Position the four new anchor points as follows:

 100%, 10

 60%, 15

 100%, 20

 85%, 23

You’ll notice that the anchor points gently snap to the grid while you drag. To temporarily

suppress this snapping, hold down the X key.

8. You’ve probably heard of certain procedures described as more of an art than a science. Well,

we’ve come to that point in this step. Here’s the basic idea, but it’s up to you to tweak these

settings until they feel right to you. To achieve the sawtooth curve we’re after—it looks very much

like the series of shark fins shown in Figure 7-33—click each anchor point in turn and perform the

following adjustment:

 If it has a left control handle, drag that handle in toward the anchor point.

 If it has a right control handle, drag that handle out a couple of squares to the right.

You should get something like the shape shown in Figure 7-33.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

393

Figure 7-33. Shark fins produce a bounce-back effect.

9. Click the Preview play button to test your custom ease. It should look similar to the original

series of mallet bounce-back tweens, but this time you saved yourself a handful of keyframes.

How does this work? As depicted in the grid and following the horizontal axis, you have an ease-in curve

from frames 0 to 10, an ease-out curve from 10 to 15, an ease-in curve from 15 to 20, and so on—just like

your series of keyframes from earlier in the chapter. The mallet moves from its upright position to its

leaned-over position in the very first curve. From frames 10 to 15, the vertical axis goes from 100 percent

down to 60 percent, which means that the mallet actually rotates clockwise again toward its original

orientation, but not all the way. With each new curve, the hammer falls again to the left, and then raises

again, but never as high. Compare your work with MalletCustomEasing.fla in this chapter’s Complete

folder.

Easing multiple properties

On the final leg of our custom easing expedition, let’s pull out all the stops and examine a tween that

updates multiple symbol properties at once. You’ll be familiar with most of what you’re about to see, and

the new parts will be easy to pick up.

1. Open the CustomEasingMultiple.fla file in this chapter’s Exercise folder. Select frame 1,

and note that a movie clip symbol of an apple shape appears in the upper-left corner of the stage.

It is solid green. Scrub across to frame 55, and note the changes to the starting state of the apple

that occur as you move the playhead.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

394

At this point, frame 55, the apple is positioned in the center of the stage, is much larger and more naturally

colored, and has a drop shadow (see Figure 7-34). From this, you can surmise that color and filters are

tweenable—that’s the new part.

Figure 7-34. You are about to discover that it isn’t only rotation that can be tweened.

2. In frame 1, select the apple symbol to see that a Tint has been applied in the Properties

panel, which is replaced by None in the other keyframe. Next, twirl down the Filters at frame

55, and click the apple to see that a drop shadow has been applied that is not present in frame 1.

The Filters properties are no different from Position and Scale as far as tweens are

concerned.

3. Click into the span of tweened frames, and note that a CW (clockwise) rotation has been specified

for Rotation and Scale is enabled (without it, the apple wouldn’t gradually increase in size).

The Ease property reads ---, which means custom easing has been applied. That’s what we’re

after. Click the Edit button.

4. Thanks to the empty Use one setting for all properties check box, the Property

drop-down menu is now available. Use the drop-down menu to look at the grid curve for each of

five properties, all of which are depicted in the tween: Position, Rotation, Scale, Color,

and Filters. Each property has its own distinct curve, which translates into five individual

custom ease settings for their respective properties (see Figure 7-35).

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

395

Figure 7-35. The Custom Ease In/Ease Out dialog box lets you specify distinct easing for five

different tweenable properties.

5. Click the Use one setting for all properties check box to disable the drop-down

menu.

Ack! Have you lost your custom settings? Thankfully, no. Flash remembers them for you, even though

they’re hiding.

6. Click the Preview play button to preview the tween with no easing (the default lower-left to

upper-right curve).

7. Click the check box again to see that the custom ease settings are still intact. Preview the tween

again, if you like.

Using animation
So far, we’ve shown you a hefty animation toolbox. We’ve opened it up and pulled out a number of

powerful tools to show you how they work. In doing so, we’ve covered quite a bit of ground, but there are

still a handful of useful animation features and general workflow practices to help bring it all together. Let’s

roll up our sleeves, then, shall we?

A closer look at the Timeline panel

Whether you use shape, classic, or motion tweens, the Timeline panel gives you a pint-sized but

important dashboard (see Figure 7-36). Don’t let its small size fool you. This strip along the bottom of the

timeline helps you quickly find your bearings, gives you at-a-glance detail on where you are, and even lets

you time travel into both the past and the future, to see where you’ve been and where you’re going.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

396

Figure 7-36. The bottom edge of the timeline provides a collection of useful tools.

Let’s take an inventory of this useful, if small, real estate.

 Center Frame: In timelines that are long enough to scroll, this button centers the timeline on the

playhead.

 Onion Skin and Onion Skin Outlines: These buttons toggle two different kinds of onion

skinning, which give you a view of your work as a series of stills.

 Edit Multiple Frames: This button allows you to select more than one keyframe at the same

time, in order to edit many frames in one swoop.

 Modify Onion Markers: Click this button to see a drop-down menu that controls the

functionality of the onion skin buttons.

 Current Frame: This indicates the current location of the playhead. Scrub or enter a value to

move the playhead to that frame.

 Frame Rate: This indicates the movie’s frame rate. Scrub or enter a value to change it.

 Elapsed Time: Given the current frame and the movie’s frame rate, this indicates the duration

in seconds of the playhead’s position. For example, in a movie with a frame rate of 24 fps, this

area will say 1.0s at frame 24. Scrub or enter a value to move the playhead to the frame that

closely matches your specified elapsed time.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

397

Onion skinning

Traditional animators—those wonderful people who brought us Mickey Mouse and Bugs Bunny—often

drew the motion of their characters on very thin paper over illuminated surfaces called light boxes. This

paper, called onion skin, allowed the artist to see through the current drawing to what had occurred in the

previous drawings or frames. In this way, animators could control the motion of someone’s head or the

speed and shape of the anvil about to land on a coyote’s head.

Flash offers you this same capability with a lot more flexibility than flipping through sheets of paper. In

Flash, you can choose to see through as many frames as you want, moving backward and forward looking

at solids or outlines. Let’s take a look at how you do this:

1. Open the CuriousRabbit.fla file in this chapter’s Exercise folder. Pay particular attention to

the movie’s frame rate of 30 fps.

2. All of the animation happens in the Rabbit movie clip found in the Library. Double-click this

movie clip in the Library to open its timeline. Drag the playhead to frame 60 where the rabbit

begins to move its head closer to you. Take a look at the Elapsed Time indicator at the bottom

of the panel. It should, as shown in Figure 7-37, read about 2.0 seconds. This makes sense:

60/30 = 2.0.

Figure 7-37. Now you know why it is called a timeline.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

398

3. Change the movie’s fps to 60, and note the Elapsed Time changes, as expected, to 1 second.

Now change the frame rate to 15 fps. The fps shows 4.1 seconds. What’s with the discrepancy?

Shouldn’t it be 4 seconds? We aren’t sure, but it is close enough to the expected value to satisfy

us. Change the time back to the original 30 fps.

4. Place the playhead at frame 60, and, using the bar at the bottom of the timeline, scroll all the way

to the left until you see frame 1 and the playhead is hidden. This is a common issue faced by

Flash designers. You have a long timeline, and it suddenly hits you: where’s the playhead? Click

the Center Frame button (shown in Figure 7-36), and you will pop right over to frame 60. This is

a great “you are here” panic button that’s really shines with especially long timelines.

5. Position the playhead at frame 70, and click the Modify Onion Markers button. Choose

Onion 5 from the drop-down menu. This puts two markers on frames 65 and 75 on either side of

the playhead, as shown in Figure 7-38. If you aren’t seeing them, return to the Modify Onion

Markers menu, and select Always Show Markers.

Figure 7-38. Onion skinning adds markers to either side of the playhead.

These markers extend five frames back from and ahead of the current position, which explains the name

of the Onion 5 setting. What they show are semitransparent views of those frames fading as they get

farther from the playhead—just like artwork on thin paper! Not only do they let you see back in time at

previous frames, but they also show artwork on future frames, which provides practical sequential context

for any moment in time.

6. To actually see these onion skins, click the Onion Skin button. In this case, you’re seeing 11

“sheets,” including the one under the playhead (which is the darkest) and then five ahead and

behind.

7. Click Modify Onion Markers again, and choose Onion 2, as shown in Figure 7-39. This

reduces your view to five “sheets,” as opposed to the previous 11. Drag the playhead slowly to

frame 65 and back. Notice that the onion markers move with you.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

399

Figure 7-39. Various onion skin settings

What are the other choices on this drop-down menu? Always Show Markers keeps the onion markers

visible, even if you toggle the Onion Skin button off. Anchor Onion keeps the onion markers from

following the playhead. Onion All spreads the onion markers along the whole timeline. You can try it

with this file. The result is overwhelming (and also makes it hard to drag the playhead around), but with

timelines of little movement, it probably has its place. If you do select Onion All, be aware that the

selected frames—the “all” part of Onion All—will move along with the playhead unless you select

Anchor Onion in the Modify Onion Markers menu. If you want some setting besides 2, 5, or All,

drag the markers along the timeline yourself. If you like, you can look eight frames back and two frames

forward, or any combination that suits your animation.

8. Choose Onion 5, and drag the playhead to frame 70. Click the Onion Skin Outlines button.

Note that the same sort of onion skinning occurs, but that the tweened areas are shown in

wireframe format (see Figure 7-40). This makes it even clearer to see what’s moving and what

isn’t.

Onion skinning is just as relevant to shape and motion tweens as it is to classic tweens. Use it to help you

whenever you get the notion.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

400

Figure 7-40. Onion skin outlines show tweened artwork in a wireframe format.

Modifying multiple frames

Timeline animation can be painstaking work, no doubt about it. Even if you’re using onion skinning,

chances are good that you’re focused on only a handful of frames at a time. There’s nothing wrong with

that, just as long as you remember to keep your eye on the big picture, too. Sooner or later, it happens to

everyone: artwork is replaced, your manager changes her mind, or you find that you’ve simply painted

yourself into a corner and need to revise multiple keyframes—maybe hundreds—in as few moves as

possible.

Fortunately, the timeline has a button called Edit Multiple Frames, which allows you to do just what it

describes. That’s the obvious answer, of course, and we’ll cover that in just a moment, but it’s worth noting

that the concept of mass editing in Flash extends into other avenues.

Because of the nature of symbols, for example, you can edit a Library asset and benefit from an

immediate change throughout the movie, even if individual instances of that symbol have been stretched,

scaled, rotated, and manipulated in other ways. For example, if an imported graphic file, such as a BMP,

has been revised outside Flash, just right-click (Windows) or Control+click (Mac) the asset in the

Library, select either Update (if the location of the external image hasn’t changed) or Properties,

and then click the Import button to reimport the image or import another one.

Sometimes it’s not that easy. Sometimes you will have finished three days of meticulous classic tween

keyframing only to learn that the symbol you’ve tweened isn’t supposed to be that symbol at all. Time to

throw in the towel? Well, maybe time to roll the towel into a whip. But even here, there’s hope...if you’re

using graphic symbols.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

401

Swapping graphic symbols

It’s easy enough to swap out symbols of any type for any other type at a given keyframe, but the swap

applies only to the frames leading up to the next keyframe. With graphic symbols, it’s possible to apply a

swap across keyframes, but you need to know the secret handshake. Let’s try it.

1. Open the RabbitSwap.fla in this chapter’s Exercise folder.

You have decided to get in touch with your inner “Looney Tunes” and drop an anvil on the rabbit’s head.

Your co-workers all think this is rather cool except for the guy who is a “comic book” fan. He points out that

the animation doesn’t do a thing for him. “In fact,” he says, “shouldn’t the rabbit react to an anvil dropping

on its head?” Tell him to give you a minute to fix that oversight, and you’ll call him back. He wanders off to

his cubicle at the other side of the office.

2. Scrub over to frame 30, and click the rabbit’s head on the stage.

3. Open the Properties panel, and click the Swap button to open the Swap Symbol dialog box

shown in Figure 7-41. A list of all the symbols in the movies appears; the selected symbol is

indicated with a black dot, and a preview of the selected rabbit head appears on the left.

Figure 7-41. Swapping symbols is a great way to create animation effects.

4. Select the Head4 graphic symbol, and click OK. The new symbol, as shown in Figure 7-42,

appears on the stage. Move it into position.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

402

Figure 7-42. One rabbit head has been swapped for another in the Library.

5. Select the rabbit head in Frame 33, and swap the Head4 graphic symbol with the Head3 graphic

symbol. Scrub across the timeline to see the rabbit wince, close its eyes, and then open them as

the anvil leaves the stage.

This technique a great productivity booster, and once you get the hang of it, you can make changes like

these well before the “comic guy” makes it back to his cubicle. When he asks how you did it, look

knowingly at him with a faint smile and say, “Magic.”

Combining timelines

Pat your head. Good! Now rub your tummy. Excellent. Now do those both at the same time. Until the

undertaking snaps into place, it might seem an impossible feat, but once you manage to pull it off, you

know you’ve done something pretty snazzy. Flash animations get interesting in the same way when you

combine techniques and timelines. This is where the distinction between graphic symbols and movie clip

symbols really comes into play. Both types of symbols have timelines, but each behaves in a different way.

Understanding this paves the way toward good decision making in your animations.

Movie clip timelines vs. graphic symbol timelines

Movie clips operate independently of the timelines they occupy. You can create a 500-frame animation on

the main timeline and then transfer all those frames into a movie clip symbol, and everything will run the

same, even if that movie clip occupies only a single frame on the main timeline. This is not so with graphic

symbols. Graphic symbols are synchronized with the timelines that contain them. So if you transfer all

those frames into a graphic symbol, that symbol will need to span a length of 500 frames in the main

timeline in order for its own timeline to play fully.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

403

Although movie clips can be instructed by ActionScript to stop, play, and jump to various frames, graphics

can only be told to hold their current position, play through once, or loop. This instruction comes not from

ActionScript but from the Properties panel settings. ActionScript within the timelines of graphic

symbols is not performed by a containing timeline. Sound in graphic symbols is also ignored by parent

timelines. Let’s see this in action:

1. Open the CombineTimeline.fla file in this chapter’s Exercise folder, and select the symbol at

frame 1.

2. Look in the Properties panel’s Looping area, and you’ll see that the Options drop-down

menu is set to Single Frame. Below it, the First field is set to 1, which refers to the timeline

of this graphic symbol. Change this number to 20, and press Enter (Return). Doing so changes

the graphic: the rabbit’s eyes close, as shown in Figure 7-43.

Figure 7-43. Changing the displayed frame of a graphic symbol

3. Double-click the Rabbit symbol in the Library, and you’ll see why this change occurs. The Rabbit

symbol has a timeline, and the Head symbol changes every 10 frames. You can see this by selecting

the head on the stage in frame 1. The instance name in the Properties panel is Head1. Scrub over

to frame 10, click the head on the stage, and the instance name changes to Head2.

4. Select the symbol again in the main timeline. Change the Single Frame setting to Play

Once, and change the First input field to 10. This changes the rabbit’s head and instructs the

graphic symbol to play through the end of its timeline a single time.

5. Drag the playhead slowly to the right to see the heads change while the symbol moves across the

stage. At the top, the symbol continues to move but no longer updates the rabbit head. The

reason for this is that the symbol’s timeline has reached its end but does not repeat.

6. Change the Play Once setting to Loop, and change First to 1. Scrub again, and you’ll see

the heads change.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

404

You might also want to select Synch in the Looping properties. When Sync is selected for the various

spans in a multiple-keyframe classic tween, Looping properties are applied to all spans. When Sync is

deselected, Looping properties apply to only the current span. Selecting this option for a nested

animation ensures the nested frames in the graphic symbol will be synchronized with the main timeline.

Nesting symbols

Designer and animator Chris Georgenes (www.mudbubble.com) has lent his talents to numerous cartoons

on television and the Web, including Dr. Katz, Professional Therapist, Adult Swim’s Home Movies, and,

well, more online animation than either of us could shake a stick at. One of the giants in the field, Chris

uses combined timelines to great effect in practically all of this Flash work. From walk cycles to lip-syncing,

Chris builds up elaborate animated sequences by organizing relatively simple movement into symbols

nested within symbols. The orchestrated result often leaves viewers thinking, “Wow! How did he do that?”

Luckily for us, Chris was kind enough to share one of his character sketches, which provides a simplified

example.

Open the Grotto.fla file from the Example folder for this chapter. Note that the main timeline has only

one frame and only one symbol in that frame (see Figure 7-44). This base symbol is a movie clip, because

Chris wanted a slight drop shadow effect on the friendly monster, and graphic symbols don’t support filters.

Figure 7-44. Nested symbols allow you to take the most useful features of each symbol type.

www.zshareall.com

http://www.mudbubble.com
http://www.zshareall.com

ANIMATION, PART 1

405

Double-click this movie clip to enter its timeline. Even with a basic example like this one, you may be

surprised by the number of layers inside. Try not to feel overwhelmed! The layers are neatly labeled, as

shown in Figure 7-45. (Now that you see how a pro does it, start labeling your layers as well.) Also,

although there are many of them, they all have a purpose. If you like, temporarily hide a number of layers

to see how each layer adds to the complete picture. What we’re interested in is the mouth.

Figure 7-45. Complex images and animations are built up from simple pieces.

Double-click the mouth symbol to enter its timeline. Here, too, there is a handful of layers, comprising the

lips, teeth, and a few shadows on this monster. There are 115 frames of animation here—mostly classic

tweens, but also a shape tween at the bottom. If you scrub the timeline, you’ll see the mouth gently move

up and down. This is Grotto breathing (see Figure 7-46). Because the mouth itself is a graphic symbol, its

movement can be made to scrub along with the timeline of its parent.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

406

Figure 7-46. Nesting timelines is a way to compartmentalize complexity.

Return to the grotto timeline by clicking the grotto movie clip icon in the breadcrumbs area of the

Timeline panel (shown above the monster in Figure 7-46). Drag the playhead to a keyframe, such as 11,

and click the mouth symbol. Note that it’s set to Loop in the Properties panel and starts at frame 11.

Because the mouth symbol loops, the mouth itself can be tweened to various locations and rotations

during the course of the grotto symbol’s timeline. The complexity of the mouth’s inner movement is

neatly tucked away into the mouth symbol.

At any point, you can pause this breathing movement by adding a keyframe in the grotto symbol’s

timeline and changing the mouth symbol’s behavior setting from Loop to Single Frame.

The phenomenon you’ve just seen can be nested as deeply as you like. Even limited nesting, like that in

Grotto.fla, can, for example, be used to animate a bicycle—the wheels rotate in their own timeline while

traveling along the parent timeline—or twinkling stars. Just keep in mind that if a given graphic symbol’s

timeline is, say, 100 frames long, and you want all of those frames to show, the symbol will need to span

that many frames in the timeline that contains it. Of course, you may purposely want to show only a few

frames.

Graphic symbols as mini-libraries

Between the rabbit and grotto, we are sure you are slowly coming to the conclusion that animation projects

can get rather complicated, rather quickly. There are a lot of tweens and symbols, and the odds for

becoming quickly entangled in a project seem to be rather significant. Our answer is, “Not really.” The

graphic symbol’s timeline is your life ring.

To understand what we are getting at, open the TalkingPanda.fla file found in your Exercise folder.

(This file is actually a template that ships with Flash CS5. It can be found in File ➤ New Templates ➤

Sample Files ➤ Lip Synch).

Lip syncing, when one is first introduced to Flash, is one of those techniques one will avoid

because...well...because it looks so hard. Let’s get over that right now.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

407

To start, simply press the Return/Enter key to see the project in action. As the playhead moves, the panda

says: “Sweet and sour chicken.” This is accomplished through the use of the ten graphic symbols you see

on the pasteboard and in the Mouth shape with graphic symbols folder in your Library. Each symbol

represents a sound or range of sounds, which means you won’t need one symbol for each letter of the

alphabet.

As you have seen, there are a couple of methods of swapping out the symbols. If you look at the mouth

layer, the first conclusion you may come to is that each key frame in the layer represents a symbol from

the collection on the pasteboard. This looks complicated because just the word sweet looks like you need

to use three of the symbols. You could if you are into beating yourself in the head with a board.

Click the first mouth symbol on the stage and open the Properties panel. The first thing you will notice, as

shown in Figure 7-47, is it isn’t one of the symbols on the pasteboard. It is the mouth symbol. Twirl down

the Looping parameter in the Properties panel, and you will immediately see why this example falls

smack into the category of “Work smart. Not hard.” The Looping Option is set to Single Frame, and

each key frame or swap is accomplished by shooting the playhead to a specific frame in the mouth symbol

and letting it play from there.

Figure 7-47. Graphic symbols can be used as mini-libraries to keep the real Library from overcrowding.

This is a perfect example of how a graphic symbol’s timeline can be used to reduce clutter in the

Library. Sure, you can use the Swap button to replace any symbol with another at any keyframe, but it is

much less hassle to update the First field in the Properties panel for graphic symbols. This

technique is one of those hidden gems that becomes a favorite once you realize it, and we thank Chris

Georgenes for sharing such a useful trick.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

408

For more information about character design, advanced tweening, and lip-syncing

techniques, search Chris Georgenes on the Adobe website (http://www.adobe.com/).

You’ll find a number of Chris’s articles and Macrochats (Flash-based recordings of live

tutorial presentations).

Motion guides

Tweening in a straight line is effortless, and we’ve shown how easing can make such movement more

realistic. But what if you want to tween along a curve? Wouldn’t it be great if we could tell you that it’s only

marginally more difficult? Well, we can, and we’ll even show you. The trick is to use something called a

motion guide, which requires its own layer. You were first introduced to this feature at the end Chapter 1,

but now is the time to really look at it. When you get to Chapter 8, you’ll see an even easier way to do this

for motion tweens, but for classic tweens, motion guides are the way to go.

1. Open the MotionGuide.fla file in this chapter’s Exercise folder. You’ll see a butterfly graphic

symbol in one layer and a curvy squiggle in another. If you scrub the timeline at this point, you’ll

see the butterfly tween in a straight line with a slight rotation between frames 240 and 275.

Butterflies don’t really fly like that, so let’s fix the flight pattern.

2. Right-click (Windows) or Control+click (Mac) the flutter by layer, and choose Guide from the

context menu, as shown in Figure 7-48. Its icon turns from a folded page to a T-square.

Figure 7-48. Changing a normal layer into a guide layer

www.zshareall.com

http://www.adobe.com
http://www.zshareall.com

ANIMATION, PART 1

409

You’ve changed the flutter by layer into a guide layer, which means anything you put into it can be used as

a visual reference to help position objects in other layers. Depending on your snap settings (View

Snapping), you can even snap objects to drawings in a guide layer. Artwork in guide layers is not included

in the published SWF and does not add to the SWF’s file size. In this exercise, the squiggle is your

guide—but setting its layer as a guide layer isn’t enough. It must become a motion guide. Let’s make that

happen.

3. Gently drag the butterfly layer slightly up and then to the right, as shown in Figure 7-49. Drag

too high, and you simply swap layer positions. Do it right, and the T-square icon changes into a

shooting comet.

Figure 7-49. Changing a guide layer into a motion guide layer by dragging a layer slightly up and to the

right.

To undo this association, simply drag the butterfly layer slightly down and to the left again. Practice

this a few times, and when you’re finished, make sure the butterfly layer is reassociated (the T-square

has turned into the comet).

Motion guides must have a clear beginning and end point, as does the squiggle shown.

Guides that cross over each other may cause unexpected results, so take care not to

confuse Flash. Also, make sure your motion guide line extends the full length between

two keyframes, including the keyframe at either end.

4. Thanks to the Snap setting in the tweened frames (see the Properties panel while clicking

anywhere inside the tween), the butterfly should already be snapped to the closer end point at the

last keyframe. Scrub to make sure. The butterfly should follow the squiggle along its tween (as

shown in Figure 7-50). If it doesn’t, make sure to snap the butterfly symbol to the squiggle’s

left end in frame 1 and snap it again to the right end in frame 240.

5. Click anywhere inside the tween, and put a check mark in the Orient to Path check box in

the Tweening area of the Properties panel. Scrub the timeline to see how this affects the

butterfly’s movement. The butterfly now points in the direction described by the squiggle.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

410

Figure 7-50. A motion guide affects the tweened path of a symbol.

For more realism, let’s add some complexity, as described earlier in the “Combining timelines” section.

6. Double-click the Butterfly asset in the Library to enter its timeline. Add a keyframe to the

LeftWing and RightWing layers in frames 10 and 20.

7. In the Body layer, click in frame 20, and extend the frames to that point (Insert ➤ Timeline ➤

Frame).

8. Select both wings symbols at frame 10, and use the Free Transform tool to reduce their

width by about two-thirds. Use the Alt (Windows) or Option (Mac) key to keep the transformation

centered.

9. Add classic tweens to the LeftWing and RightWing layers, as shown in Figure 7-51. Make

sure to add your tweens between keyframes 1 and 10 and also between keyframes 10 and 20.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

411

Figure 7-51. Tweening a timeline inside the butterfly graphic symbol

10. Test your movie to see the combined effect.

Did you notice an alternate way to create a motion guide in Figure 7-51? The context

menu features a selection called Add Classic Motion Guide just beneath the

Guide selection discussed in step 2. If you choose that instead, Flash handles the

gentle dragging described in step 3 for you.

Tweening a mask

Animating masks is no more difficult than animating normal shapes or symbols. In fact, the only difference

is the status of the layer that contains the mask.

Animating a mask

In Chapter 3, you used text to create a mask. In this exercise, you’ll use a shape for a mask, and you’ll

apply a shape tween to it to produce an iris-wipe transition, like in the old movies.

1. Open the MaskTween.fla file in this chapter’s Exercise folder. You’ll see three layers: a photo

of a doorway in Guangzhou, China, plants in a garden to provide some background texture, and a

small yellow dot.

2. Use the Free Transform tool to increase the size of the dot in the keyframe in frame 30 so that

it matches the width and height of the photo.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

412

3. Because the dot is a shape, apply a shape tween between the keyframes in the dot layer.

4. Right-click (Windows) or Control+click (Mac), and select Mask to convert the dot layer to a mask

layer.

5. Scrub the timeline to see the result, as shown in Figure 7-52. Easy as pie!

Figure 7-52. Masks can be tweened just as easily as regular shapes or symbols.

Using motion guides with masks

Often, once new designers get comfortable with motion guides and masks, they come to the realization

that a layer can be converted to either a guide or mask layer, but not both. Naturally, the question arises,

“Is it possible to tween a mask along a motion guide?” The answer is yes, and yet again, combined

timelines come to the rescue. Let’s see how it’s done:

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

413

1. Open the MaskTweenMotionGuide.fla file in this chapter’s Exercise folder. The setup here is

very similar to the MaskTweenk.fla file, except that the dot layer is now named guide mask.

2. Double-click the guide mask symbol to enter its timeline. Confirm that a dot symbol is classic

tweened in association with a motion guide. Return to the main timeline.

3. Right-click (Windows) or Control+click (Mac) the Dot layer, and select Mask from the context

menu. This nested combination gives you a motion-guided mask!

Tweening Filter Effects

It may come as a bit of a surprise, but not only can objects—graphic symbols, text, and movie clips—be

tweened but so can filters. Just keep in mind that filters can be applied only to movie clips or text.

In this example, we visit a lounge in Las Vegas and, using filter tweens, fix an obviously broken neon sign.

What we are going to do is to have that broken tube flicker on and off as neon is wont to do on occasion.

Here’s how:

1. Open the BlueMoon.fla file in your Exercise folder, and take a gander at the timeline. It is quite

obvious from Figure 7-53 that the M in the sign is not working. To fix it, we started by using the

Pen tool to trace out the shape of the tube, filled it with a 2-point white stroke, and converted the

shape to a movie clip.

Figure 7-53. We start with a broken neon sign.

2. Click the movie clip on the stage, and apply a Glow filter with these settings:

 Blur X: 5

 Blur Y: 5

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

414

 Strength: 100%

 Quality: High

 Color: F0FDF8

How did we know what color to use? We zoomed in on the lights, clicked the filter’s

Color chip to open the Color Picker, and, when you move the cursor over the

image, it changes to the Eyedropper. We found a color we liked, clicked it, and that

became the color for our glow.

3. Add a keyframe in frame 60 of the M layer, and add a classic tween between the two key frames.

4. Add eight more randomly placed key frames between the two keyframes.

5. Select each new keyframe, and change the Blur and Strength values of the filter. The

objective here is to create the effect of a flickering neon sign.

6. When finished, return to frame 1, and press the Return/Enter key to see your attempt, as shown

in Figure 7-54, at a neon repair. If you really want to “rock” this sign, try tweening the alpha from

the Color effect drop-down to fade the letter in and out.

Figure 7-54. Repairing a neon sign is easy with filter tweens.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

415

Programmatic animation
To this point in the chapter, we have explored physically moving things from “here” to “there” using tweens.

In this, the final section, we are going to let ActionScript shove things around. This is a rather large subject

because, as you have discovered, animation involves a lot more than motion. Everything you have done to

this point—move, distort, swap, change—can just as easily be done using ActionScript.

Our intention is to show you how this is accomplished. That’s the good news. The bad news is we can’t

cover the subject in any great depth because it is massive. Still, once you understand, in broad terms, how

ActionScript moves stuff around, you can start to fully explore how games are created, slide shows are

pulled together, and interface elements such as sliders are constructed.

Prior to Flash CS5, the coauthors of this volume would spend a quite a bit of time prior to writing the book

discussing how we could approach this subject in a very short space. We inevitably gave it a pass, not

because we were lazy, but because we felt we couldn’t do the subject justice in the space allotted. Flash

CS5 changed that equation. The application contains code snippets and templates that are ideal learning

tools, and we strongly urge you to fully explore them and to take from what you learn with them and apply

it to your projects.

For those of you who become inspired with this section and want to learn more, look no

further than Foundation ActionScript 3.0 Animation: Making Things Move written by our

colleague here at friends of ED, Keith Peters.

In this section, you are going to do the following:

 Let Flash convert motion to ActionScript

 Create a small game that uses the keyboard to control an object’s motion

 Create random motion that simulates particles jiggling around in a suspension.

Again, these are very simple projects, using very simple code to accomplish some very basic tasks. Even

so, if you are new to this, you have to start somewhere, and this is as good a place as any. Let’s start by

bouncing that rabbit around the screen.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

416

Copying motion as ActionScript

You’ll start with a really neat option, introduced in Flash CS3, that fits this chapter like a glove. The option

is called Copy Motion as ActionScript 3.0. Here’s how it works:

1. Open the CreateMotionAS3.fla file in the Chapter 7 Exercise folder. You will see that we

have added an animated ball and a parrot to the stage, as well as an actions layer (see Figure

7-55).

Figure 7-55. We start with a ball and one really dumb rabbit.

2. Scrub the playhead across the timeline. You will see the ball fall to the bottom of the stage,

squash, stretch, and bounce back up to the top of the stage. Let’s apply that animation to the

rabbit.

3. Select the rabbit on the stage, and in the Properties panel, give it the instance name of

Rabbit.

4. Select the first frame of the ball layer, press the Shift key, and then select frame 28. This

selects all but the last frame of that layer. Why all but the last? Because only the first 28 frames

will contain a classic tween.

5. With the frames selected, either select Edit ➤ Timeline ➤ Copy Motion as

ActionScript 3.0, as shown in Figure 7-56, or right-click (Windows) or Control+click (Mac)

and select Copy Motion as ActionScript 3.0 from the context menu.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

417

Figure 7-56. You can access the command through the Edit menu item or the context menu.

6. When you select that menu item, a dialog box will open asking you for the name of the symbol to

which the motion will be applied (see Figure 7-57). Enter Rabbit, and click OK.

Figure 7-57. You must identify the instance to which the ActionScript will be applied.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

418

What you have done is ask Flash to translate the motion of the ball into ActionScript and apply that same

motion to the rabbit. This all happens in the background, and when the motion is translated into

ActionScript, the code is placed on the clipboard.

Be careful not to paste anything to the clipboard at this point! You’ll erase the

ActionScript that was copied there in step 6.

7. Select the first frame of the actions layer, and open the Actions panel. Click in the Script

pane, and select Edit ➤ Paste. The code—a lot of it!—will be pasted into the Script pane.

8. Save and test the movie. The rabbit takes on the animation and distortion of the ball in the SWF

(see Figure 7-58). This happens because of the instance name you entered into the dialog box

(Rabbit), which matches the instance name you gave the rabbit in step 3.

Figure 7-58. Only stupid rabbits enjoy being squashed.

Now that you know how this works, there are obviously some rules:

 The motion must be a classic or motion tween using a symbol (any symbol will do; the ball

happens to be a movie clip).

 The code can be applied only to a movie clip, because you’ll need to supply an instance name,

and graphic symbols don’t allow for that.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

419

The great thing about this feature is that the tween can contain the following properties and features (many

of which we’ve talked about in this chapter):

 Position • Orient to path

 Scale • Cache as bitmap

 Skew • Frame labels

 Rotation • Motion guides

 Transformation point • Custom easing

 Color • Filters

 Blend modes

The bottom line is that you can create, transfer, and reuse some pretty amazing scripted animation effects

without writing a single line of ActionScript.

Using the keyboard to control motion

In this very simple example, we are going to use the arrow keys on your keyboard to move a ball along

path. Though a very simple example, it is a starting point for many games requiring a user to move

something from here to there using the keyboard. Let’s get started:

1. Open the KeyboardControl.fla file found in your Exercise folder. When it opens, you will see,

as shown in Figure 7-59, a ball and the white path the ball must follow. The ball is a movie clip

and has been given the instance name of Ball in the Properties panel.

Figure 7-59. You start with a simple path and assign the object to be moved an instance name.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

420

2. Select the ball on the stage, open the Code Snippets panel, and select Move with

Keyboard Arrows found in the Animation folder.

3. Click the Add to Current frame button in the Code Snippets panel. An Actions layer will

be added to your timeline, and Actions panel will open. Let’s take a look at the code:

stage.addEventListener(KeyboardEvent.KEY_DOWN, fl_PressKeyToMove_2);

function fl_PressKeyToMove_2(event:KeyboardEvent):void
{
 switch (event.keyCode)
 {
 case Keyboard.UP:
 {
 Ball.y -= 5;
 break;
 }
 case Keyboard.DOWN:
 {
 Ball.y += 5;
 break;
 }
 case Keyboard.LEFT:
 {
 Ball.x -= 5;
 break;
 }
 case Keyboard.RIGHT:
 {
 Ball.x += 5;
 break;
 }
 }
}

The code block starts by having the stage listen for keyboard input and, when it detects it, executes the

fl_PressKeyToMove_2 function. That’s a rather long name, and if it doesn’t make sense to you, rename it

to something like moveIt. If you do, be sure to change the name after the word function in the next line.

The rest of the code essentially tells Flash: “Don’t do a thing unless one of the four arrow keys—UP, DOWN,

RIGHT, or LEFT—is pressed.” The use of the Switch statement makes life easier for you because it tests

for a condition—Is the UP arrow pressed?—and if it is, to do something. The break statement tells Flash

there are no other conditions to test for.

Each of the key presses is contained in a case statement, which is how things are done when a switch

statement is in play. The beauty of case statements is they replace what would otherwise be your sitting

down and writing out a separate function for each key press. It puts all of that in one tidy package.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

421

The magic is found in how the Ball instance moves—Ball.x+=5 or Ball.y-= 5. Remember, all on

screen motion can occur on only two axes: the x-axis for left to right motion and the y-axis for up and

down. The operator (+= or - =) tells Flash which direction to move. If a minus sign is used, the ball moves

to the left or up. Use the plus sign, and the opposite occurs. The number, 5, tells Flash how many pixels

the ball will move each time a key is pressed.

4. Save and test the movie.

Creating random motion using ActionScript

The final exercise in this section has its roots with a Scottish botanist named Robert Brown who worked

out the math around the random movement of particles suspended in a solution such as water or air.

When ActionScript arrived in Flash, it was only a matter of time before such Flash wizards as Jared Tarbell

(http://levitated.net/) and James Patterson (http://presstube.com/project.php?id=259)

started using math to create particles and jaw-dropping programmatic art such as Jared’s example in

Figure 7-60.

Figure 7-60. Gathering line from levitated.net

www.zshareall.com

http://levitated.net
http://presstube.com/project.php?id=259
http://www.zshareall.com

CHAPTER 7

422

In this example, we are going to move into the realm of Flash heresy and actually use a template that

comes packaged with Flash CS5. Many Flash developers regard these things with disdain, claiming “real

Flash designers don’t use templates.” Though there is some truth to this, we also might add the templates

that ship with Flash CS5 are invaluable teaching and learning tools. Let’s get started:

1. Select File ➤ New, and click the Templates button in the New Document dialog box.

2. Select the Animation category, and select Random Movement Brownian (Figure 7-61) in the

Templates area. On the right side, you will see a preview of the template’s stage and a brief

description of what the template does underneath it. Click OK to open the template.

Figure 7-61. Choosing a template in Flash CS5

3. All templates open as an Untitled document. When the template opens, feel free to save it to

your Exercise folder. In this case, Adobe has told us how to check out the code by putting the

instruction in a guide layer, which will be ignored when the SWF is created.

4. To start, test the movie. You will see the little green balls jiggling and moving around on the

stage. Close the SWF, and let’s see how that happens.

5. Double-click any of the balls on the stage to open the Particle Movie Clip symbol found in

the Library.

6. Select the first frame of the Actions layers, and open the Actions panel. When it opens, you

will see this code:

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 1

423

var moveAmount:Number = 12;

addEventListener(Event.ENTER_FRAME, fl_randomParticleMove);
function fl_randomParticleMove(evt:Event):void
{
 var xChange:Number = Math.round(Math.random()*moveAmount - (moveAmount/2)
);
 var yChange:Number = Math.round(Math.random()*moveAmount - (moveAmount/2)
);
 x += xChange;
 y += yChange;

 if(x > 550) { x = 0; }
 if(x < 0) { x = 550; }
 if(y > 400) { y = 0; }
 if(y < 0) { y = 400; }
}

Your first reaction to the code most likely was “Come on, there’s got to be more to this.” That is quite

understandable considering you saw all of those balls jittering around the stage in the SWF. What you

need to understand is that each ball on the stage is a copy of this movie clip, and the ball in the movie clip

is managed by this simple code. Let’s go through it.

The code starts off by setting a number for how far the ball will move. In this case, the distance is 12

pixels. To change the effect, feel free to play a “what if?” game and change the number. “What if?” games

are wonderful ways of learning how things work in ActionScript. In this case, it would be “What if I change

the number to 24. What would that look like?” Do that, and the balls, when you test the SWF, move into

jitter overdrive. Reduce the number to 6, and things slow down. The rest of the code explains how that

happens.

This is a one-frame movie, so the next line listens for the playhead to come back into the frame—

ENTER_FRAME—and when it does, the function is executed. This is a way of looping a one-frame timeline.

The function uses math to change the x and the y position of the ball, each time the playhead comes back

into the frame. This is accomplished by first using the Math.round() method to strip off any decimal

points that result from the calculation between the bracket. The calculation creates a random number

between 0 and 1, multiplies it by the moveAmount set in line 1, and multiplies that result by half of the

moveAmount variable. To wrap your mind around this, let’s walk through the math assuming the random

number chosen is .92:

var xChange:Number = Math.round(.92*12 - (12/2));
var xChange:Number = Math.round(.92*12 - (6));
var xChange:Number = Math.round(11.04 - (6));
var xChange:Number = Math.round(5.04);
var xChange:Number = 5;

That result is then used to move the ball over and down on the x- and y-axes by 5 pixels.

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

424

The if statement keeps an eye on the location of the ball on the stage. Obviously there is a potential for

the number to eventually move the ball off the stage. This statement checks its location and, if it does

indeed move outside of the stage’s 500 by 450 boundary, yanks it back on to the stage.

Brownian bonus round

If you are new to ActionScript, this is a great place to start the process of understanding that, when it

comes to code, you usually play with numbers. Just because this is the code you were given doesn’t mean

you don’t have permission to change it. Try the following, and see what happens in the SWF when you

make the change:

 Change the moveAmount number.

 Change the moveAmount/2 calculation to moveAmount*.3 or any other number or operator such

as -, * and +.

 Reduce the values in the if statement to see how a more confined space will affect the movie.

 Add a few more copies of the movie clip to the stage.

NOGGIN NUGGETS OF GOLD FROM A VISIONARY RASCAL

Back in high school, one of the former authors of this book, David Stiller, fancied himself a poet. As often
happens in those formative years, the subject was introduced in terms of rhyme schemes. To be sure,
there’s nothing essentially wrong with that. The usual Romantic role models—Byron, Wordsworth, Keats,
Longfellow, Emerson, and so on—wallowed in rhyme. It’s a long-standing custom in many artistic
disciplines to “study the masters” first, and for good reason. The masters figured out where all the
pebbles were, which toughened their feet. Walk in their shoes, and you benefit in the same way.

Of course, once traditions are in place, the path is cleared for visionaries: inventive weirdos who see
things differently, who dash off into the brush and break the rules. People who find new pebbles. Think
ee cummings. What we’ve shown you in this chapter are a number of well-worn trails. Shape tweening
and shape hints, classic tweening and easing...these are familiar corridors for many a Flash master. We
encourage you to tramp along these paths until your shoes are good and comfortable, and then be at the
ready to kick off your shoes and sprint with the visionaries.

If you can keep up with him, you’ll want to chase the flapping longfellows of John Kricfalusi
(http://johnkstuff.blogspot.com/), creator of The Ren & Stimpy Show and pioneer of Flash-
animated cartoon series. A full decade ago, John broke new ground with the “The Goddamn George
Liquor Program,” which had cartoon fans laughing until...well, until milk gushed from their noses. For
Flash cartooning, that was an Internet first. What’s John’s rhyme scheme? Enjoy Flash for the useful tool
it is, but pile up most of your eggs in that basket called your brain. Here’s what he had to say:

www.zshareall.com

http://johnkstuff.blogspot.com
http://www.zshareall.com

ANIMATION, PART 1

425

“I have been asked to write up some tips about how to creatively use Flash. I guess my best
advice is to lean on it as little as possible, to not use it as a creative crutch. Flash isn’t
inherently a creative tool. It’s not like a pencil or a brush or talent.

“I use it mainly as an exposure sheet to quickly test my drawings and animation to see if they
work. Your best Flash tool is your drawing skill. You will always creatively be limited by your
ability to make interesting drawings and movement. I see many animators using Flash mainly
for its in-betweens, or ttweens as they are now called. This little tool makes every movement
look smooth. But if you want to compete against the best animators, whether in Flash or in
traditional animation, you will be competing with drawings, acting, and real motion [see the
following illustration]. Real motion has nonmathematical in-betweening. Every in-between
looks different and conveys information that mere tweening can’t. Tweening just moves the
same drawing from one place to another, and it’s completely obvious when you watch most
Flash cartoons that you are watching tricks, not animation.

No amount of tweening can accomplish such joyous hand clapping: those are frame-by-frame
drawings.

“Since I started using Flash back in caveman times, I’ve been trying to find ways to make it not
look like Flash, to try to undermine all its computery tricks. I’ve tried different approaches. It’s
hard for me to draw my key poses directly on the computer, so I usually draw them in pencil
and scan them in. Once they are in, I time them in the timeline to musical beats. When I’m
satisfied with the rough timing, I then draw breakdown poses directly on a Cintiq

www.zshareall.com

http://www.zshareall.com

CHAPTER 7

426

(www.wacom.com/cintiq/) in the timeline. I constantly roll across the animation to see if the
motion is smooth. If I’m animating to a dialogue track, I draw the mouth positions in Flash and,
again, roll back and forth to see if the animation is working.

“I am always trying new ways to beat Flash’s limitations and don’t have a perfect solution. The
best thing about Flash, to me, is that you can instantly see if your animation works, because
you can play it back right after you do it. But Flash isn’t doing the creative part. The drawings
are. My best advice for how to be good at Flash is to learn as much about drawing and
traditional animation as you can. That’ll put you ahead of every Flash animator who just drags
around some simple primitive pictures. More and more real animators are starting to use Flash,
so the competition is going to get tougher for those who are lacking in drawing skills.

What you have learned
In this chapter, you learned the following:

 The difference between a shape tween and a classic tween

 Various methods of using easing to add reality to your animations

 How to use the timeline and the Properties panel to manage animations

 How to create and use motion guides in animation

 How to animate a mask

 How to translate an animation into ActionScript

 How to create programmatic animation

This has been a busy chapter, and we’ve covered one side of the Flash animation coin. The path so far

has led from tweening shapes to turning animations into ActionScript. In many respects, this is an

important chapter, because whether you care to admit it, Flash is quite widely regarded as an animation

program first—all that other cool stuff it does is secondary. Many of the techniques and principles

presented in this chapter are the fundamentals of animation in Flash. If there is one message you should

get from this chapter, it is pay attention to how things move.

Thanks to the motion tweening model, that concept—how things move—has been flipped on its head, just

like a coin, in a really cool way. The new approach doesn’t negate any of the techniques you’ve seen here.

It’s just that your kitchen has gotten bigger, and there are a lot of new gadgets! Whenever you’re ready to

continue cooking, just turn the page.

www.zshareall.com

http://www.wacom.com/cintiq
http://www.zshareall.com

427

Chapter 8

Animation, Part 2

What you saw in the previous chapter was a compendium of traditional animation techniques—traditional

not in the Flash animation pioneer John Kricfalusi sense, but in the sense that they represent the basic

tools Flash animators have used since time out of mind. Some tools don’t change simply because they

don’t have to; they’re that useful. The exciting part is that Flash CS4 introduced a new set of tools in

addition to the time-tested tools. This double-whammy puts you in charge of the workflow that makes the

most sense to you. Use one set or the other or combine them—the choice is yours. The best part is that

because this is animation, you pretty much have to drink a broth of lukewarm poisonwood oils to not have

fun while you’re working.

Here’s what we’ll cover in this chapter:

 Motion tweening, using both the Motion Editor panel and the Timeline panel

 Advanced easing with the Motion Editor panel’s graphs

 Manipulating motion paths

 Using motion presets and copying motion from one symbol to another

 Applying inverse kinematics (IK), including the Bone and Bind tools

 IK tweening

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

428

The following files are used in this chapter (located in Chapter08/ExerciseFiles_Ch08/Exercise/):

 Mascot.fla

 MascotEasing.fla

 MascotCustomEasing.fla

 MascotMultipleEasing.fla

 ManagingKeyframes.fla

 ChangingDuration.fla

 MotionGuideSimple.fla

 MotionGuideComplex.fla

 MotionPreset.fla

 Bones.fla

 BonesRigged.fla

 IK_Poses.fla

 badBinding.fla

 Spring.fla

 SteamEngine.fla

 betterBinding.fla

 Bind.fla

 WaveCanadian.fla

 WaveAmerican.fla

 Richard.fla

 jumping.jpg

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

Animating with the Motion Editor panel
Before there were websites like Digg and Delicious and before the term viral marketing became a cliché,

people actually e-mailed hyperlinks to each other. Some of the earliest must-share Flash animations

include Alex Secui’s “Nosepilot” (http://animation.nosepilot.com/) and JoeCartoon.com’s “Frog in

a Blender” (http://joecartoon.atom.com/cartoons/67-frog_in_a_blender), shown in Figure 8-1.

These are classics that still entertain after more than a decade, and they were created with shape tweens

and what are now called classic tweens, along with a good dose of elbow grease.

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://animation.nosepilot.com
http://joecartoon.atom.com/cartoons/67-frog_in_a_blender
http://www.zshareall.com

ANIMATION, PART 2

429

Clearly, the existing animation tool set—the Timeline panel and its trusty sidekicks, the Free

Transform tool, the Transform panel, and a handful of others—is perfectly adequate to get the job

done. But just as it can be good in a relationship to agree on acceptable word pronunciations (toe-may-toe

and toe-mah-toe come to mind), it will be good for your relationship with Flash to consider other ways to

animate content. You’re about to start flirting with the Motion Editor panel.

Figure 8-1. A scene from Joe Cartoon’s infamous “Frog in a Blender” from 2000, which was among the

first Flash animations to go viral.

Introduced in Flash CS4, the Motion Editor panel provides a second non-ActionScript paradigm for

moving things from here to there. It’s an alternate mechanism to the classic tweens and shape tweens that

are carried out in the Timeline panel. In Chapter 1, we gave you a drive-by Motion Editor overview,

and you’ve seen glimpses of it in a handful of other chapters. Now that you have read Chapter 7 and have

experimented with the various details and nuances of the traditional tweening model, the differences

between the old and the new will become abundantly clear.

We suspect there will be a surge of interest in the new-style motion tweens—and there’s good reason for

that, as you’ll see. People will begin to ask, “Which approach is better?” We’ll be compelled to reply with

the only legitimate answer there is: the best approach depends entirely on whatever works best for the

project at hand.

Think of it like this: you’ve been using a conventional oven for years, when suddenly a newfangled

microwave shows up on your doorstep. It’s small and sleek and even has a rotating platter. Grinning, you

carry it into the kitchen, plug it in, and slide in some of the goulash leftovers from last night. Two minutes

and 20 seconds later—ding! —you have an instant lunch. “Let’s try that again,” you think, and put in a

glass of milk with Hershey’s syrup—45 seconds later, instant hot chocolate. Does it get any better? From

this day forward, it takes you only 3 minutes to get fresh popcorn. In many ways, life has gotten easier, but

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

430

you can bet your bottom BBQ that the conventional oven isn’t leaving its venerable perch. There’s no way

the microwave bakes a loaf of homemade bread, for example. Then again, a medium rare steak done on

the BBQ is far better than one done in a skillet.

Clearly, you’ll want the best of both worlds. And your kitchen is big enough for it.

Getting acquainted: scaling and moving

Let’s take a comprehensive tour of the Motion Editor panel, covering all the basics. Portions of this will

feel like a review after Chapter 7, but it’s important to understand how the mechanics of motion, scaling,

and distortion are distinct from the machinery of classic tweens. You won’t be seeing any shapes, by the

way, until much later in the chapter. The Motion Editor panel deals exclusively in symbols and text

fields, just as is the case with classic tweens.

In this case, you’ll be creating motion tweens, which look and behave like their classic cousins. The

differences come in how they’re made and how you can edit them, as you’ll see in the following steps:

1. Open the Mascot.fla file found in the Chapter 8 Exercise folder. When it opens, you will notice

the Turtle mascot from Chapter 2 has made a guest appearance. The object you see on the

stage is the Turtle movie clip found in the Library.

2. Click the symbol on the stage to select it. Now open the Motion Editor panel by clicking its

tab or selecting Window ➤ Motion Editor.

What you see is an inactive panel, as shown in Figure 8-2, which tells you a fundamental principle of

motion tweens: they must exist on a tween layer, which is a particular mode of a normal layer, as opposed

to a mask or guide layer.

Figure 8-2. The Motion Editor panel is useless without a tween layer.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

431

3. Switch back to the timeline, right-click (Windows) or Control+click (Mac) frame 1, and select

Create Motion Tween from the context menu. This converts the layer into a tween layer and

makes it available to the Motion Editor panel. (Alternatively, you can click frame 1 and select

Insert ➤ Motion Tween.)

When you apply the motion tween, several things happen at once: the single frame stretches out to a 24-

frame span, the span turns light blue, and the Motion Editor panel becomes active. Why 24 frames?

The default length is 1 second, so what you are seeing is one second of animation on the timeline. If you

need more time, roll the mouse pointer to the end of the span. When the mouse pointer changes to a

double-arrow, click and drag to the right.

4. Open the Motion Editor panel again. This time—provided you haven’t deselected the tween

layer—you’ll see the various grids and input controls shown in Figure 8-3. If you see the same

message displayed in Figure 8-2, it means you’ve somehow clicked away from the layer. Either

click the layer in the Timeline panel to reselect it or click the symbol itself.

Figure 8-3. Applying a motion tween activates the Motion Editor panel for that layer.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

432

5. Removing a motion tween is as easy as applying one. Switch back to the Timeline panel, and

right-click (Windows) or Control+click (Mac) the tween layer. Select Remove Tween, and the

layer turns gray again.

It’s time to take a look at the some of the differences between motion tweens and classic tweens. The key

is to be aware that the Timeline and Motion Editor panels are fond of each other. You might even

say they’re connected at the hip. When you apply changes to a tween layer in one panel, you’ll see the

changes are instantly reflected in the other.

6. In the Timeline panel, drag the playhead to frame 20. Use the Free Transform tool or the

Transform panel to make the symbol much wider than it should be.

When you widen the symbol, you’ll see a black diamond appear under the playhead in frame 20, as shown

in Figure 8-4. Notice the diamond is a tad smaller than the dot that represents the default keyframe in

frame 1. The difference in shape and size tells you this is a property keyframe, which is just tween-layer–

speak for a keyframe.

Figure 8-4. Tween layer changes are stored in property keyframes.

7. Open the Motion Editor panel. Scroll vertically until you find the Scale X grid, as shown in

Figure 8-5, and then scroll horizontally until you find the property keyframe that was automatically

added when you changed the symbol’s width in the Timeline panel.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

433

Figure 8-5. The Motion Editor panel shows property changes in detailed, collapsible graphs.

8. Click the left side of the Scale X grid—somewhere that isn’t a word, check box, drop-down list,

or other input widget. For example, click in the blank area between the Scale X label and the

percentage hot text. You’ll see the grid snap open to reveal the taller view shown in Figure 8-6.

The particular graph depicted shows a change in x-axis scale; that is—assuming the symbol isn’t rotated—

the width. The numbers along the left side stacked vertically show values that pertain to this property,

which are percentages of scale. The numbers along the top show frames, which equate to changes over

time. The text in the yellow box shows you the scale value at that precise point in the graph.

9. Follow the slanted line in the graph from bottom left up toward the upper right. It shows that the

selected symbol began at a 100 percent width—the 100 is partially obscured by the slanted line’s

left point—and was stretched to 200 percent over a span of 20 frames

This is considerably more detail than you get with classic tweens. We’ll come back to this graph concept in

just a moment. First, back to the kissin’ cousin.

10. Open the Timeline panel and, with the playhead still in frame 20, drag the Mascot symbol to

the upper-right corner of the stage, as shown in Figure 8-7. At this point, you’ve tweened three

distinct properties: Scale X, the X position, and the Y position.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

434

Figure 8-6. Expanded graphs in the Motion Editor panel can make data easier to see.

Figure 8-7. Multiple properties aren’t shown in the Timeline panel but do update the graphs in the

Motion Editor panel.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

435

Note that the property keyframe, from this view, is still just a small diamond at frame 20 in the timeline. All

you can tell at a glance is that something has changed. But even if there’s less detail here, the two panels

are in agreement, and the Timeline panel does give you a summary. Later in this chapter, in the

“Changing duration nonproportionally” section, you’ll see how the Timeline panel’s abridged view

actually makes it easier to update numerous property keyframes at once.

Naturally, you can see the changed properties directly on the stage, not only because the symbol itself is

stretched and moved but also because of that green dotted line that connects the current position of the

symbol (specifically, its transformation point) to the position it held in frame 1. If you count them carefully,

you’ll see 20 dots along the line, which represent the 20 frames in this tween span. The dots are all evenly

spaced apart, which tells you the tween has no easing applied. Let’s check back with the Motion

Editor panel again before we apply easing.

11. Open the Motion Editor panel. You’ll see the Scale X graph as it was before, but in addition,

you’ll also see the new changes reflected in the X and Y graphs, as shown in Figure 8-8.

Figure 8-8. In the Motion Editor panel, multiple tweened properties can be viewed at once.

The vertical values in these graphs, along with the tooltips, change depending on the property

represented. For example, the X graph starts at just above 200 on the left side (not 100, like the Scale X

graph), because the symbol is positioned at 216.4 pixels on the x-axis in frame 1. On the right side of the

slanted line, the tooltip reads 555.94 px, because that’s where the symbol is positioned on the x-axis in

frame 20. The point to take away from this is that these graphs are adaptable, and they change to suit the

values of the property at hand. The X graph shows pixels, Scale X shows percentages, Rotation Z

and Skew X show degrees, and so on.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

436

If any of these graphs seem cramped to you, use the three hot text areas at the bottom

left of the panel to fine-tune your view. From left to right, they adjust the vertical height of

collapsed graphs (Graph Size), the vertical height of expanded graphs (Expanded

Graph Size), and the horizontal width of the graphs themselves (Viewable Frames).

These values apply across all graphs in the Motion Editor panel.

12. Open the Timeline panel, and select the keyframe at frame 20 of the timeline.

13. In the Properties panel; twirl down the Ease twirlie, if necessary; and scrub the hot text

value—0, by default—slowly toward the left. Scrub it to approximately -10, and then let go. Scrub

again to -20 or so, and then let go. Scrub again to -30, -40, and so on, until -100, which is a

full ease-in.

As you scrub and release in small increments, you’ll see that the dots, which were evenly distributed after

step 12, begin to cluster toward the lower left, as shown in Figure 8-9, which represents the beginning of

the tween. You just applied an ease in, so it makes sense that the dots are packed more closely at the

beginning of the tween.

In classic tweens, easing takes effect only between keyframes. In motion tweens, easing

is distributed over the frame span of the whole tween, independent of property

keyframes. This is a significant departure from the classic model.

Figure 8-9. Tween layer changes are stored in property keyframes.

14. Close your file without saving it.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

437

Easing applied to a motion tween with the Properties panel is the same sort of easing applied to classic

tweens, excluding the special-case Custom Ease In/Ease Out dialog box, discussed in Chapter 7. To

get to the exciting stuff, you’ll need the Motion Editor panel, and advanced easing merits its own

section.

Easing with graphs

When it comes to the Motion Editor panel, the concept of easing ascends to a whole new level. For

classic tweens, the Custom Ease In/Ease Out dialog box is the only thing that came close to sharing

similar functionality, yet it provides little more than an introduction. The Custom Ease In/Ease Out

dialog box associated with a classic tween, while it does get you wet, is a skateboard. It has nothing on the

robust flexibility and depth of the Motion Editor panel’s graphs. In contrast, those are a Lamborghini.

A powerful feature of the Motion Editor panel is that it overcomes a subtle, but significant, limitation of

the Custom Ease In/Ease Out dialog box: classic easing, for whatever property is under

consideration, begins at a starting point of 0 percent and ends at a destination point of 100 percent. If

you’re moving a symbol from left to right—for example, from 25 pixels to 75 pixels—a classic tween begins

at its starting point of 25 pixels (0 percent of the destination) and ends at 75 pixels (100 percent of its

destination). Normal easing lets you adjust the acceleration and deceleration between those two

immutable points. The Custom Ease In/Ease Out dialog box lets you adjust the velocity with greater

control, thanks to Bezier curve handles. In fact, by adding anchor points, you can even opt to arrive at the

destination point early, then head back out again and return later, as demonstrated in Chapter 7 with the

bouncing mallet exercise. But in the end, there must always be a final anchor point. With classic easing,

the final anchor point is always tethered to the 100 percent mark (see Figure 8-10).

Figure 8-10. With classic tweens, the final easing anchor point (in the upper right here) always ends at

100 percent.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

438

Unimpeded in this regard, the graphs of the Motion Editor panel can end up where you like. A custom

ease can start at its beginning point of 0 percent, travel three quarters of the way to its destination, dance

around a bit, and then return all the way to the beginning.

This freedom within the property graphs is a powerful tool, which is generally a good thing. But as anyone

into Spider-Man will tell you, “With great power comes great responsibility.” Everything comes at a cost,

and the price here is that the banished 100 percent restriction can occasionally be disorienting, especially

when eases continue past the last property keyframe in a tween span. Let’s take a look.

Built-in eases

If you’ll pardon the pun, we’re going to ease into this. Let’s start with the built-in eases:

1. Open the MascotEasing.fla file in the Exercise folder for this chapter. Our cute mascot is

back, and this time the symbol has been given a 60-frame motion tween that moves it from the

left side of the stage (frame 1) to the right side (frame 30) and then lets it sit in place until frame

60.

2. Select the tween layer or the symbol by clicking it, and then open the Motion Editor panel.

Find the X graph and notice the straight line from the beginning point (bottom left) to the

destination point (upper right), as shown in Figure 8-11. Because no other X changes occur after

frame 30, there are only two property keyframes in the graph.

Figure 8-11. Without easing, the graph shows a straight line.

3. Notice the setting on the left side of the graph that currently says No Ease. Let’s change that.

Click the check box to enable easing, and from the drop-down list select Simple (Slow), which

is your only choice. At this point, you’ve applied an ease, and the check mark next to the drop-

down means the ease is active. (You can select and deselect this check mark to toggle the ease

on or off.)

4. Press Enter (Windows) or Return (Mac), and watch the lunatic move from left to right.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

439

If that doesn’t look like easing to you, you’re right. Selecting Simple (Slow) isn’t enough. You need to

choose a percentage for that ease, which affects its strength. Think of it as a faucet—applying the ease

means you’ve paid the water bill, but you won’t see water until you turn on the faucet.

5. Scroll down to the bottom of the Motion Editor panel, and you’ll see an Eases twirlie. Twirl

that down, if necessary, and you’ll see the reason why Simple (Slow) appeared in the X

graph’s easing drop-down list.

6. Scrub the hot text as far right as it will go, changing the default 0 to 100. As you scrub, you’ll see

a dashed line, representing the ease, begin to curve in the graph, as shown in Figure 8-12.

Figure 8-12. Change the default from 0 to 100, and the curve appears.

This particular graph changes the Simple (Slow) ease itself, which is comparable to changing a symbol

inside the Library. As you learned in Chapter 3, changing a Library symbol means that every instance

of it is changed on the stage. The same goes for these eases. You also might have noticed the mascot

shift around on the stage as the ease is applied to the motion.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

440

7. Scroll back up to the X graph, and you’ll see that the ease is now superimposed over the line that

represents the symbol’s x-axis movement. To get a better view, click the left side of the X graph,

and scrub the Viewable Frames hot text until all 60 frames are displayed in the graph, as

shown in Figure 8-13.

Figure 8-13. With easing, the graph shows actual movement and easing movement.

8. Press Enter (Windows) or Return (Mac) again to preview the movement, but prepare yourself for

disappointment: it still doesn’t look like much of an ease.

The reason for this is that motion tween eases are applied to the full span of the tween. In this case, the

full span is 60 frames, while the only visible change occurs between frames 1 and 30.

9. Click the upper-right property keyframe, and holding down the Shift key, drag the keyframe to the

right until you hit frame 60. Doing so brings the solid line and the dashed line into agreement, as

shown in Figure 8-14. The tooltip lets you know which frame you’re on, and the Shift key

constrains your movement.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

441

Figure 8-14. Keyframes can be moved from inside a graph.

If you don’t use the Shift key while you drag, it’s easy to slide the keyframe up and down, even if you

intend to move only to the right, which increases the duration between this keyframe and the one before it.

Why is it a bad thing to slide up and down? Actually, it isn’t. Sometimes, you might want to do that, and it’s

good to know you have the option. Sliding up and down changes the property’s destination point. In this

case, because you’re dealing with x-axis movement, it means that even from this graph, you could push

the symbol farther to the right on the stage (slide the keyframe higher) or back toward the left (slide the

keyframe lower).

The visual result of a property’s destination point depends entirely on what the property

represents. In the Y graph, the destination point affects the symbol’s vertical position. In

the Rotation Z graph, it affects the symbol’s rotation. If you add a color effect or filter,

the destination point determines how much of that effect is applied.

10. Press Enter (Windows) or Return (Mac) again. Because the solid and dashed lines’ final anchor

points meet, you’ll see the full Simple (Slow) ease.

11. Using the Shift key again, drag the right property keyframe back to frame 30.

12. Scroll down to the Eases area in the Motion Editor panel, and click the + button. This opens

a context menu offering more than a dozen built-in eases. Choose Bounce, as shown in Figure

8-15.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

442

Figure 8-15. Use the + button to add new built-in eases.

13. Scroll down a bit to see the new ease beneath the graph for Simple (Slow). By default, the

Bounce ease’s hot text is set to 4, which makes the four bounces depicted in its graph. Change

the hot text to 3 to reduce the number of bounces to three.

Adding an ease to the Eases area makes that ease available to all the property graphs in the Motion

Editor panel. Eases can be applied and changed for each property individually by using that property’s

drop-down menu and/or check mark. Eases can be applied and changed for whole groups of properties by

using the drop-down menus in the Basic motion and Transformation twirlies. Add as many eases as

you like, including multiple custom eases.

As you may have guessed, you can use the – button at any time in the Eases area to remove an ease

from consideration for all drop-downs.

14. Scroll back up to the X graph, and use the drop-down list to change the easing from Simple

(Slow) to Bounce.

Three interesting things happen when you make this change, First, because you moved the property

keyframe back to frame 30, part of the Bounce ease is clipped, as you can see in the flattened hump of

the first bounce—between frames 6 and 27—in Figure 8-16. The second interesting thing is, though the

graph may have developed “bumps,” they are only on the x-axis, meaning the bumps represent lateral

movement, which explains why the motion path on the stage doesn’t change. The third interesting thing

becomes apparent when you preview the ease.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

443

Figure 8-16. Eases can clip when the last property keyframe isn’t the last frame in the span.

15. Press Enter (Windows) or Return (Mac) , and watch the mascot slam to the right side, pause for a

moment (that’s the clipped first bounce), then resume its rebounding course, and finally end up

back on the left side of the stage!

With motion tweens, easing can completely override the actual property represented by the solid line in the

graph. Without the ease, this is a simple left-to-right movement. With easing, this could be that, but as

you’ve seen, it can just as easily change the destination point to one quite outside of Kansas.

We chose physical movement to illustrate the mechanics of motion tween easing,

because a change in position correlates well with the lines and curves on the graph. Be

aware that this concept applies in exactly the same way to rotation, scaling, skewing,

color effects like alpha and tint, and filters like Drop Shadow and Blur.

16. Shift-drag the right property keyframe back to frame 60. Verify that all three bounces are now

visible in the X graph.

17. Press Enter (Windows) or Return (Mac) to view the full, smooth three-bounce easing of the

lunatic.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

444

Creating custom eases

Even after seeing more than a dozen built-in eases, you might be wondering whether you can create your

own. The answer is yes, and it’s pretty easy. Best of all, custom eases are saved with the FLA, which

means you don’t need to commit all your easing finagling to memory. Your custom eases will be there

when you reopen your files in the morning, and even better, once they are added to the Eases area, you

can apply (and reapply) custom eases to any property, just like built-in eases. Here’s how:

1. Open MascotCustomEasing.fla in this chapter’s Exercise folder. Again, we start you with a

basic left-to-right motion tween, this time over a full 60 frames.

2. Click the tween layer (layer 1) or the symbol, and then open the Motion Editor panel. Scroll

down to the Eases area, click the + button, and select Custom from the context menu. This

creates a Custom graph for you, so scroll down to take a look.

What you see is a line with run-of-the-mill Bezier curve handles. The anchor points and handles operate

very much like those for normal drawings with the Pen tool, and we encourage you to experiment.

3. To create a custom ease use the Ctrl (Windows) or Cmd (Mac) key while clicking to add an

anchor point along the line or curve. The same procedure removes any anchor point but the first

and last (there must always be a beginning and destination point). Use the Alt (Windows) or

Option (Mac) key while clicking to convert a curve anchor point to a corner anchor point, and vice

versa.

4. When you finish, scroll to the X graph, and select your custom ease from the X property’s drop-

down menu. Press Enter (Windows) or Return (Mac) to preview the effect.

5. Close your file without saving the changes.

Applying multiple eases

It may not immediately sound ambiguous, but the phrase “applying multiple eases” can actually be

interpreted in a variety of ways. To be sure, you can apply numerous eases to a given motion tween—one

separate ease for each tweenable property is perfectly acceptable. Give your X a bounce, your Y a

Simple (Slow), your Rotation Z a custom ease, and so on, down the line. What you can’t do is to

apply more than one ease between property keyframes. If you’ve used previous versions of Flash, this

may take some getting used to, which is why we’ve stressed that motion tween easing applies to the full

tween span, not to the span between property keyframes.

To follow one sort of easing with another sort within the same tween layer, you’ll need to use more than

one tween span. Here’s how:

1. Open MascotMultipleEasing.fla in this chapter’s Exercise folder. This time, to mix it up, we

prepared a vertical motion tween for you.

2. Click the tween layer or the symbol, and then open the Motion Editor panel. Scroll down to

the Eases area, click the + button, and select Stop and Start (Medium). When its graph

appears, scroll down and scrub its hot text to the right until it says 100.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

445

3. Scroll up to the Y graph, and select Stop and Start (Medium) in the easing drop-down

menu. Press Enter (Windows) or Return (Mac) to preview the ease, which makes the mascot look

as if it were being dragged upward with two heaves of a rope.

4. Select the Timeline layer. Right-click (Windows) or Control+click (Mac) the tween span, and

select Copy Frames from the context menu. Now right-click (Windows) or Control+click (Mac)

frame 31, and select Paste Frames. Just like that, you’ve created a twin of the original

animation, complete with its easing.

5. Right-click (Windows) or Control+click (Mac) the second tween span, and select Reverse

Keyframes. Preview the animation again, and this time, the lunatic gets heaved up and then

heaved down again. Even though the motion is reversed, the tween is still the same for both

tween spans.

6. Head back to the Motion Editor panel, and use the Eases area’s + button to add a Spring

ease. Scroll up to the Y graph, and change the second span’s Y easing from Stop and Start

(Medium) to Spring. Preview the animation, and you’ll see the lunatic getting heaved up and

then suddenly fall and “sproiiing” to a halt.

Same tween layer, two tween spans—that’s how you get two or more types of easing in the same layer.

As an aside, notice that the mascot doesn’t come to a rest at the bottom of the stage. That’s because the

Spring ease is one of those whose destination point doesn’t stop at 100 percent.

Managing property keyframes
Before we turn you loose on a rather interesting project, there is one final issue to cover: property

keyframes. The small diamonds you see on a motion layer are called property keyframes, and they can

be managed in one of two areas: the Timeline or the Motion Editor. The thing you need to know is

that each one has its own way of handling the details. When it comes to exercising fine control of

keyframes, the Motion Editor is your best bet, but there are a few circumstances where using the

Timeline panel definitely makes your life simpler. We’ll get to that in a moment, but let’s start with a

diamond:

1. Open the PixelDisposal.fla file from the Exercise folder for this chapter. When it opens, you

will see a character on a sign tossing a red pixel into the trash. If you scrub across the timeline,

the property keyframe at fame 35 is where the pixel changes direction, rotates, and starts to

shrink.

2. While you are in the Timeline panel, the only way you have to move from keyframe to keyframe

is to scrub the playhead. Go ahead and scrub to frame 40.

3. Right-click the tween layer at frame 40, and select Insert Keyframe ➤ Position from the

context menu, as shown in Figure 8-17. A property keyframe will appear at frame 40.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

446

Figure 8-17. Property keyframes can be added from the Timeline panel.

4. Select the Red cube symbol, and move it downward. As you saw earlier in the chapter, property

keyframes are created for you automatically in the current frame when you change a symbol’s

position, scale, rotation, or the like. What you learned from step 3 is that it’s still perfectly OK to

create your keyframe first.

5. Switch back to the Timeline panel, and right-click (Windows) or Control+click (Mac) again on

frame 40. Note that you have options for clearing keyframes and also determining which property

keyframes to display in the Timeline panel.

Don’t be fooled by the Clear Keyframe choice! You would think, because Insert Keyframe inserts

the desired keyframe(s) in the current frame, that Clear Keyframe would, like its Classic Tween

brother, follow suit and remove only keyframes in the current frame. This is not so. By choosing Clear

Keyframe, you’re removing all property keyframes in the current tween span. If you select Clear

Keyframe ➤ Rotation, for example, you remove all property keyframes in the Motion Editor panel’s

Rotation Z graph, regardless of in which frame they appear.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

447

Once you see these features and understand them for what they are, you’ll surely find them useful, but the

Motion Editor panel does more.

6. Open the Motion Editor panel, and scrub the playhead of along the Motion Editor’s

timeline. You get the same sort of preview as the Timeline panel. The difference is that the

Motion Editor panel also gives you a pair of arrows and a diamond, as shown in Figure 8-18.

Figure 8-18. In the Motion Editor panel, keyframes can navigated, added, and removed with this

widget.

Keep an eye on the diamond as you scrub. When you drag the playhead to a frame that already contains

a keyframe, the diamond turns yellow. Use the left and right arrows to jump from keyframe to keyframe.

Arrows will temporarily become disabled, as appropriate, at the first and last keyframes.

7. Scrub to frame 45, and click the Y graph’s diamond. It turns yellow, and a new anchor point

appears in the Y and X graphs at frame 15. (The Y and X graphs are synchronized, but this isn’t

the case with most property graphs.) Click the diamond again, and the keyframe disappears.

Click it a third time to bring the keyframe back.

8. With the new keyframe in place, use the mouse to drag the anchor point in the Y graph

downward, which correspondingly moves the cube upward on the stage. Note how the anchor

point snaps to frames if you slide it left and right. That makes sense, because you can’t have a

keyframe between two frames.

9. Move your mouse elsewhere in the Y graph, and then hold down the Ctrl (Windows) or Cmd

(Mac) key while you hover over one of the line segments. As shown in Figure 8-19, the cursor

turns into a pen with a plus sign, which indicates you can click to add a new keyframe. Hover over

an existing keyframe while holding the Ctrl (Windows) or Cmd (Mac) key, and you’ll see a pen

cursor with a minus sign. Click to remove the keyframe.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

448

Figure 8-19. Keyframes can also be added and removed with the mouse.

10. Hold down the Alt (Windows) or Option (Mac) key, and hover over the keyframe in frame 45 in the

Rotation Z graph. The cursor turns into an upside down V. Click, and this converts the anchor

point into a curve anchor, which can be adjusted with Bezier handles (Figure 8-20). The effect of

these handles on the X and Y graphs isn’t always obvious, but for many properties, it gives you a

“quick-and-dirty” custom ease.

Figure 8-20. Anchor points can be converted from corner points to smooth with the Alt (Windows) or

Option (Mac) key.

11. Grab the right Bezier curve handle, and drag it up and to the right so that the curve rises above its

100 percent mark, as shown in Figure 8-21. As you drag the point watch the rotation of the cube

as you move the anchor point up or down on the graph and as you move the handles on the

curve.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

449

Figure 8-21. Anchor points can be manipulated with Bezier curve handles.

12. Press Enter (Windows) or Return (Mac) to preview the animation, and you’ll see that the symbol

rotates farther than it did before—you’ve pushed it past its original destination, to approximately

160 percent—and then eases back the Rotation Z setting in the property keyframe at frame

50. Don’t close this file just yet; we are going to work some further “magic” on it in the next

exercise.

As helpful as the Motion Editor panel is, sometimes less is more. When you want to compress or

expand the duration of a tween span, for example, the Timeline panel is the only way to do it, if you want

to do it proportionally. If not, you could use either panel, but the Timeline panel makes it easier.

Changing duration proportionally

The animation in the PixelDisposal.fla you were just using spans 60 frames. At 24 fps, that’s

approximately 2.5 seconds, which may or may not be what you want. To change a tween span’s duration

proportionally, you’ll need to use the Timeline panel. Here’s how:

1. Move your mouse to the right edge of the tween span. You’ll see the cursor turn into a double-

headed arrow, as shown in Figure 8-22. Click and drag toward the left. For example, shorten the

tween span so that it ends at frame 50. Notice that all four property keyframes are still in place,

and, proportionately speaking, are the same relative distance from each other as before.

Figure 8-22. Drag the tween span to shorten or increase a tween’s duration.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

450

2. Click and drag the tween span so that it ends at frame 59. Now release and drag the tween span

to frame 60.

This time, the property frames are nearly back to their original places, but some are slightly off. That

makes sense, because frame 59 is an odd number, and Flash had to make a decision on how to shift the

frames to compensate.

To get the property keyframes back to frames 30, 40, 45, and 50 exactly, you’ll need to use a different

approach. If you’re into tedium, you could switch to the Motion Editor panel and visit every property

graph in turn, sliding numerous anchor points while holding the Shift key. The middle keyframe, especially,

would give you a headache, because it affects the X, Y, Rotation Z, Scale X, and Scale Y graphs.

There’s an easier way, and we describe it in the very next paragraph.

Changing duration nonproportionally

Sometimes you’ll want to change the duration between property keyframes, which may or may not

incorporate a change in span duration. You could do this with the Motion Editor panel, visiting each

relevant graph and moving property keyframes individually, or you can update the keyframes in several

graphs at the same time. For that, use the Timeline panel. Here’s how:

1. Continuing with PixelDisposal.fla file you have been working on and still in the Timeline

panel, hold down the Ctrl (Windows) or Cmd (Mac) key and click the keyframe closest to frame

35. Notice that holding down Ctrl (Windows) or Cmd (Mac) allows you to select a single frame in

the tween span, rather than the whole span.

2. Now that you have a single property keyframe selected, release the Ctrl (Windows) or Cmd (Mac)

key, and then click and drag the selected keyframe left or right along the timeline. Doing this

effectively selects all the anchor points for the current frame in the Motion Editor panel and

lets you move them as one.

Motion paths
In Chapter 7 we showed you how to animate a butterfly along a special kind of layer called a motion

guide. As you discovered, it was a path that could be as intricate as you wanted and allows a symbol to

appear to meander around the screen following loops and curves that you drew with the pen tool. This

capability is also possible in the Motion Editor. When you go this route, you don’t use a guide, you use

a path that is hardwired right into the motion layer. In fact, you have already seen this feature but never

really got a chance to use it. Your opportunity has arrived.

Manipulating motion paths

The most fascinating thing about this feature of the Motion Editor is you don’t need to use the Motion

Editor. Motion paths are best manipulated through the Timeline panel. Here’s how:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

451

1. Open the MotionGuideSimple.fla file from this chapter’s Exercise folder. When it opens, you

will see that our pixel disposer has three pixels to toss into the trash bin. Turn off the visibility of

the Green and Blue layers by clicking the eyeball icon on the layer strip.

2. Scrub through the timeline, and you will see that red cube fall to the bottom of the wastebasket.

Did you catch the problem? The cube seems to move over the bin before hitting the bottom. You

can see this in Figure 8-23 if you follow the motion path. Let’s fix that.

Figure 8-23. The Motion Path shows you the “line” an object in motion will follow.

3. Drag the playhead somewhere between the two keyframes, and switch to the Selection tool.

Hover near the motion path, and a curve will appear under the arrow. Click and drag the path to

the left. As you do the path will curve, and as shown in Figure 8-24, a representation of the

original path will be visible.

Figure 8-24. Motion paths can be manipulated on the stage.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

452

4. Turn on the visibility of the Green layer, and switch to the Subselection tool.

5. Click on either anchor point and drag the Bezier curve handles, as shown in Figure 8-25, to

increase the range of the curve. As you can see, motion paths can be treated as vector objects.

This technique works only if the path has a curve.

Figure 8-25. Use the Subselection tool to treat the path as a vector line.

Not only can you reshape the motion path, but you can also move it, rotate, skew it, and treat it like any

other shape or object on the stage. Let’s keep experimenting.

6. Turn on the visibility of the Blue layer, and select it. Now turn your gaze to the Properties

panel. Twirl down the Path options. Scrub across the X, Y, W, and H values, and you will see that

you can move and resize the path. Impressed? Hang on…it gets better.

7. Open the Transform panel. Get your hand off the mouse because this one is a bit trickier. You

need to select the path here, not the object, or Flash will think it has to transform the blue cube

instead.

8. Use the Selection tool to click anywhere along the path. Now scrub across the Transform

panel’s Rotate value. The path will, as shown in Figure 8-26, rotate around its start point.

9. Experiment with the Width, Height, and Skew properties in the Transform panel.

10. If you want to do it yourself and not use numbers, switch to the Free Transform tool and select

the path. The bounding box shown in Figure 8-26 appears, and you can manipulate the path just

as you would with a movie clip of graphic symbol. If you don’t want to switch tools and do this

strictly with the mouse, select the path with the Subselection tool and press Ctrl (Windows) or

Cmd (Mac).

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

453

Don’t forget the Alt (Windows) or Option (Mac) key while you make these

transformations with the mouse. Without it, transformations pivot around the bounding

box’s center. With Alt (Windows) or Option (Mac), transformations pivot along the

opposite corner or edge. In either case, the Ctrl (Windows) or Cmd (Mac) key is required

to produce the bounding box.

Figure 8-26. Use the free Transform tool or press Ctrl (Windows) or Cmd (Mac) to transform a motion

path with your mouse.

Using advanced motion paths

In Chapter 7, the butterfly went on a pretty wild ride—nothing like the tame Bezier curves you’ve seen so

far in this chapter. You can do the same thing with the new tweening model, and you still don’t need a

motion guide layer. Here’s how:

1. Open MotionGuideComplex.fla in this chapter’s Exercise folder. You’ll see a slightly different

finished version of the butterfly MotionGuide.fla exercise from Chapter 7, including a classic

tween directed by a motion guide layer. Your job—and it’s an easy one—is to convert that

complex motion guide into a motion path.

2. Right-click (Windows) or Control+click (Mac) the flutter by (motion guide) layer, and deselect

Guide from the context menu. This converts that layer back to a normal layer.

3. Using the Selection tool, double-click the wavy line to select the whole thing, and then cut the

curves to the clipboard (Edit ➤ Cut).

4. Right-click (Windows) or Control+click (Mac) the classic tween, and select Remove Tween from

the context menu.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

454

5. Right-click (Windows) or Control+click (Mac) again, and select Create Motion Tween.

6. With the tween layer selected, paste the wavy line into the layer by selecting Edit ➤ Paste in

Place. That’s all there is to it! If you like, delete the now-empty flutter by layer.

7. Click the tween layer again. Use the Properties panel to select or deselect Orient to path,

which behaves as it did for the classic tween version.

Motion tween properties

As you’ve seen throughout this book, the Properties panel is the most versatile panel in your arsenal,

simply because it changes to reflect whatever object is selected. When you’re dealing with motion tweens,

there are two things the Properties panel lets you manipulate: the symbol and the tween itself (that is,

the motion path). Some of these properties are the ones you see for classic tweens, but they don’t all

apply for motion tweens.

Let’s take a look. Open any of the files you’ve used to far, and make sure a motion tween is applied to at

least one symbol. Select the tween span, and you’ll notice the following properties in the Properties

panel:

 Ease: This applies the Motion Editor panel’s Simple (Slow) ease to the full frame span

selected. You can adjust this ease’s hot text to a value from -100 (ease in) through 0 (no ease)

to 100 (ease out).

 Rotate [x] time(s) + [y]°: This is comparable to the Rotate drop-down for classic

tweens and manages symbol rotation. The two hot text values let you specify the number of full

rotations ([x]) and degrees of partial rotation ([y]).

 Direction: Once rotation numbers are configured with the previous property, you can choose

clockwise (CW), counterclockwise (CCW), or none to determine the direction of those settings or

cancel them.

 Orient to path: This check box applies only to orientation along a motion path.

 X, Y, W (Width) and H (Height): These reposition or transform a tween span’s motion path.

 Sync graphic symbols: Human beings still have an appendix, but modern science can’t

figure out what it’s good for, and the same goes for this property. Given its name, it’s presumably

the motion tween equivalent to the classic tween Sync property discussed in Chapter 7. With

motion tweens, symbol synchronization happens automatically, whether or not this property is

selected. As you’ll see in the next section, this feature is moot in any case, because motion paths

can be reassigned to any symbol you like.

The other motion tween–related Properties panel settings depend on the symbol itself. For movie clips,

your configuration options for motion tweens are the same as those for classic tweens. Some properties—

such as position, scale, and rotation, and even color effects such as alpha—are tweenable.

Others, such as blend modes, are not. These are consistent across the board when you’re dealing with

movie clips. It’s when you’re using graphic symbols that you need to be aware of a few limitations.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

455

The limitations involve the Loop, Play Once, Single Frame, and Frame options in the Properties

panel’s Looping area. These properties apply to classic tween keyframes as discussed in Chapter 7. For

motion tweens, they apply only to the tween span’s first keyframe. They’re ignored for property keyframes.

The long and short of it is that you can set the Loop, Play Once, and Single Frame drop-down options

and Frame input field once for a given motion tween—and Flash will obey your command—but only once

for that tween span. Change these settings at any frame along the span, and the settings are changed for

the whole span.

Even though we’re focusing on symbols in these paragraphs, bear in mind that motion

tweens can also be applied to text fields.

One final note. Like classic tweens, motion tweens can accommodate only one symbol per tween span. In

fact, motion tweens are a bit stricter about this constraint. Once you’ve applied a classic tween between

two keyframes, Flash won’t let you draw a shape or add a symbol to any of the frames between the

keyframes. Interestingly enough, it will let you draw or add symbols to tweened keyframes, but doing so

breaks the classic tween, whose “I’m a tween” indicator line then becomes a dashed line. With motion

tweens, Flash won’t let you draw or add a symbol to any frame of the tween span, keyframe or not. The

moral of this story is that you should give each of your tween spans its own layer.

Motion presets
Here’s another good example of letting the computer do the work for you. Flash CS5 takes advantage of

one of the major facets of motion tweens—that you can copy and paste motion paths—by providing you

with a panel with more than two dozen prebuilt motion presets. These are reusable motion paths, complete

with motion changes, transformations, and color effects, which you can apply to any symbol or text field.

Here’s how:

1. Open MotionPreset.fla from the Exercise folder for this chapter. You’ll see our old friend, the

mascot, along with the dancing fool.

2. Select the Dancing Fool symbol, and open the Motion Presets panel (Window ➤ Motion

Presets, or click the Code Snippets button on the toolbar and click the Motion Presets

tab).

3. Open the Default Presets folder, if it is not already open, and click among the various

choices to see a preview of the animation in the Motion Presets panel’s preview (see Figure

8-27). You’ll see wipes and zooms, blurs and bounces, and all manner of helter-skelter. When

you find a preset you like—we chose bounce-smoosh, the third one—click the panel’s Apply

button to copy that motion path to the Dancing Fool symbol.

zwww.zshareall.com

http://www.zshareall.com

CHAPTER 8

456

Figure 8-27. The Motion Presets panel gives you 30 stock motion paths.

Applying the motion preset automatically inserts a motion tween on the dancing fool’s layer and then adds

the relevant property keyframes to reproduce the animation in question

4. Using the Subselection tool, click the motion path, and then use the Align panel to center the

animation vertically on the stage.

As you may have guessed, it’s just as easy to apply the same (or different) motion preset to the other

symbol, but we would like to draw your attention to a related feature instead. That related feature is that

motion paths can be edited, or created completely from scratch, and then saved to the Motion Presets

panel. How? Glad you asked.

5. Shorten the duration of the dancing fool’s animation by dragging the right edge of the tween span

slightly to the left. In our file, we shortened the tween span from 75 frames to 50. Drag the

playhead to one or more of the property keyframes and use the Properties panel, Transform

panel, or Free Transform tool to alter the symbol’s antics along the existing motion path. Also,

the Dancing Fool goes off stage. You might want to scrub to the end of the tween and move

him so that his feet are on the bottom of the stage

6. Click the tween span, and in the Motion Presets panel, click the Save selection as

preset button (Figure 8-28). You’ll be prompted to give the new preset a name. Enter whatever

you like (we used bounce-smoosh-alt), and click OK. Scroll to the Custom Presets folder to

find your preset.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

457

Figure 8-28. Motion paths, whether made from scratch or based on presets, can be saved for later reuse.

The other buttons in the Motion Presets panel let you create new folders and delete folders or presets.

Naturally, you could select the Dancing Fool symbol and apply your newly minted custom preset, but

there’s another way you can share motion paths.

7. Right-click (Windows) or Control+click (Mac) the Dancing Fool’s tween span, and select Copy

Motion from the context menu. Now right-click (Windows) or Control+click (Mac) frame 1 of the

Mascot layer, and select Paste Motion.

Because you used the Align panel to change the position of the original motion path, you’ll need to do

the same for the copied path, assuming you want the lunatic and the cartoon mouse to fall in sync. It’s

easy as pie. Although you could certainly use the Edit Multiple Frames workflow discussed in

Chapter 7—that does still work here—you’ve learned in this chapter that motion tweens can be

repositioned by way of their motion paths.

8. Using the Subselection tool, click the mascot’s motion path to select it. Use the Align panel,

again, to center the animation vertically to the stage.

9. Preview the animation. You’ll see that both symbols perform the same movements (see Figure

8-29).

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

458

Figure 8-29. Motion paths can be shared even without the Motion Presets panel.

That’s impressive enough, but let’s redo the last demonstration in a more dramatic way. These last few

steps should drive home the notion that, in Flash CS5, motion tweens—specifically, motion paths—are

entities that stand on their own, distinct from the symbol.

10. Select the Dancing Fool symbol at any point along its tween span, and delete the symbol.

When you delete the symbol, the tween span remains, along with all its property keyframes. Visually

speaking, the only difference in the tween span is that its first frame, usually a black dot, is now an empty

white dot.

11. Click the empty tween span to select it.

12. Drag a copy of the Turtle symbol from the Library, and drop it somewhere on the stage.

Location doesn’t matter—it can even be on the right side of the existing mascot on the stage.

Because you selected the tween span first, the symbol will immediately adopt that span’s motion path

when you release the mouse to drop the symbol. You can’t do that with a classic tween!

Inverse kinematics (IK)
In one of the happiest sequences in Disney’s 1940 classic, Pinocchio, the wooden-headed puppet, once

freed from the apparatus that formerly helped him move, bursts into song, proudly declaring, “I got no

strings on me!” In Flash CS5, the authors suspect that you, too, will burst into song—but for the opposite

reason—when you see the tools for a feature introduced in Flash CS4 called inverse kinematics (IK).

What is this academic, vaguely sinister-sounding term? In simple words, IK lets you string up your artwork

like a train set, like sausages, or, if you prefer, like a marionette. And when you pull the strings, so to

speak, or move one of the connected symbols, your artwork responds like a bona fide action figure. You

can use IK to make poseable models and then animate them.

Seriously, this feature is way cool, and we think you’re going to love playing with it. That said, it’s one of

the more complicated feature sets in Flash CS5. Stringing up your symbols is easy enough. The official

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

459

terminology calls for creating an armature and populating it with bones, which can then be dragged

around. Adobe engineers have made this dead simple.

The tricky part is a question of how. To a certain extent, you’ll find armatures and bones immediately

intuitive, but just when you think they make sense, they’ll behave in a way that might just strike you as

utterly wrong. You’ll see what we’re talking about in the following exercises, and we’ll show you an

approach that should give you what you expect.

It all starts with something called the Bone tool.

Using the Bone tool

The Bone tool is your key to the world of poseable armatures in the authoring environment. Using it will

give you an inkling of the satisfaction experienced by a certain famous Victor Frankenstein, without

anywhere near the hassle he went through or the illegal outings. You won’t be visiting any actual

graveyards, for example.

Let’s see how the Bone tool works.

1. Open the Bones.fla file from the Exercise folder for this chapter. You’ll be greeted by a more

or less anatomically correct hand, sans flesh. Go ahead and wave! The wrist and hand bones are

all part of the same graphic symbol, named hand in the Library. The knuckles are also graphic

symbols, named by finger and knuckle number—for example, ring1, ring2, and ring3. All of

these symbols happen to be on the same layer, but that doesn’t need to be the case.

2. Select the Bone tool from the Tools panel. It’s the one in Figure 8-30 that looks like a bone, just

above the Paint Bucket. Click over the bottom-center portion of the skeleton’s wrist, and drag

toward the bottom of the thumb’s first knuckle, as shown in Figure 8-30. When you release the

mouse, you’ll see your very first armature, which includes a single IK bone.

Bones can only be rigged between graphic symbols, movie clips, or artwork that has

been broken apart. Trying to run a bone, for example, from one photo to another will

result in an error message telling you, essentially, “Nope you can’t do that!”

Notice the new layer in the Timeline panel, called Armature_1. That’s your armature, and as you

continue to connect your symbols together with IK bones, those symbols will automatically be pulled to this

new layer. Just like a motion tween layer, this layer has distinctive properties. For example, you can’t right-

click (Windows) or Control+click (Mac) an armature layer to tween it, even though IK poses can be

tweened (more on this later in the chapter, in the “Animating IK poses section”). You can’t draw shapes on

or drag symbols to an armature layer.

Bones have two ends, and it’s helpful to know their anatomy. The larger end of the bone, where you

started to drag, is called the head. The smaller end of the bone, where you released the mouse, is called

the tail. The tail is pointing up and to the left in Figure 8-31. A string of connected bones is called an IK

chain or a bone chain.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

460

Figure 8-30. The Bone tool lets you connect symbols the way bones are connected in real life.

Figure 8-31. Drawing your first bone creates the armature.

3. Still with the Bone tool, hover somewhere inside the symbol that represents the first knuckle. You

don’t need to be exact—just within the symbol’s bounding box. Then click and drag toward the

bottom of the second knuckle. You’ll notice that even if you don’t begin the second drag directly

over the tail of the first armature bone, Flash will automatically snap it into place for you. Release

when you’re over the bottom of the second knuckle.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

461

4. To finish the thumb, hover anywhere inside the second knuckle’s symbol. Click and drag upward

to the bottom of the third knuckle. When you release, you’ll have the simple bone rigging shown

in Figure 8-32.

Figure 8-32. As you connect symbols with bones, the symbols are pulled to the armature layer.

If you’re anything like the authors, you’re just dying to try these bones, so let’s take a quick break and do

just that.

5. Switch to the Selection tool, grab that third knuckle, and give it a shake.

We fully expect you’ll have fun, but all the same, you’ll also see that it’s pretty easy to arrange the hand

into what looks like an orthopedic surgeon’s dream (see Figure 8-33). It may surprise you, for example,

that the wrist pivots, and those knuckles are bending into contortions that make even our yoga buddies

wince. We’ll fix those issues in just a moment. First, let’s get acquainted with the Bone tool properties.

Figure 8-33. Ouch! Bones are easy to connect, but the results aren’t always what you might anticipate.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

462

Bone tool properties

There are two ways to nudge the Properties panel into showing bone-related properties: by clicking an

IK bone on the stage and by clicking the armature itself, which is represented by an armature layer. Let’s

start with the armature.

1. Continuing with the Bones.fla file, click frame 1 of the Armature_2 layer. When you do, the

Properties panel updates to show two twirlies:

 Ease: In this area, you’ll find a drop-down list for selecting easing from a list of prebuilt

choices and a Strength value that lets you specify intensity, just as you saw in the

Properties panel for motion tweens. These settings configure easing for the span of an

armature layer (you can drag out an armature span to encompass as many frames as you

like). Armature layers provide their own tweening capability, which is discussed in the

“Animating IK poses” section and again in the last exercise of this chapter. For now, just note

that this is where you can apply easing.

 Options: The area gives you something to see even without tweening. The Style drop-

down list lets you specify how you want the IK bones to look. You have three choices: Solid

(the default), Wire, and Line, which are illustrated in Figure 8-34 from left to right. When

working with numerous or very small symbols, consider using the Wire or Line styles.

Why? Because the Solid view can obscure symbols that appear under the IK bones.

Figure 8-34. Bones can be configured as Solid, Wire, and Line.

2. Change the Type drop-down selection from Authortime to Runtime. You’ll see the warning

message shown in Figure 8-35.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

463

Figure 8-35. Only movie clip bones can be interactive at runtime.

The reason for the warning is that, although bones can be made interactive for the user, Flash requires

that the boned symbols be movie clips when Type is set to Runtime. Fortunately, this is easy to change

in Flash CS5, even if there are numerous symbols in play.

3. Click OK to close the warning dialog box.

4. Open the Library, and click the first symbol, named hand, to select it. Press and hold the Shift

key, and then select the last symbol. Now everything in your Library is selected.

5. Right-click (Windows) or Control+click (Mac) any one of the symbols and choose Properties

from the context menu.

What you get is a feature introduced in Flash CS4, which is an incredible time-saver. The Symbol

Properties dialog box opens—not just for the symbol you clicked, but for all selected symbols.

6. In the Symbol Properties dialog box, place a check mark in the Type property, and change the

drop-down choice to Movie Clip, as shown in Figure 8-36. Then click OK.

Figure 8-36. Flash CS5 lets you change multiple symbol properties at once in the Library.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

464

All of your Library’s graphic symbols become movie clips simultaneously. This used to take a separate

visit to each asset. However, you still need to let the stage know what you’ve done.

7. Click the stage to select it. Select Edit ➤ Select All. In one swoop, you just selected all your

symbols on the stage.

8. Click any one of the symbols to update the Properties panel, and then select Movie Clip

from the drop-down list at the top of the Properties panel.

9. Click frame 1 of the Armature_2 layer, and change the Type drop-down selection to Runtime.

10. Test the movie and wiggle those thumb knuckles inside Flash Player. Pretty neat!

11. Close the SWF, and click one of the IK bones to update the Properties panel.

Now you see bone-specific properties. Let’s go over those:

 Position X, Y, Length, and Angle: These are read-only properties, which means you can

look, but don’t touch. Thankfully, the names are self-explanatory.

 Speed: Think of this as friction, or how much “give” the selected bone has in the armature. A

higher number means faster movement, and your range is 0 (no movement) to 200 (fast

movement).

 Joint: Rotation: Here, you have the following choices:

 Enable: Selecting this check box allows the bone to pivot around its head. In contrast,

deselecting it means the bone won’t act like a hinge.

 Constrain, Min, and Max: Selecting Constrain activates the Min and Max hot text

values, which allow you to determine how wide an arc your hinge can pivot on.

 Joint: X and Y Translation: The choices for this property are as follows:

 Enable: Selecting this check box allows the bone to effectively pop in and out of its socket,

in either the x- or y-axis.

 Constrain, Min, and Max: Selecting Constrain activates the Min and Max hot text

values, which allow you to determine how far the bone can move.

 Spring: New to Flash CS5, this property integrates dynamic physics into the Bones IK system.

The two properties allow easier creation of physics-enhanced animation.

 Strength: Think of a car spring and a Slinky. The car spring is rigid, whereas the Slinky is

totally bendable. The Strength property stiffens a spring. If the Slinky has a value of 0, then

a car spring has a value of 100.

 Damping: The rate of decay of the spring effect. Higher values cause the springiness to

diminish more quickly. A value of 0 causes the springiness to remain at its full strength

throughout the frames of the pose layer

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

465

Of the properties available, Rotation, Translation, and Spring will give you the biggest bang for

your buck. Let’s see how easy it is to fix that misshapen hand! While we’re at it, you’ll learn some helpful

subtleties on manipulating the symbols in an armature.

Constraining joint rotation

IK bone rigs are as much an art as a science. The science facet derives from the Properties panel,

which gives you have some configuration settings. The art facet depends on your sense of the appropriate

range of motion for a given armature. Let’s jump in:

1. Continuing with the Bones.fla file, use the Selection tool to drag the hand itself—not any of

the fingers or the thumb—and carefully pivot the hand so that it realigns again under the fingers.

2. Select the first IK bone (the one closest to the wrist), and deselect the Enable check box in

Properties panel‘s Joint: Rotation area.

3. Drag the thumb’s third knuckle again, and note that the wrist no longer moves.

If you ever change your mind, just reselect the first IK bone, and put a check mark back in the Enable

property. Now let’s make sure the thumb doesn’t look so double-jointed.

4. Select the second IK bone and, in the Properties panel, enable the Constrain check box in

the Joint: Rotation area, as shown in Figure 8-37.

Figure 8-37. The Constraint check box lets you constrain a joint’s range of motion.

Choosing Constrain adds a new component to the IK bone, which you can see in Figure 8-38.

Suddenly, the bone’s head sprouts a wedge shape, with a line in the middle that separates the wedge into

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

466

two pie pieces. The line has a square handle on its outside end. (If you’re in a Robin Hood mood, it may

look like a bow and arrow.) This wedge represents the joint’s range of movement. By default, you get a 90-

degree sweep.

Figure 8-38. Select Constrain in the Joint: Rotation area of the Properties panel, and joints

sprout a range-of-movement icon.

5. Drag the third knuckle downward. The line with the square handle moves counterclockwise until it

rests against that side of the wedge. Drag the knuckle up, and the handle moves to the other

side—clockwise—until it meets the opposite side of the wedge.

Adjusting this range of movement is easy. The workflow we prefer is to pivot the IK bone into position first

and then scrub the Min or Max hot text as necessary to meet that position.

6. Drag the third knuckle upward until the thumb moves as far in that direction as you like. If you

need more room, select first knuckle’s IK bone, and scrub the Max value toward the right to

increase its value. Readjust the thumb, and when you like how it sits, scrub the Max value toward

the left again to bring the edge of the wedge toward the square-handled line.

7. Drag the third knuckle all the way down, and repeat this process for the other extreme. You’ll

notice that the first knuckle appears above the bones of the wrist, as shown in the left side of

Figure 8-39. That may or may not be what you want. If you want to send the knuckle behind the

wrist, use the Selection tool to select that knuckle’s symbol, and select Modify ➤ Arrange ➤

Send to Back. The first knuckle is done. You can now move onto the second, which isn’t any

harder to manage.

8. Add a Joint: Rotation constraint to the second knuckle and configure the Min/Max values in

whatever way suits you.

As you move the skeleton bones around, you can use the Shift key to temporarily change the way the IK

bones respond. For example, drag the third knuckle up and down, and then hold down Shift and drag

again. When Shift is pressed, only the third knuckle moves. This works with any other bone. Drag the

second knuckle with and without Shift to see what we mean.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

467

While you’re at it, experiment with the Ctrl (Windows) or Cmd (Mac) key as well. If you ever want to

reposition a symbol without having to redo an IK bone from scratch, hold down Ctrl (Windows) or Cmd

(Mac) while you drag. This temporarily releases the dragged symbol from its IK chain. When you release

the key, the IK bones are reapplied.

The third knuckle is the interesting one, because although it’s attached to an IK bone, it’s only associated

with that bone’s tail. This means you can’t constrain its rotation. (Give it a try!) So, what to do? Since we’re

dealing with so many kinds of bones, we think it’s fitting that the answer relies on the presence of a

ghost—not a real ghost, of course, but a stand-in “ghost” movie clip.

9. In the Timeline panel, select the non-armature layer (the one labeled bones).

10. Use the Oval tool to draw a small circle—say, 20 pixels 20 pixels—no stroke, and color doesn’t

matter.

11. Convert that circle to a movie clip. Name the symbol ghost handle, and position it just past the

thumb’s third knuckle.

12. Using the Bone tool, add a fourth IK bone between the third knuckle and the ghost handle

movie clip, as shown in Figure 8-39.

Figure 8-39. Use a stand-in movie clip to let you constrain the previously end-of-the-line IK bone.

13. Select the newest IK bone, and constrain its Joint: Rotation property.

14. Save your file.

Sure, the “ghost” movie clip may look a little silly, but its presence allows you to configure your IK bones

from start to finish.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

468

Here’s the best part: whenever you need another stand-in IK bone, make sure to keep reusing that same

ghost handle movie clip. Why? Because when you’re ready to publish the SWF, all you have to do is

open that symbol in the Library and change its fill color to 0% Alpha. Just like that, your extra handles

become invisible, and they still do their job.

Deleting bones

We showed you how to create IK bones, but you’ll also want to know how to delete them. It couldn’t be

easier:

1. After saving your Bones.fla file, and use the Selection tool to select the fourth IK bone from

the previous exercise. Press the Delete key. Badda bing, badda boom...the bone is gone.

2. Skip the third IK bone, and select the second one. Press the Delete key.

This time, both the second and third bones disappear. This tells you that deleting an IK bone automatically

deletes any other bones attached to its tail.

3. Right-click (Windows) or Control+click (Mac) frame 1 in the Armature_1 layer, and select

Remove Armature from the context menu.

As expected, the last IK bone disappears. If you had made this selection in step 1, all of the IK bones

would have disappeared from the start.

4. Select File ➤ Revert, and then click the Revert button in the alert box to undo all the

deletions.

Putting some “spring” in your bones
New to Flash CS5 is the addition of a Spring option for bones. Adobe calls it a “physics engine for

Inverse Kinematics” and, regardless of what you call it, we think it’s a pretty neat way of bending stuff in an

animation. Let’s take a look:

1. Open the Springs.fla file in your Exercise folder. When it opens you will see two trees on the

stage, and if you scrub across the timeline, you will see them bend in a gust of strong wind.

2. Springiness works best when the object containing the bones is put into motion. This is done

using poses, which we will get into later in this chapter.

3. Click the tree on the left, and click the bone at the bottom to select it.

4. Open the Properties panel, and you will notice the bone, as shown in Figure 8-40, has a

Strength value of 100 and a Damping value of 5. Strength is the stiffness of the spring.

Higher values create a stiffer spring effect. Damping is the rate of decay of the spring effect.

Higher values cause the springiness to diminish more quickly. A value of 0 causes the

springiness to remain at its full strength throughout the frames of the pose layer.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

469

Figure 8-40. Adding spring to a bone using the Strength and Damping properties

5. Now that you know what the values mean, scrub across the timeline to the first keyframe and

compare the shapes of the trees. The tree on the right does not have springiness applied to it. As

shown in Figure 8-41, the tree that has been “stiffened” looks a lot more natural than its

counterpart on the right which has had springiness disabled.

There is something else you need to know: Spring properties are applied to bones.

Springiness is applied to layers. If you click any frame of the NoSpring layer and open

the Properties panel, you will see that the Enable check box is deselected.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

470

Figure 8-41. Springs, used in the tree on the left, add realism to objects in motion.

Applying joint translation

Another way to control the movement of joints is called joint translation. This affects movement of an IK

bone along its x- or y-axis (or both). To illustrate, we’ll leave our skeleton at the chiropractor’s for a while

and turn our attention to a rudimentary steam engine.

1. Open the SteamEngine.fla file from the Exercise folder for this chapter. The symbols are

already in place for you.

In Figure 8-42, we’ve labeled the engine’s anatomy to assist you in the next steps, so you can focus your

attention entirely on the IK rigging. You’re going to connect three horizontal symbols from left to right.

Ignore the wheel for the time being.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

471

Figure 8-42. The movement of this steam engine will include joint translation.

2. Select the Bone tool, and then add a bone that starts on the left side of the piston rod symbol

and ends on the crosshead bearing symbol (the center symbol).

3. Add another bone from the crosshead bearing symbol to the right side of the connecting

rod symbol, as shown in Figure 8-43. This is no different from the bone rigging you did for the

knuckles.

Figure 8-43. Two bones connect three symbols.

Joint translation doesn’t require ActionScript, but we’re going to use some programming to demonstrate it

in this particular case. Because we’ll be using ActionScript, let’s give the bones and armature meaningful

instance names.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

472

4. Using the Selection tool, select the bone on the right, and use the Properties panel to give

it the instance name connectingRod, as shown in Figure 8-44.

Figure 8-44. Bones and armatures support instance names, just like movie clip symbols.

Pay close attention to the Properties panel when making your selections. It’s easy to

accidentally click the symbol to which a bone is applied, rather than the bone itself. In

this context, the symbol is listed as an IK Node in the Properties panel. If you select

an IK node, this exercise won’t work properly. Figure 8-44 shows the correct selection of

a bone, which displays IK Bone in the Properties panel.

5. Select the other bone, and give it the instance name pistonRod.

6. Select the armature itself by clicking frame 1 of its layer in the Timeline panel. Use the

Properties panel to give the armature the instance name engine. The armature’s layer name

will update to the same name.

Now it’s time for the joint translation, but first, let’s keep this bone from rotating. It’s possible for bones to

translate and rotate, but that isn’t what we want here. Our aim is to let the piston rod slide left and right

when the armature moves.

7. Select the pistonRod bone, and use the Properties panel to disable its rotation (that is,

deselect the Enable check box in the Joint: Rotation area).

8. To achieve the left-and-right motion, select the Enable check box in the Joint: X Translation

area. The bone’s head gets a horizontal double-headed arrow, as shown in Figure 8-45.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

473

Figure 8-45. Joint translation is indicated by a double-headed arrow along the relevant axis.

You could optionally constrain this translation by selecting the Constrain check box and configuring Min

and Max values, just as with joint rotation, but that isn’t necessary here. Note, too, that you could optionally

translate (and constrain) along the y-axis, but we’ll also omit that step.

Time to get this steam engine moving!

9. Click frame 1 of the armature’s layer (engine) to select the armature. In the Options area of the

Properties panel, and change the Type drop-down selection to Runtime. Now this rigging is

ready for ActionScript.

10. Select frame 1 of the scripts layer, and open the Actions panel. Type the following

ActionScript:

import fl.ik.*;

var pt:Point = new Point();
var arm:IKArmature = IKManager.getArmatureByName("engine");
var bone:IKBone = arm.getBoneByName("connectingRod");
var tail:IKJoint = bone.tailJoint;
var pos:Point = tail.position;

var ik:IKMover = new IKMover(tail, pos);

The first line imports all the classes in the fl.ik package, which includes classes necessary for identifying

and manipulating armatures created in the authoring tool. The next line declares a variable, pt, set to an

instance of the Point class. (The Point class doesn’t reside in the fl.ik package, but in just a moment,

you’ll see that something called the IKMover class needs a Point instance.)

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

474

From the third line on, the code unfolds like the lyrics in that old catchy tune, “Dry Bones” (“the knee

bone’s connected to the...thi-i-igh bone”). How so? A variable, arm, is declared and set to an instance of

the IKArmature class. This variable takes its value from a method of the IKManager class, which

connects it to the armature whose instance name is engine.

After that, a bone variable—an instance of the IKBone class—is connected to the bone whose instance

name is connectingRod. Then a tail variable (IKJoint class) is connected to the tailJoint property

of the bone instance. Finally, a new Point instance (pos) is connected to a pair of coordinates from the

position property of the tail instance.

The tail and pos variables are passed as parameters to a new instance of the IKMover class, which is

stored in the variable ik. That ik variable is what allows you to move the armature with code.

11. Add the following new ActionScript after the existing code:

wheel.addEventListener(Event.ENTER_FRAME, spin);
function spin(evt:Event):void {
 wheel.rotation += 5;
 pt.x = wheel.crank.x;
 pt.y = wheel.crank.y;
 pt = wheel.localToGlobal(pt);
 ik.moveTo(pt);
}

The basic premise here is something you’ve already seen in other chapters: a custom function, spin(), is

associated with the Event.ENTER_FRAME event of an object with the instance name wheel. In this case,

wheel is the instance name of the wheel-shaped movie clip symbol. (We’ve already configured the

instance name for you in the sample file, and the wheel symbol contains another movie clip inside it with

the instance name crank.)

So, what’s going on in this event handler? First, the MovieClip.rotation property of the wheel instance

is incremented by five. That gets the wheel rolling continuously. After that, it’s just a matter of updating the

pt variable declared earlier. Being an instance of the Point class, the pt variable has x and y properties,

which are set to the crank movie clip’s x and y properties, respectively. Because crank resides inside

wheel, the object path to the desired x property is wheel.crank.x. The same goes for y.

This updates pt‘s properties to the current position of crank, but that isn’t quite enough. From the wheel

symbol’s point of view, crank never actually moves—it’s wheel that does the rotating!—so the coordinates

need to be considered from the point of view of the stage. That’s what the second-to-last line does by

invoking the DisplayObject.localToGlobal() method on the wheel instance. In plain English, it tells

pt to reset itself in from crank‘s local coordinates inside wheel to the crank‘s global coordinates shared

by all objects on the stage.

Finally, pt is passed as a parameter to the IKMover instance represented by the ik variable.

12. Test your movie so far to see the result.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

475

It’s close to being correct, and the pistonRod bone does perform its horizontal joint translation, but if you

look carefully, you’ll notice that the armature occasionally “slips” from the crank movie clip. That’s easy to

fix, and it’s nothing more than a matter of priorities.

The armature isn’t updating as quickly as the wheel turns, so let’s fix that by limiting the number of

calculations it has to make.

13. Use the Actions panel to insert the following two lines after the ik variable declaration and the

event listener (new code shown in bold):

. . .
var ik:IKMover = new IKMover(tail, pos);
ik.limitByIteration = false;
ik.iterationLimit = 5;

wheel.addEventListener(Event.ENTER_FRAME, spin);
function spin(evt:Event):void {
. . .

14. Test the movie again, and everything should run fine.

A note about bone preferences

Let’s return to our friendly skeleton hand. We mentioned earlier in this chapter that IK poses can be

animated, even without the use of a motion tween layer. You’ll see how in the next section. First, it’s time

for a quick field trip.

1. Open the BonesRigged.fla file in this chapter’s Exercise folder. You’ll see the fingers and

thumb pointing upward, and the thumb has a ghost handle.

2. Use the Selection tool or the Free Transform tool to click the first knuckle of the pointer finger.

As Figure 8-46 shows, the symbol’s transformation point (the small white circle) is dead center.

3. Noting the transformation point, select Edit (Flash) ➤ Preferences, and click the Drawing

choice in the Category area. Find the IK Bone tool: Auto Set Transformation

Point check box and deselect it, as shown in Figure 8-47. Click OK to close the Preferences

dialog box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

476

Figure 8-46. This symbol’s transformation point is horizontally and vertically centered.

Figure 8-47. The Auto Set Transformation Point setting affects how bones are applied to

symbols.

4. Using the Bone tool, hover over the hand symbol, and then click and drag a new IK bone toward

the first knuckle of the pointer finger. As you do, notice that the tail of the IK bone snaps to the

transformation point of the first knuckle. Note, also, that the armature is perfectly capable of

handling more than one chain of bones.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

477

5. Repeat this process to rig up the remaining knuckles of the pointer finger.

6. Using the Selection tool, grab the third knuckle and give the finger a wiggle. As shown in

Figure 8-48, the pivots occur on the transformation points, which just doesn’t work for this

scenario. We want the knuckles to line up end to end.

Figure 8-48. If you want, IK bones can snap to a symbol’s transformation point.

7. Return to the Preferences dialog box, and reselect the IK Bone tool check box.

8. Select File ➤ Revert, and then click the Revert button to roll the file back to its original state.

We brought up the IK Bone tool preference setting because it’s hard to spot unless you happen to be

poring through the Preferences dialog box. We chose a silly example because silly visuals tend to stick.

By leaving the Auto Set Transformation Point check box selected in the

Preferences dialog box’s Drawing section, you’re telling Flash to move a symbol’s

transformation point for you automatically. If you prefer to maintain that control on your

own, deselect that check box, and then use the Free Transform tool to make your

symbol selections. When selected with the Free Transform tool, a symbol lets you

move its transformation point with an effortless click-and-drag operation. If the symbol

already belongs to an IK chain, any heads or tails connected to it will reposition

themselves to the new location of the symbol’s transformation point.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

478

Animating IK Poses

As you saw earlier with the springs example, to get those trees to bend in the wind, we needed to animate

the IK poses. In this section, we show you how to do that but rather than bend trees, let’s slip on our hard

hats and visit a construction site.

1. Open the IK_Poses.fla file in your Exercise folder. You will see we have placed a Steam

Shovel on the stage. The image started life as a multilayer Photoshop image imported into Flash.

Each layer of the Photoshop image was placed in a graphic symbol, and each symbol has its own

layer on the main timeline.

2. Select the Magnifying Glass tool, and zoom in on the machine. You are going to need a

closer view of the pieces to place the bones.

3. Select the Bone tool, and draw a bone from the back of the MainArm symbol to the top joint of

the Shovelarm symbol. Keep in mind that Bones links symbols only to each other. Bones within

a symbol will kick out an error message. In this case, run the bone between the MainArm and

ShovelArm symbols, as shown in Figure 8-49.

4. Draw another bone, as shown in Figure 8-49, from the top of the ShovelArm symbol to the joint

where the shovel is attached to the ShovelArm. The three symbols have been moved from their

respective layers to the armature layer.

Figure 8-49. The bones used in the animation are in place.

5. Right-click (Windows) or Control+click (Mac) frame 70 of the Cab layer, and select Insert

Frame. The Cab symbol now spans 70 frames. Lock the Cab layer.

6. We are going to start the animation by establishing its finish position. Right-click (Windows) or

Control+click (Mac) frame 70 of the armature layer, and, as shown in Figure 8-50, select Insert

Pose from the Context menu.

That green strip across the armature layer tells you that you have created a pose layer. Pose layers are quite

different from motion layers. They can only be created by adding a pose at a frame and they only work with

armature layers. The little keyframe icon in the pose layer tells you where the poses are located.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

479

Figure 8-50. Poses are added through the context menu.

7. Scrub back to frame 1. Switch to the Selection tool, and move the arms and the shovel to the

position shown in Figure 8-51. If you scrub across the timeline the two arms and the shovel lower to

the ground. This tells you that poses in an armature layer can be tweened only in the armature layer.

Figure 8-51. Use the Selection tool to change a pose.

8. Move the playhead to frame 15. Switch to the Selection tool, and extend the shovel arms.

What you need to know about this is that by changing the positions of the bones in an armature

layer, a keyframe is automatically added. There is no need to insert a pose. This may sound

rather familiar because this is exactly what happens when you change the properties of an object

in a motion layer.

9. At this point you can continue moving through the timeline and having the machine scoop up and

dump some dirt to you can close this example and not save the changes.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

480

Using the Bind tool

We expect that IK has sparked the creative center of your brain enough to keep you happily busy for

weeks. Believe it or not, you still have one more tool to see. The team at Adobe has made IK available not

only to symbols but also to shapes! You’ll be using the Bone tool for this exercise, but the Bind tool will

make an appearance as an important sidekick. The best way to describe IK for shapes is to consider it a

super-advanced evolution of shape tweens in combination with the shape hinting discussed in Chapter 7.

Let’s jump right in.

When it comes to IK, the distortion to be controlled is in both the stroke and fill areas of a shape.

Depending on the configuration of an IK shape, you may find that the stroke of the shape does not distort

in a pleasing way or joints move around when moving the armature. This is where the Bind tool comes

into play.

By default, the control points of a shape are connected to the bone that is nearest to them. The Bind tool

allows you to edit the connections between individual bones and the shape control points. The upshot is

you control how the stroke distorts when each bone moves.

Before we start, it might not be a bad idea to simply take a look at what effect “binding” has on a drawing.

This way, you can see, in a rather dramatic fashion, what it does and learn what to look for.

1. Open the badBinding.fla file in your Exercise folder. When it opens, you will see two people

preparing to arm wrestle.

2. Click the pink character’s arm to see the bones.

3. Switch to the Selection tool and move the arm. You will notice two things, as shown in Figure

8-52. First, the elbow moves off of the table and some rather disturbing distortions occur around

the elbow joint.

Figure 8-52. Moving a bone in a shape causes distortions and unlifelike movement.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

481

4. Open the betterBinding.fla file in your Exercise folder, and give the arm a wiggle. As you

can see, Figure 8-53, the elbow stays put, and the distortions are not as severe.

Figure 8-53. Binding, when properly applied, can add realism to movement.

Now that you have seen how binding can affect and armature, let’s get to work and start learning how to

use the Bind tool.

1. Open the Bind.fla file in the Exercise folder for this chapter, and say hello to an earthworm, as

shown in Figure 8-54. (The correlation between a worm, bones, steam shovels, and graveyards is

purely coincidental, we assure you.) The Library for this FLA is empty, because the worm is

nothing more than a handful of shapes.

Figure 8-54. IK for shapes is brought to you by a worm.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

482

2. Assuming you want to drag the worm around by its head, you’ll want to draw the bones of your

armature from the opposite side of the worm. Select the Bone tool and starting from the bottom of

the shape, drag a small IK bone upward.

3. With that first bone in place, hover over the tail of the IK bone. When the tiny black bone icon

inside the mouse cursor turns to white, you’ll know you’ve hit the right spot. Click and drag

upward to add another bone.

In this manner, keep adding small IK bones until you reach the top of the worm (see Figure 8-55).

Figure 8-55. IK bones can easily be applied to shapes.

4. Before you give the worm a wiggle, switch to the Bind tool, and click the bottommost IK bone.

5. This is where it gets interesting. To see we’re talking about, switch to the Zoom tool, and using the

Bind tool, marquee the bottom several bones in the tail. Now you’re ready for action.

Using the Bind tool is a bit like using the Subselection tool in that it reveals a shape’s anchor points. In

Figure 8-56, you can see anchor points represented in three different ways. At the top of the figure, they

look like the sort you’ve seen in previous chapters—just small squares. At the bottom, they’re considerably

larger and thicker and appear in the form of triangles as well as squares.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

483

Figure 8-56. The Bind tool lets you manipulate anchor points.

When you select an IK bone with the Bind tool, Flash shows you which of the shape’s anchor points are

associated with that particular bone. Squares indicate an association with a single bone; triangles indicate

an association with many bones.

In this case, the bottom four anchor points—the heavy squares—are associated with the bottommost bone

only. The upper two anchor points—the heavy triangles—are associated with the bottommost bone and

with the bone immediately above it. The triangle anchor points are affected when either of their associated

bones moves.

Click any of the other IK bones in this armature, and you’ll see that Flash has done a great job of

automatically deciding which associations to make. This won’t always be the case. Thankfully, you can

override Flash’s decisions.

6. Hold down the Ctrl (Windows) or Cmd (Mac) key, and click one of the bottom four heavy squares.

This makes it look like a normal anchor point (smaller and not bold). Still holding Ctrl (Windows)

or Cmd (Mac), click one of the heavy triangles, which also becomes a normal anchor point.

7. Select the next IK bone, and you’ll see that the triangle anchor is back. but now it’s a heavy

square. That makes sense: before step 6, this anchor was associated with two bones (triangle),

but now it’s associated with only this one (square).

8. Select the bottommost bone again, and, without holding down Ctrl (Windows) or Cmd (Mac), click

the anchor point that was previously a heavy square. Drag it toward the bone (see Figure 8-57)

and release. That anchor point is now reassociated with the bone.

9. Click another bone, and then click this one again. You’ll see the heavy square as it originally was,

along with its companions.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

484

10. To reassociate the formerly triangle anchor point, use the Bind tool to select the appropriate

anchor, and then press and hold Ctrl (Windows) or Cmd (Mac) while you drag it to the

bottommost bone. As you do, you’ll see an association line in the upper bone as well as the

diagonal association line created by your dragging (see Figure 8-58).

Figure 8-57. Click and drag an anchor point to associate it with a bone.

Figure 8-58. Press Ctrl (Windows) or Cmd (Mac) while dragging to associate an anchor point with more

than one bone.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

485

11. Save the file. (You’re going to continue with it in the next exercise.)

Use the Bind tool to fine-tune your shape armatures, just as you would use shape hints to fine-tune a

shape tween. Any anchor points not associated with an IK bone are ignored when the armature is

manipulated.

You can animate shape armatures in the same way as symbol armatures—and you’re about to do just

that—which will introduce you to two “gotchas” of this feature.

When it comes to IK with shapes, two limitations leap to mind:

 Shape armatures don’t manipulate gradient and bitmap fills.

 Complex shapes cannot be boned, so keep your overall anchor point count to a minimum.

Let’s explore these limitations before moving on to a full-scale IK animation exercise.

Shape IK and fills

To see what we mean about fills, continuing with the Bind.fla from the previous exercise, use the

Selection tool to give your worm a wiggle. It’s fun to do, because the shape responds in a very worm-

like way. When you’re finished, click the stage to deselect the bones and the shape’s bounding box.

The shape looks great, but as you can see in Figure 8-59, the gradient fill, which gave the worm a slightly

rounded look, hasn’t bent along with the shape. This tells you to stick with solid fills for shape armatures.

Figure 8-59. Shape armatures don’t affect gradient or bitmap fills.

Shape IK and anchor points

Let’s see how the number of anchor points affects shape IK:

1. Open the WaveSwiss.fla file in this chapter’s Exercise folder. You’ll see a drawing of the Swiss

flag with a shape armature in place.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

486

2. Drag the right side of the armature up and down to wave the flag (see Figure 8-60).

Figure 8-60. There is a definite relationship between armatures and vector points when it comes to IK in

Flash.

3. Open the WaveAmerican.fla file from the same folder. In this file, the armature hasn’t been

added yet.

4. Use the Selection tool to select the whole shape, and then switch to the Bone tool and try to

add an IK bone.

Instead of a new armature, you’ll see the alert box in Figure 8-61 telling you the shape is too complex.

Want to know the culprit?

Figure 8-61. Shape complexity also comes into play when it comes to IK in Flash.

5. Switch to the Subselection tool, and draw a selection around the whole shape.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

487

Each of those 50 stars is composed of 10 anchor points. That’s 500 points already, and that doesn’t

include the stripes. We’re not sure where the official line is drawn, but 500+ anchor points is too much.

Your solutions are to either optimize the graphic, which we cover in Chapter 15, or convert the entire flag

to a movie clip. Our suggestion is go the movie clip route because optimizing will reduce the number of

vector points but not sufficiently to avoid a repeat of this warning.

Your turn: animate a fully rigged IK model

We figure you appreciate worms, bending trees, steam shovels, and skeleton hands as much as the next

designer (and so do we!). But surely, your thoughts have already wandered toward more complex

implementations. We suspect you’re wondering if the IK tools are useful for more than a few fingers. What

about a whole body? The answer to these questions is yes, and you’re about to find out firsthand. In this

final exercise of the chapter, you’ll expand on what you learned in previous sections by rigging up a

character with arms and legs and then animating it against a backdrop of hand-sketched poses. Let’s do it.

1. Open the Richard.fla file from the Exercise folder for this chapter. You’ll see an assembled

collection of symbols in the likeness of Richard (see Figure 8-62), one of the regular characters in

Steve Napierski’s web comic “The Outer Circle” (www.theoutercircle.com/).

The authors would like to give Steve a hearty thanks for letting us use his artwork! See

more at www.pierski.com/.

Figure 8-62. Meet Richard. Give him a hug. You’re going to make Richard jump.

www.zshareall.com

http://www.theoutercircle.com
http://www.pierski.com
http://www.zshareall.com

CHAPTER 8

488

2. Select Edit (Flash) ➤ Preferences, and click the Drawing choice in the Category area.

Deselect the IK Bone tool: Auto Set Transformation Point check box. As described

in the “A note about bone preferences” section earlier, this means you’ll be the one deciding

where to place your bone heads and tails, and you’ll adjust them afterward.

3. Select the Oval tool and, in the Richard layer, draw a small circle about 22 pixels 22 pixels

near one of the character’s hands. Select the shape and convert it to a graphic symbol named

handle. This is going to be your “ghost handle,” which lets you constrain the hands, feet, and

head.

4. Drag additional instances of the handle symbol from the Library to the stage, positioning them

near the Richard’s other hand, his feet, and his head, as shown in Figure 8-63. In this exercise,

Richard’s chest will act as the starting point for every new chain of bones, just as the skeleton’s

palm did in earlier exercises.

Figure 8-63. Make sure to include extra symbols to allow for rotation constraints.

5. Select the Bone tool, and then click and drag a bone from the torso symbol to one of the upper

leg symbols. Be sure to release the bone’s tail low enough on the upper leg that it clears the

bounding box of the torso (see the bounding box in Figure 8-64, and note how the bone tail falls

below it). Even though this puts the bone tail lower than it should on the leg symbol—effectively

moving the “hip” into the thigh—you’ll be able to readjust it in just a moment.

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

489

Figure 8-64. Make sure the bone’s tail clears the bounding box of the torso symbol.

The fact that these symbols overlap is part of the reason we had you deselect Auto Set

Transformation Point in step 2. Although not always a problem, in this case, the obscured symbol

rotation points make it harder for Flash to decide on its own where new chains of bones should begin.

6. Just as you did earlier for the knuckles, continue adding a new bone that connects the upper leg

to the lower leg, the lower leg to the ankle, the ankle to the foot, and finally the foot to the foot’s

ghost handle. Feel free to zoom the stage—particularly for the ankle! —if necessary.

7. Select the Free Transform tool, and then click the stage to deselect the armature itself.

8. Click each symbol in turn, from the ghost handle back up to the torso, and adjust the

transformation point so that it sits over the symbol’s registration point. To do this, click the white

circle (transformation point), drag it to the small plus sign (registration point), and then release.

Selecting Snap to Objects in the Tools panel will make this task easier for you.

9. After you’ve adjusted the transformation point for each boned symbol, select the Bone tool again,

and click the head of the torso’s existing bone to begin a new chain of bones down the other leg.

Follow this with a repeat of the Free Transform tool adjustments of the relevant symbols’

transformation points.

10. Obviously, the arms need the same treatment, as does the head. Starting from the same

gathering of torso bones each time, use the Bone tool to create new bone chains from the torso

to upper arm, lower arm, hand, to ghost handle on both sides, and then from torso to head to

ghost handle at the top of the character. When you’re finished, revisit all relevant symbols with

the Free Transform tool to reposition transformation points over their corresponding

registration points. Your armature should look like the one shown in Figure 8-65.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

490

Figure 8-65. A complete IK rig

At this point, Richard is nearly ready for his calisthenics. First, we need a few rotation constraints.

11. Using the Selection tool, click any of the torso bones and deselect the Enabled option in the

Joint: Rotation area of the Properties panel. Because all the torso bones share the same

head, this action will disable rotation for the whole body.

12. Zoom the stage, if necessary, and disable rotation for the ankle bones.

13. Add rotation constraints to the remaining bones according to your preferences. For example,

select the lower leg’s bone, and in the Properties panel, select the Constrain option and

adjust the Min and Max values to keep the knee from bending backward.

When you’re finished, the Timeline‘s original Richard layer will have long since been emptied, because

every symbol was moved to the automatically created armature layer as it was associated with a bone.

14. Rename the Richard layer to poses.

15. Select File ➤ Import ➤ Import to Stage, and import the jumping.jpg file in this chapter’s

Exercise folder. This JPG features a number of hand-drawn poses you can use as guides to

manipulate the armature. Position the imported JPG slightly to the right, so that it appears behind

Richard, and then lock the poses layer.

16. Select Edit ➤ Select All to select the armature’s symbols.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

ANIMATION, PART 2

491

17. Open the Transform panel (Window ➤ Transform). Make sure the Constrain option in the

Transform panel is selected (the chain icon is not broken), and resize the fully selected

armature to approximately 75 percent, as shown in Figure 8-66. This matches the character’s

size with the hand-drawn poses.

Figure 8-66. Resize the armature, and all its symbols, to the hand-drawn guides, and you’re set.

When you release the mouse after scrubbing, the Transform panel will seem to indicate that the

armature is still scaled to 100 percent, but if you select each symbol individually, the Transform panel will

correctly show the smaller scale you chose in step 18.

Richard’s jump should take about one second. Because the movie’s frame rate is 24 fps, that means 24

frames is fine.

18. Hover near the right edge of the of the armature’s single frame until the icon turns into a double-

headed arrow. Drag out the armature span until it reaches frame 24.

19. Right-click (Windows) or Control+click (Mac) the poses layer at frame 24, and select Insert

Frame from the context menu. This matches up the JPEG to the time span of the armature layer.

20. We’re about to cut you loose, so here’s the basic gist of what you’ll repeat until the sequence is

finished:

a. Unlock the poses layer and slide the JPG to the left in order to position the next pose under

the armature. Once the JPEG is moved, lock the poses layer again.

b. Drag the playhead six frames to the right (one-fourth of the armature span, because there

are four poses after the first drawing).

c. Use the Selection tool to manipulate the character’s body parts so they match the hand-

drawn pose.

www.zshareall.com

http://www.zshareall.com

CHAPTER 8

492

 Here are two important tips:

 Depending on how you might have constrained your joints, you may not be able to match the

drawing perfectly. Treat the drawings as rough guides. In Figure 8-63, for example, you can

see that our elbows don’t match the pose at all—they’re bent in the opposite direction! Just

have fun with it.

 You will often need to move the whole armature at once. To accomplish this, hold down the

Ctrl (Windows) or Cmd (Mac) key, and click the current frame of the armature layer. Doing so

simultaneously selects all the armature’s symbols in the chosen frame. At this point, slowly

tap the keyboard’s arrow keys to move the armature. If you hold down Shift while pressing

the arrow keys, you can move in 10-pixel increments, which makes it go faster.

21. After you’ve finished posing the armature at frames 6, 12, 18, and 24, right-click (Windows) or

Control+click (Mac) the poses layer and convert it to a guide layer. This will keep it from showing

when you publish the SWF. (Alternatively, you could hide the poses layer and configure your

preferences to omit hidden layers from the SWF—see the “Using layers” section of Chapter 1—or

simply delete the poses layer.)

22. Double-click the handle symbol in the Library to open it in the Symbol Editor. Change the

opacity of its fill color to 0%, to make the ghost handles invisible when you publish.

23. Save your file, and test the movie. If you like, compare your work with the completed

Richard.fla file in this chapter’s Complete folder.

Inspiration is everywhere
We started this chapter with a mention of some inspirational early Flash animation, so it’s fitting to finish

with a few more current resources.

 Chris Georgenes (http://mudbubble.com) is one of the most talented Flash animators we know

and a friendly guy to boot! His http://keyframer.com forum has become an immensely

popular meeting place for Flash cartoonists and animators, from beginner to pro. So, visit his

forum, sign up (it’s free), and bring along your artwork, demo reels, and questions. You’ll find

literally thousands of eager participants ready to share their Flash-based tips and tricks.

 For a look at some jaw-droppingly amazing, multiple award-winning Flash cartoons, check out the

“Animation” section of Adam Phillips’s http://biteycastle.com website. Adam was happy to

lend us a screenshot from “Waterlollies” (see Figure 8-67). He draws and animates all his artwork

directly in Flash. When you see what’s possible with the authoring tool, you might just think (as

one of the authors does), “When I grow up, I want to be Adam Phillips.”

www.zshareall.com

http://mudbubble.com
http://keyframer.com
http://biteycastle.com
http://www.zshareall.com

ANIMATION, PART 2

493

Figure 8-67. A scene from Adam Phillips’s “Waterlollies” (www.biteycastle.com)

 For an additional 360 pages of top-notch Flash animation how-to, check out Foundation Flash

Cartoon Animation (friends of ED, 2007), by Tim Jones, Barry Kelly, Allan Rosson, and David

Wolfe (www.friendsofed.com/book.html?isbn=9781590599129). This book was written for

Flash CS3, so it covers only the technical content discussed in Chapter 7, but it goes on to

elaborate on industry practices, including Library organization, storyboarding and animatics,

frame-by-frame animation, and integration with After Effects.

What you have learned
In this chapter, you learned the following:

 How to use the Motion Editor panel

 That even though the new tweening model is intended for the Motion Editor panel, the

Timeline panel continues to be useful for motion tweens

 How to use and configure advanced easing graphs and how to create your own

 How to navigate property keyframes in the Motion Editor and Timeline panels

 How to change the duration of a tween span

 How to manipulate and reuse motion paths, with or without the Motion Presets panel

www.zshareall.com

http://www.biteycastle.com
http://www.friendsofed.com/book.html?isbn=9781590599129
http://www.zshareall.com

CHAPTER 8

494

 How IK works in Flash

 How to use the Bone and Bind tools

 How to use the Spring feature

 Tips on improving your IK bone rigging workflow

 How to animate an IK armature

This has been a rather intense chapter, but you have to admit there is some seriously cool animation stuff

in Flash CS5. We started by walking you through the Motion Editor, including motion paths. Up to this

point in the book, the Motion Editor was something you “visited.” Now you have learned how valuable

a tool it will be as you strengthen your Flash skills.

From there, we took you deep into the new inverse kinematics features of Flash CS5. Starting with the

Bone tool and a skeleton, we guided you through this subject. By animating trees in a wind storm, steam

shovels, flags waving in the breeze, steam engines, and an honest-to-goodness real cartoon character,

you discovered the power of inverse kinematics and quite a few of the gotchas and workarounds being

developed as the Flash industry adjusts to this new animation capability.

As you went through this chapter, you were probably thinking, “This is all well and good in a flat space, but

where’s the 3D?” Great question. Why don’t you turn the page and find out.

www.zshareall.com

http://www.zshareall.com

495

Chapter 9

Flash Has a Third Dimension

Designers had been asking for 3D manipulation tools in Flash for a long time. In fact, this feature has been

requested in some form or another since the beginning of the product line. That makes sense if you

consider that the mid-1990s promise of Virtual Reality Modeling Language (VRML) gave web surfers a

taste of 3D before Flash ever hit the market. VRML was a great idea, but it was ahead of its time and,

sadly, didn’t go very far. In any case, it was more of a programmer’s pursuit than something a designer

would want to grapple with.

Then came Flash, which sparked an explosion of stylish 2D designs that began to reshape what the web

experience meant. Over the years, intrepid designers began experimenting with ways to simulate three

dimensions in their SWFs. They used centuries-old techniques to accomplish these goals—for example,

increasing the size of an object to “move it forward”—which were the same practices used in real-life

painting and sketching. Nothing in the Flash interface provided direct assistance. This all changed in Flash

CS4. The requested tools arrived, and they’re here to stay in CS5. If you’ll pardon the pun, they open a

whole new dimension in creative potential.

Here’s what we’ll cover in this chapter:

 Understanding the 3D environment

 Using the 3D tools

 Positioning symbols in 3D space

The following files are used in this chapter (located in Chapter09/ExerciseFiles_Ch09/Exercise/):

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

496

 Amsterdam.fla

 FigurineSmall.jpg

 Figurine.jpg

 Amsterdam01.jpg

 SpaceFinal.png

 Space.fla

 swingDoors.fla

 AirheadMail.fla

 3DCube.fla

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

What you’ll learn in this chapter pertains to the 3D-related tools in the Flash CS5 Tools panel, along with

some workflow suggestions to help you get the most out of them. This will be enough to introduce you to a

new playground.

If you want to supplement the benefits of the new 3D tools with older techniques, consider checking out

Flash 3D Cheats Most Wanted by Aral Balkan, Josh Dura, et al. (friends of ED, 2003). To learn about

simulating 3D with ActionScript 3.0, see Chapters 15 through 17 of Foundation ActionScript 3.0 Animation:

Making Things Move! by Keith Peters (friends of ED, 2007). For the perfect introduction to using a 3D

engine (Away3D) to create “real” 3D in Flash, see The Essential Guide to 3D in Flash by Richard Olsson

and Rob Bateman (friends of ED, 2010).

What 3D really means in Flash (and what it doesn’t)
When it comes to 3D in Flash, consider this feature as you would pizza. No matter what the server brings

from the kitchen, you’re going to love it. Capisce? Good. Now that you’re thinking of a delicious pie with all

your favorite toppings, tease your mind back to Flash for a moment. Between bites, wrap your brain

around three levels of wow factor:

 Good (“Hey, this is super cool!”)

 Better (“My jaw just hit the floor!”)

 Best (“Somebody bring me oxygen!”)

Game consoles like the Wii, PlayStation 3, and Xbox 360 have redefined what consumers expect in terms

of 3D interactivity. This is the bring-me-oxygen stuff—the Best level—which isn’t available in Flash. We

need to mention that right out of the gate. (Hey, are you going to eat that pepperoni?)

On the design side of things, you would need specialized 3D modeling software to produce that sort of

content for game consoles, television, or film. We’re talking about software like Maya, 3Ds Max, Blender,

or Cinema 4D. These industrial-strength powerhouses are designed specifically for the task and are

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

497

capable of turning out extremely complex, high-resolution output. Examples include everything from

Hollywood aliens, dragons, and virtual stunts, all the way to vehicle mock-ups, such as the Hot Rod

created by Belgian CG artist Laurens Corijn for cg.activtutsplus.com, shown in Figure 9-1.

Figure 9-1. Highly complex 3D models are created in software designed for the task, which doesn’t

include Flash (car modeled by Laurens Corijn).

For better or worse, advanced 3D modeling is not the sort of field trip you’ll be taking in Flash CS5—at

least, not with the new drawing tools. Don’t let that get you down, though. For you code jockeys, be aware

that ActionScript does give you a surprising range of possibilities, but you’ll probably want to use third-

party code libraries to pull it off.

For the jaw-dropping stuff—the Better level—you’ll want to check out Papervision3D (www.
Papervision3D.org/). This is open source software (created by core team members Carlos Ulloa, Ralph

Hauwert, John Grden, Tim Knip, and Andy Zupko) consisting of a framework of ActionScript 3.0 and 2.0

class files. Papervision3D allows programmers to create a range of 3D primitives (basic shapes, from

which other shapes can be built), and even import COLLADA (an open XML standard) data files from

external modeling applications, and then bring those models to life in complex ways, as shown in Figure

9-2. Yup, that’s Flash, and every fish, including the shark, is interactive. In addition, the entire scene gives

you a complete 360-degree view of the reef when you drag the mouse. Interactive. In many ways, this is

comparable to VRML.

www.zshareall.com

http://www.Papervision3D.org
http://www.Papervision3D.org
http://www.zshareall.com

CHAPTER 9

498

Figure 9-2. An example of Papervision3D content

If you’re experienced with previous versions of Flash, you may have heard of Swift 3D (www.erain.com).

Swift 3D is a best-of-breed, low-cost modeler closely integrated with Flash in that it exports models as

SWFs. These SWFs can then be loaded or imported into your normal work files and used to simulate

three-dimensional objects. The latest version of Swift 3D even exports to Papervision3D, so you’re in good

hands with this product. Designers typically import Swift 3D assets as elements of otherwise two-

dimensional layouts. That workflow is every bit as useful in Flash CS4 as it has been in the past, but it’s

not the topic we’re covering here.

What you’ll learn about in this chapter is the super-cool stuff—the Good level—and a great place to start if

you’re new to nonscripted 3D in Flash (which pretty much means anyone using Flash CS5 for the first

time). We won’t be covering 3D in terms of ActionScript. It’s simply a topic that merits its own book (such

as The Essential Guide to 3D in Flash, mentioned earlier), and we again direct your attention to

www.Papervision3D.org or www.away3d.com. What you are about to discover, behind that heavenly

melted mozzarella, is a pair of shiny tools that first appeared in Flash CS4 that give you direct three-

dimensional manipulation of your symbols. But first, we need to cover a bit of theory.

Understanding the vanishing point
When you open your eyelids and cast your gaze ahead, even if all you can see are the tweed walls of your

cubicle, you have a horizon in front of you. Turn your head, and it’s still there. The horizon might be

hidden, but the principles of perspective still apply, just as gravity still applies even when you climb a tree

www.zshareall.com

http://www.erain.com
http://www.Papervision3D.org
http://www.away3d.com
http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

499

or take a dive in the swimming hole. In a theoretical sense, this horizon holds something called a

vanishing point, which is a special location, usually off in the distance, where the parallel lines in your

view seem to converge. It’s a natural optical illusion, and you see it every time you stare down a length of

railroad tracks. In linear perspective drawings, you can have as many as three vanishing points, but Flash

keeps things manageable for you by providing one. Here’s how it works.

Imagine you are in a huge square in front of a museum. The square is paved with square paving stones,

and you take a picture from where you are in the square to the front door of the museum. If you drawn

lines along the surface of the square that follow the parallel lines in the pattern of the paving stone, those

lines will eventually intersect at a place, as shown in Figure 9-3, called the vanishing point.

Figure 9-3. The vanishing point is the location where parallel lines appear to converge on the horizon.

That vanishing point is your key to understanding how the 3D Rotation and 3D Translation tools,

coupled with the Transform panel and Properties panel, give you access to 3D manipulation in Flash.

Without this concept, you can still experiment with these tools and have plenty of fun. But if you want to

actually wallpaper a three-dimensional cube with movie clips or project a photo on to a wall that isn’t

displayed head-on, you should keep a firm grip on the notion of those perspective lines. By actually

drawing them as temporary guides over your artwork, you’ll find the new 3D tools a ton easier to work with.

Consider the real-world example of the Amsterdam street scene shown in Figure 9-4. You’re going to use

this photo to get acquainted with the new tools, so let’s put those perspective lines in place. Here’s how:

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

500

1. Open the Amsterdam.fla file from the Exercise folder for this chapter. Note the already-

imported photo in a layer named background.

2. Create a new layer, and name it perspective. Right-click (Windows) or Control+click (Mac) the

new layer’s name, and select Guide from the context menu. This converts the layer into a guide

layer, which means you can see its contents during authoring, but anything on this layer will

disappear in the published SWF, which is exactly what you want.

3. Select the Line tool, and make sure the Object Drawing button is not selected in the Tools

panel. Use the Line tool to draw some lines, like those in Figure 9-4, into the perspective

layer. Start from the lower-right corner, and follow the edge where the garage door meets the

street.

Figure 9-4. Use perspective lines in a guide layer to assist with the 3D drawing tools.

4. Repeat this process with another line that follows the top of the garage door, until you can pin

down the vanishing point to the far left.

5. Save your file, because you’re going to revisit it later in the chapter. You can compare your work

with the completed Amsterdam.fla in the Complete folder, which shows the two lines already in

place.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

501

Now, let’s have some fun with the 3D tools themselves.

Using the 3D tools
As we’ve mentioned, Flash CS5 provides two 3D tools: the 3D Rotation tool and the 3D

Transformation tool.

The 3D Rotation tool

In terms of visual cool factor, the 3D Rotation tool falls into the realm of “wicked cool.” This tool allows

you to quickly and intuitively rotate a movie clip in 3D space. In previous versions of Flash, this was

possible only with shapes, and even that technique required a bit of careful nudging with the Free

Transform tool. You simply couldn’t do this with a symbol. Now you can, and that means you can

perform perspective transforms on complex artwork, imported photos, and, yes, even video. Kind of makes

the corners of the mouth go up, doesn’t it?

To illustrate how groundbreaking this is, let’s start with how it used to be.

Old-school 3D rotation

Prior to this release of Flash, 3D perspective was not exactly up there in the realm of “really easy to

accomplish.” You needed to actually draw in perspective by hand or use the Free Transform tool to

simulate 3D rotation. Let’s go “old school” and see how that technique works:

1. Create a new FLA file, and select the Rectangle tool. Make sure the Object Drawing button

is not selected so that your shape is nothing more than a fill, with an optional stroke. Color

settings don’t matter. Draw a square approximately 300 300 pixels.

2. Once you’ve drawn your shape, double-click to select it, and then change to the Free

Transform tool. You’ll see a number of buttons appear in the options area of the Tools panel.

3. Click the Distort button—it looks like a paper airplane at the bottom of the Tools panel, which

lets you make perspective distortions by individually clicking and dragging each corner of your

square. Go ahead and do precisely that. With a bit of practice, you can reshape the square to

appear as if you’re standing above it, looking slightly down on it, as shown in Figure 9-5.

4. Click away from the reshaped square to deselect it. Now double-click the shape to select it again.

When you do—assuming that Free Transform is still your current tool—you’ll notice that the

shape’s bounding box no longer follows the contours of the shape. That’s to be expected, since

the bounding box represents the full area required to contain the shape.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

502

Figure 9-5. The Distort option of the Free Transform tool lets you simulate perspective with shapes.

At this point, if you want to adjust your perspective distortion (see Figure 9-6), you’ll find it much harder to

accomplish with precision, simply because the bounding box no longer matches the corners or edges of

the shape. Worse, you can’t do a thing with imported photos, if that’s your aim. Let’s see the problem with

photos.

Figure 9-6. Adjusting already-distorted shapes quickly becomes a challenge.

5. Import the FigurineSmall.jpg included in the Exercise folder for this chapter to your

Library, and set it as the bitmap fill for the reshaped square. Notice that the bitmap simply tiles

inside the shape and doesn’t “play along” with this distortion game in the least (see Figure 9-7).

After all, this is a simulation of perspective, not the real thing.

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

503

If bitmap fills have you scratching your head, flip back to Chapter 2 for a quick refresher.

Figure 9-7. Bitmaps are not affected by perspective distortion.

Using 3D rotation

If you want to turn your world around—practically speaking, and in a good way—you’ll need to step over to

the 3D Rotation tool. This is where it gets really neat, folks.

1. Start a new Flash document, and import the Figurine.jpg image from your Exercise folder to

the stage.

2. Select the photo, and convert it to a movie clip symbol.

Step 2—converting to a movie clip—is the deal maker. Without it, the 3D drawing tools are useless. They

work with movie clips, period. Keep that in mind, whatever artwork you intend to spin around in 3D space.

Fortunately for you, movie clips are a supremely useful symbol.

3. Select the 3D Rotation tool, and click the movie clip. You’ll see a somewhat complex looking

bull’s-eye.

Figure 9-8 shows the same bull’s-eye repeated four times, with the mouse pointer moving from area to

area. Notice how the mouse pointer changes. Each of those lines and circles has a meaning. Hover near

the vertical red line (far left in the figure), and the mouse pointer turns into a black arrow with an X next to

it. This line controls the x-axis rotation, which you’ll see in just a moment. Hover near the horizontal green

line—the second bull’s-eye in Figure 9-8—and you’ll see the letter Y, which controls y-axis rotation. Hover

near the inner large blue circle, and you’ll see a Z, which controls the z-axis. The outer orange circle (far

right in the figure) isn’t associated with a letter, because it affects all three axes at once. The tiny circle in

the middle represents the 3D rotation center point, and it’s basically the pivot for this sort of rotation.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

504

Figure 9-8. Four views of the same interactive bull’s-eye, showing x-, y-, z-, and all-axis rotation

4. To see what an x-axis rotation does, hover near the vertical red line, and then click and drag

sideways, slowly back and forth. You’ll see a pie chart–like wedge appear inside the bull’s-eye

(see Figure 9-9), which gives you an idea of the current size of the angle. In the figure, the angle

is approximately 45 degrees.

5. To adjust y-axis rotation, hover near the horizontal green line, and then click and drag slowly up

and down. For z-axis and all-axis rotation, click and drag in any direction you please.

Figure 9-9. A wedge shape tells you how far you’re rotating.

The visual effect on the movie clip is easy to see. As shown in Figure 9-10, the rotations work as follows:

 X-axis rotation (left) moves like a head nodding “yes.”

 Y-axis rotation (center) moves like a head shaking “no.”

 Z-axis rotation (right) moves like a doorknob, which is effectively the same as rotating with the

Free Transform tool.

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

505

Figure 9-10. Three axes of rotation: x moves like a head nod, y moves like a head shake, and z moves

like a doorknob.

6. Experiment with rotation, keeping an eye on the Transform panel (Window ➤ Transform). It’s

easy to get disoriented when rotating numerous axes at once—for example, by dragging the

outer orange circle—or when rotating any particular axis after others are set to nonzero values. If

dragging ever gets out of hand, click the Transform panel’s Remove Transform button (see

Figure 9-11). In fact, do that now to see the movie clip return to its default flat appearance.

7. Still in the Transform panel, scrub each of the hot text values in the 3D Rotation area. They

provide an alternate way to rotate along the x, y, and z axes—with the added benefit that you can

enter exact values by hand.

8. Feel free to save your file.

Figure 9-11. Use the Transform panel to reset 3D rotations.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

506

Now that you understand rotation, it’s time to learn how to position your object in Flash’s 3D space. This

sort of movement is called translation, and it features a tool all its own.

The 3D Translation tool

Because Flash is primarily a two-dimensional interface, the 3D Translation tool may not immediately

make sense. Without the context of a vanishing point, it may seem like nothing more than another version

of the Selection tool. It lets you move things, but the way it works is more restrictive than the

Selection tool, which, by contrast, lets you simply click and drag. So what gives? To answer that

question, let’s take another visit to that street in Amsterdam. The plan is to project the figurine image on to

that garage door.

1. Open the Amsterdam01.fla file you saved earlier in the chapter. When it opens, you will see the

vanishing point guides created earlier and the figurine image, which is a movie clip, sitting in the

photo layer.

2. Select the figurine. Use the Free Transform tool or the Transform panel to resize the photo

to about 65 percent of its actual size (approximately 100 100 pixels). Try to have the top and

bottom corners on the right edge of the photo somewhat align with the guides. An easy way of

doing this is to move the transform point to the bottom-right corner of the movie clips.

According to recommended best practices, you would normally import a photo that

doesn’t require such a change in scale, because even though it looks small in the SWF,

the actual imported file is big, which adds to the SWF’s file size. In this exercise, you’re

giving yourself leeway as you experiment.

3. At this point, it’s time to make use of the perspective lines in the guide layer. Using the

Selection tool, click the figurine movie clip to select it. Twirl down the 3D Position and

View area of the Properties panel, and note the Vanishing point values at the bottom of

that area, next to a Reset button, as shown in Figure 9-12.

4. Until you adjust it otherwise, the vanishing point is centered on the stage. Click and scrub the X

value slowly to see a set of crosshairs appear over the photo.

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

507

Figure 9-12. The vanishing point can be adjusted in the Properties panel.

The crosshairs represent the official vanishing point Flash uses to position 3D objects. When your goal

involves matching up assets to actual background images, you’ll find that helps to match Flash’s vanishing

point with the real-world vanishing point in your reference artwork. Let’s do it.

5. Scrub the X value far to the left so that the horizontal portion of the crosshairs lines up with the

point where the perspective lines intersect. When you’re satisfied, do the same with the Y value to

lift it a bit higher

6. Click the figurine to select it, and switch to the 3D Translation tool. You’ll see a pair of arrows

arranged in an L shape on the image.

Figure 9-13 shows the same set of arrows repeated four times, with the mouse pointer moving from area

to area, changing as it does. The arrows and the heavy dot each have their own meaning. Hover near the

horizontal red line (far left in the figure), and the mouse pointer turns into a black arrow with an X next to it.

This arrow controls the x-axis position. Hover near the vertical green line, and you’ll see the letter Y, which

controls the y-axis position. You’ll use this in just a moment.

Figure 9-13. Four views of the same interactive L shape, showing x-, y-, and z-axis position

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

508

The heavy dot takes a bit more dexterity. Hover in the center of the dot, and you’ll see a Z, which controls

movement along the z-axis. Hover near the edge of the dot, and you won’t see any letters. Why? Dragging

at this point lets you reposition the 3D center point for this object, which affects how translation is applied

(the center point’s position isn’t nearly as obvious with translation as it is with rotation).

7. Hover near the green y-axis arrow, and then click and drag down until the photo appears to rest

on the perspective line that runs along where the door meets the street.

8. Use the Transform panel to scrub the Y value in the 3D Rotation area until the bottom edge

of the photo roughly follows the line of the pavement as it meets the buildings (see Figure 9-14).

You can alternatively use the 3D Rotation tool to accomplish the same task, but the

Transform panel gives you a bit better control. If you’re surprised at how much the image gets

stretched, don’t worry. We’ll show you how to fix that later in the chapter. The stretch is because

of the “distance” of the vanishing point, off to the side. What you need to pay attention to is how

the top and bottom edges of the image roughly follow the vanishing point guides.

Figure 9-14. Use the Transform panel for finer rotation control.

9. With the Transform panel open, scrub across the Resize values at the top to shrink the image.

Be sure that the link icon is selected to ensure uniform scaling. As you scale the image, notice

how the X and Y values shown in Figure 9-15 aren’t the same. This is because of the 3D

translation applied to the image that aligns it to the perspective.

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

509

Figure 9-15. Scale the image in the Transform panel and use the Y Translation arrow to move it into

position.

10. Use the Y Translation arm to move the image so that its bottom edge sits on the bottom

vanishing point guide.

With the image somewhat in place and resized, you are now going to put it into its final position. What you

won’t be doing here is changing over to the Selection tool and pulling and pushing the image into place.

You will need to use the 3D Translation tool, the Transform panel, and the Properties panel to

“slide” the image into position on the x-axis and to “push” it into the door on the z-axis.

To understand X and Z movement—at least in the current scenario—think of those perspective lines in

terms of the ones shown in Figure 9-3 in the square in front of the museum. In that earlier figure, the line

seems to be growing out of the image toward you, because its vanishing point is at the “back” of the

square. In that case, or when the vanishing point is centered on the stage, Z movement causes the object

to get bigger or smaller as it moves “out” or “in.” The apparent scaling is a perspective effect that happens

because the z-axis is pointing at you. In this case, the z-axis is pointing somewhere over your right

shoulder. It’s as if you’re looking at the figurine image from the side. Why? Because the vanishing point is

over to the left.

Let’s illustrate this.

11. Hover over the heavy dot until you see the letter Z appear in the mouse pointer. Slowly drag up

and down. The image still changes scale, but more important, it moves sideways, zooming along

the pavement. That’s because the “front” of the z-axis is pointing toward the right, and the back is

pointing toward the vanishing point at left.

12. Now hover over the horizontal red line until you see the mouse pointer acquire an X. Click and

drag slowly left and right. At first, the movement might look similar to Z movement, but there’s an

important difference. Yes, there is some left-and-right movement, but because of the position of

the vanishing point, the photo seems to be moving “onto the street” or “into the door,” as depicted

in Figure 9-16.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

510

Figure 9-16. The orientation of the x-, y-, and z-axes depends on the position of the vanishing point.

As you are most likely discovering, using the arrows on the 3D Translation tool to move a selection

can be a bit tricky. Here’s a more precise method:

1. Select the image on the stage and open the Properties panel.

2. Twirl down the 3D Position and View options.

3. Switch to the 3D Translation tool, and scrub across one of the handles. Pay attention to how

the values in the X, Y, and Z areas, as shown in Figure 9-17, in the Properties panel change

as you drag the arrow. Now scrub across the values in the Properties panel. The selection

moves on the axis you are scrubbing.

4. What does that little camera in the 3D Position and View properties do? Scrub across the

value. That little gem is the Perspective Angle, and as, you have seen, it moves the selection

along the sight line of the vanishing point.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

511

Figure 9-17. Use the Properties panel to “do it by the numbers.”

5. To finish, get the image into position as shown in Figure 9-17. To get the bottom to line up with

the road, open the Transform panel, and adjust the Y value in the 3D rotation area.

6. With the image selected, twirl down the Color Effect properties and select Alpha from the

Style drop-down. Reduce the Alpha value to 50%.

7. Turn off the visibility of the guide layer, and deselect the image. It now looks, as shown in Figure

9-18, like someone is projecting the image onto that garage door.

Figure 9-18. The image “projected” on to a wall in Amsterdam

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

512

Strategies for positioning content in 3D space
The orientation of movement along any of the three axes (x, y, and z) depends entirely on the location of the

vanishing point. When the vanishing point is centered on the stage, the z-axis is pointing nearly straight at

you. This means z-axis movement will increase and decrease the size of the object, as it apparently moves

closer and farther from you. As illustrated in the previous exercise, this orientation can change.

Without ActionScript, it isn’t possible to point the x- or y-axis directly at you, but you can approximate these

orientations by setting a very high number, such as 10000, for the X and Y values in the Vanishing

point setting in the Properties panel’s 3D Position and View area. Extreme positions for the

vanishing point result in the following orientations:

 Significantly high or low X value: Z movement becomes horizontal.

 Significantly high or low Y value: Z movement becomes vertical.

 Significantly high or low X and Y values: Z movement becomes diagonal.

Fiddle enough with these settings, and you’ll get seasick! Just remember that you can always start from

scratch very easily by selecting your movie clip and clicking the Reset button in the Properties panel

and the Remove Transform button in the Transform panel. In spite of the utility of this tip, you can

quickly find yourself in a pickle when positioning numerous objects—not just one—in the 3D space of the

stage. We hope the following suggestions make your journey a bit easier.

The parallax effect: traveling through space

Parallax is an optical illusion that gives an otherwise flat 2D image the illusion of depth. We have all

experienced this effect. Imaging you are sitting in your car zipping along the highway. The line in the road

seem to be a blur, whereas the cows in the field move across your line of sight rather slowly and the forest

in the distance behind the cows appears to hardly move at all.

Though the technique has been liberally used by science-fiction movies for years, it really didn’t catch

massive attention until Ken Burns, in his Public Broadcasting Service (PBS) movie The Civil War

(www.pbs.org/civilwar/), used it to bring grainy black-and-white civil war photos to life. In the movie,

the camera would slowly pan across an image seeming to move forward into the image or backward

across the image.

The introduction of the 3D tools in Flash hands you the opportunity to create your own parallax effects in

your movies. In this exercise, we are going to put a series of 2D images into motion to create the effect.

Along the way, you will discover how objects can be animated in 3D space and how important movie clips

are to the process of creating the illusion of parallax. Let’s get started.

The files used in this exercise are freely available from the NASA website

(www.nasaimages.org/). The images on this site are stunning and, because they are

part of the Internet archive, are available, for free, to anybody who chooses to use them

for whatever purpose.

www.zshareall.com

http://www.pbs.org/civilwar
http://www.nasaimages.org
http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

513

1. Open the SpaceFinal.png image in your Exercise folder in Fireworks CS5 or Photoshop CS5.

When the image opens, as shown in Figure 9-19, you will see that we have created the scene to

be used in this project. Each of the images has been placed on its own layer, and the background

for the images is transparent. Feel free to move things around. When you finish, save the file as a

PNG image, and quit Fireworks or Photoshop.

Figure 9-19. You start with a multilayer composite image using images downloaded from NASA.

2. Open the Space.fla file in your Exercise folder. When the file opens, you will see we have

imported the Fireworks image into the Library.

3. In the Properties panel, change the stage color to black (#000000).

4. Open the SpaceComposition movie clip found in the Fireworks Objects folder. We are

going to do a little house cleaning before we start moving stuff around.

5. Select layer 1, and delete it from the timeline. There is nothing n this layer, so it isn’t needed.

6. Select each object on the screen—Astronaut, Earth, and each of the four planets—and

convert them, as shown in Figure 9-20, to a movie clip.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

514

Figure 9-20. The images are converted to movie clips.

The next step in the process is to get each image positioned in 3D space. We will accomplish this by

adjusting each movie clip’s screen position using the z-axis. To wrap your mind about what you are going

to do, think of the monitor’s screen as being position zero. As you move deeper into the screen—positive

numbers—the objects will appear to get smaller, and if you move away from the screen—negative

numbers—the objects will appear to get bigger. This isn’t the case. The objects don’t resize; they either

recede into the distance or appear closer to you. Let’s get started:

7. Open the Properties panel, and twirl down the 3D Position and Size properties. Select

each object on the screen, and use the following Z values:

 Astronaut: -10

 Earth: 10

 Planet 01: 350

 Planet 02: 450

 Planet 03: 550

 Planet 04: 700

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

515

When you finish, the scene will look a bit different, as shown in Figure 9-21, because you have used depth

to move the objects in the movie clip closer to or farther away from the surface of your computer screen.

Figure 9-21. Each movie clip is positioned in 3D space by changing its z-axis value.

The next step is to get the whole thing into motion and give the project the appearance of a camera

panning through space.

8. Click the Scene 1 link to return to the main timeline. When the timeline opens, right-click frame

1, insert a motion tween, and drag the span out to frame 350.

9. The “magic” happens here. Select the movie clip on the stage, open the Properties panel, and

change the X,Y and Z axis settings in the 3D Position and View area to bring the movie clip

“closer” to the viewer.

10. Open the Transform panel, and in the 3D Rotation area change the X, Y, and Z values, as

shown in Figure 9-22, to create the illusion of a “fly through” and rotation.

11. Test the movie.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

516

Figure 9-22. Use 3D Rotation to give the illusion of motion and distance.

A WORD FROM THE AUTHORS ABOUT FIREWORKS CS5

You may have noticed throughout this book that Photoshop CS5 seems to be missing in action. It isn’t
that the authors have a distinct dislike for Photoshop. Far from it, but we are firm believers in the adage
“Use the right tool for the job at hand.” In many cases, Fireworks CS5 is that tool. Though we briefly
touched on the subject in Chapter 2, now would be a good time to answer the inevitable question Why
Fireworks?

Fireworks tends to be the red headed child in the family of blondes when it comes to imaging in the
Adobe line up. This is primarily because there is a certain attitude —“Why use anything else but
Photoshop?”—that has developed over the years within the design community. There is also a huge
misconception that Fireworks is more of a “wind-up toy” than anything else when it comes to imaging
and compositing for the Web. Whichever camp you fall into is irrelevant. What is important is that you is
you start using Fireworks CS5.

Up until the release of Fireworks CS4, Macromedia and then Adobe had never quite dispelled the notion
that Fireworks is a competitor to Photoshop. In fact, when Macromedia was acquired by Adobe, the
betting was that Fireworks was a doomed product. It wasn’t until the release of the CS4 collection that
Fireworks finally found its niche as the imaging application for screen-based media. This is an important
distinction

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

517

If you need power, high resolution, and effects galore, then Photoshop is the choice. If you live in Flash’s
world—the world of small—then you need to start using Fireworks. Fireworks does two things really
well:

• Compresses images for the Web

• Is a rapid prototyping tool for websites, AIR applications, Flash movies, and so on

The native file formats for Flash are primarily PNG and JPEG. The advantage to you, as a Flash designer,
is that PNG images contain transparency and can be, as you see in the earlier example, used in layers. If
the image needs to be flattened or further optimized for use in Flash’s “World of Small,” the JPEG kicked
out by Fireworks is actually smaller and more efficient than the one kicked out by Photoshop. Don’t take
our word for it. Greg Rewis is a Creative Suite Evangelist for Adobe, and his job is to travel the world
talking about the Adobe products. As Greg puts it, one of the most common “Oh, wow” moments he
encounters in his travels is when he does a side-by-side JPEG optimization of the same image in
Photoshop and Fireworks. Needless to say, the Fireworks image is significantly smaller than its
Photoshop counterpart, and you can see for yourself by traveling to his blog
(http://blog.assortedgarbage.com/?p=387) and carefully following exactly how he does it.

The rapid prototyping usage is just starting to catch on. We are going to let David Hogue, tell you all
about that one in Chapter 14 when you build an AIR application. In this example, though, the entire
image can be imported into Flash as a fully functional movie clip with its layering and transparency
intact. As well, the Fireworks Pages feature allows you to design the various screens and so on used in
a Flash site by putting those designs on separate pages and then importing those pages as separate
movie clips, as needed, into Flash. On top of that, you can actually turn those pages into interactive PDF
files, which can then be submitted, for client approval, before you even light up one pixel in Flash.

Use the 3D center point to your advantage

Up to this point in the chapter, we haven’t properly illustrated what the 3D center point does. Let’s remedy

that by showing you how to animate a pair of swinging doors. Ready to make your grand entrance?

1. Open the swingDoors.fla file from the Exercise folder for this chapter. You’ll see three layers

in the main timeline—image, Door Right, Door Left —and a handful of items in the

Library.

2. Select the 3D Rotation tool, and click the movie clip that contains the left door. Hover over the

center of the bull’s-eye so that no letters show in the mouse pointer, and drag the bull’s-eye—or

use the Transform panel—to move the 3D center point to the middle of the left side of the door,

as shown in Figure 9-23.

Why the left side? Because this door naturally swings on its hinges, and the 3D center point is roughly

analogous to a hinge. Why the middle, rather than a corner? That’s just an arbitrary choice. Given the

angle of the doors, there really is no perspective. In this case, hinging the middle is the way to go. Click the

movie clip that contains the right door. Reposition this movie clip’s 3D center point in the upper right. This

www.zshareall.com

http://blog.assortedgarbage.com/?p=387
http://www.zshareall.com

CHAPTER 9

518

time, the hinge is on the other side, which makes sense. If you leave the 3D center point at its default

value for each movie clip, the doors will spin like ballerinas.

Figure 9-23. Changing the 3D center point alters where an object rotates

3. Right-click (Windows) or Control+click (Mac) frame 1 of the Door Left layer, and select

Create Motion Tween. This converts the layer to a tween layer, but it’s not quite enough.

4. Right-click (Windows) or Control+click (Mac) the Door Left layer again, and select 3D Tween,

which puts a check mark in that choice whenever you open the context menu again. (You can

remove the check mark if you ever change your mind.)

5. Repeat steps 2, 3, and 4 for the Door Right layer.

6. Extend the two tween layers to frame 30, and add a frame to frame 30 of the Image layer. Select

the left door’s movie clip, and use the 3D Rotation tool or the Transform panel to “swing the

door in” about 90 degrees (see Figure 9-24). Do the same thing for the right door.

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

519

Figure 9-24. Swinging the door inward toward 90 degrees

7. To improve the illusion, darken the doors while they’re swinging in. Still at frame 30, use the

Selection tool to select each door in turn. In the Properties panel, choose Brightness

from the Style drop-down list of the Color Effect area, and set its value to -34%.

8. To add some polish, add a new layer, and name it Audio.

9. Select Window ➤ Common Libraries ➤ Sounds to open a panel of audio files that are

installed when you install Flash. Drag the file named Household Door Wood Door Squeak

01.mp3 to frame 1 of the Audio layer.

10. Using the Selection tool, click into frame 80 of each layer, and press the F5 key to pad out the

frame span of each layer. This allows the audio to fully play out, without looping too early, when

you test your movie.

11. Select Control ➤ Test Movie to see the SWF. Close the SWF, and compare your work with

the finished version of swingDoors.fla in this chapter’s Complete folder.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

520

Be aware of depth limitations

As cool as the 3D tools are, they do have a limitation in terms of how three-dimensional depth (generally

the z-axis) corresponds to the stacking order of your layers, and even the stacking order of numerous

symbols inside a single layer. In short, stacking order overrides 3D depth. If you drag the layer of one 3D

movie clip above the layer of another 3D movie clip, the movie clip on the higher layer will always appear

on top, no matter how you adjust its z index.

There are pros and cons to everything, and the pro here is that layers and in-layer symbol stacking

continue to operate the way they always have. For longtime Flash users, this will feel familiar and

comfortable. If you’re new to Flash, this behavior may throw you for a loop, but you can work around it.

The challenge arises when you want to perform a 3D tween that moves one object in front of another,

when its original position was behind (and therefore obscured). Let’s look at a hands-on example:

1. Open the AirheadMail.fla file from the Exercise folder for this chapter. You’ll see an

envelope with a couple postage stamps above it, one stacked behind the other, as shown in

Figure 9-25. There’s another stamp in a hidden layer behind the envelope, but we’ll get into that

in a moment. Just be aware that both of the visible stamps are located in the same timeline layer.

Figure 9-25. Depth is determined more by layer and stacking order than z index (envelope photo by Cris

DeRaud).

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

521

2. Select the 3D Translation tool, and click the unobscured stamp (the one on top) to select it.

Adjust its z index to scale the stamp smaller and larger.

In terms of 3D space, a higher z-index value seems to “push the stamp away,” making it smaller. No

matter how far you “push,” you’ll find that you cannot move the upper stamp behind the lower one. To do

that, you’ll have to use the old-fashioned approach.

3. Right-click (Windows) or Control+click (Mac) the upper stamp, and select Arrange ➤ Send

Backward (or Send to Back). You’ll see the upper stamp pop behind its partner.

4. Unhide the bottom timeline layer (named stamp, just like the top timeline layer). This reveals a

third stamp partially obscured by the envelope.

5. Using the 3D Translation tool again, adjust the z index of either stamp in the upper stamp

layer. As in step 2, nothing you do moves either stamp behind the envelope or the stamp in the

bottom stamp layer.

6. To bring the lowest stamp above the other two, you’ll need to move its layer. Click the lower

stamp layer, and drag it above the other stamp layer, as shown in Figure 9-26.

Figure 9-26. Drag layers to move lower content above higher content.

This is all well and good for still compositions, but how does it work for animation? You can’t very well drag

layers around in the middle of a tween. The trick is to split your animation over two layers, as shown in

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

522

Figure 9-27. Check out AirheadMailAnimated.fla in this chapter’s Complete folder to see the

animation in action.

Figure 9-27. Splitting an animation between separate layers

In what appears to be one smooth motion, the stamp emerges from behind the envelope, flies in front of it,

and settles into place for mailing. In actuality, the magic happens at frame 14, where the movie clip

abruptly ends in the lower stamp layer and reappears in the upper stamp layer to continue its above-the-

envelope movement.

Your turn: simulate a photo cube
We began the theory part of this chapter with a cube and thought it fitting to come to a close with the same

shape. (We wanted so badly to describe that as “coming full circle,” but it felt like we were mixing

metaphors!) For this final exercise, we’re going to show you how to build a box out of a series of square

movie clips. What you do with the box is up to you. We certainly hope it will spark some inspiration. In any

case, we’re pretty confident you’ll find it motivating that you can—sort of—rotate the thing after it’s built.

To really stay with the theme, we are going to use a series of images featuring the work of Toronto-based

architect Will Alsop. If you ever visit Toronto and you visit the Art Gallery of Ontario, you will see what

looks like a box supported on a series of colored pencils. This building is the work of Alsop and was

designed as an addition to the Ontario College of Art.

Ready to be there or be square? Let’s jump in:

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

523

1. Open 3DCube.fla from the Chapter 9 Exercise folder. We’ve done the tedious part for you. The

Library contains five imported JPGs, already converted to movie clip symbols.

2. Select the five movie clips in the Library, and drag them to the stage. Open the Align panel

and, with all five movie clips selected, align them to the center of the stage.

Now you have five copies of the same movie clip stacked on top of each other in the same layer. Why? It’s

because we’re about to make like Henry Ford and run an assembly line. This approach will make things

come together more quickly, and the precision of doing the next few steps “by the numbers” will help

considerably.

3. Select the top movie clip, and use the Transform panel to change the 3D Rotation area’s Z

value to 90. Now scrub the Y rotation value until it hits 90. This “stands up” the top movie clip and

faces it west. In the Properties panel’s 3D Position and View area, scrub the X value

down to 75 (that’s 200 pixels to the left, or half the movie clip’s width).

You’re going to repeat this process—with different values—for the next three movie clips.

4. Select the next movie clip and configure it like this:

 Transform Panel :3D Rotation Z= –90

 Transform Panel: 3D Rotation Y = –90

 Properties Panel: 3D Position X = 475

This movie clip now faces east and has moved half its width to the right.

5. Select the next movie clip and configure it like this:

 Transform Panel: 3D Rotation Z = –180

 Transform Panel : 3D Rotation X = –90

 Properties Panel: 3D Position Y= 0

This movie clip now faces north (yes, this sounds like an REM song) and has moved half its height to the

top.

6. Select the next movie clip and configure it like this:

 Transform Panel : 3D Rotation Z= 0 (no change)

 Transform Panel: 3D Rotation X = 90

 Properties Panel: 3D Position Y= 400

This movie clip now faces south and has moved half its height to the bottom.

At this point, you’re essentially looking down into the cube (see Figure 9-28). Although it may not appear to

be, the image at the bottom of the cube is already halfway up the cube. The reason the depth looks wrong

is because of the stacking order of these movie clips.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

524

Figure 9-28. One result of rotating and translating by the numbers

7. Right-click (Windows) or Control+click (Mac) the right (east) movie clip, and select Arrange ➤

Bring to Front. Do the same thing to the other movie clips in the following order: bottom

(south), left (west), and finally center.

Why restack them in that particular order? It’s because we’re about to tilt the box forward, which means

we’ll be looking at what’s currently the south wall. The movie clip currently on top of the stack—building

above the trees—needs to be moved “toward you” first, though.

8. Select the movie clip that appears to be “inside the stack, and set its 3D Position Z value to

-200.

9. Click frame 1 in the timeline to select all the 3D objects simultaneously. With all the movie clips

selected, click the one showing (this puts the Properties panel where you want it), and change

the 3D Position Z value to 0. This moves the whole collection “back” toward the stage.

10. In the Transform panel, change the 3D Rotation X value to -46 and the 3D Rotation Y

value to -28.

www.zshareall.com

http://www.zshareall.com

FLASH HAS A THIRD DIMENSION

525

11. In the Properties panel, just above the Vanishing point values, you’ll see a setting we

visited on our trip to that street in Amsterdam. It has a camera icon, and if you hover over that,

you’ll get a tooltip that says Perspective angle. Scrub the Perspective angle value from

its default 55 down to 38. See how that relaxes the slight fish-eye lens effect?

12. Change the 3D Rotation Z value to -20 to straighten out your box. You’ll get something like

the cube shown in Figure 9-29.

Figure 9-29. A way-too-cool photo cube

Whatever angle you approach it from, 3D manipulation in Flash is a ton of fun! While you still have your

3DCube.fla file open, we encourage you to keep experimenting. With all the movie clips selected, use the

3D Rotation tool to see what happens when you spin that cube all the way around (you’ll see the

stacking order limitation again).

What happens if you scrub Perspective angle all the way down to 1? How about over a 100? How

does the Vanishing point setting affect things? Can you convert the selected movie clips—all five of

them—into a new movie clip? (Hint: Absolutely!) When you do, can you arrange two or more movie clips of

the completed box on the stage? (You betcha.)

We could keep going, but we hope you’re excited enough to take it from here.

www.zshareall.com

http://www.zshareall.com

CHAPTER 9

526

What you have learned
In this chapter, you learned the following:

 The rudiments of perspective drawing, including the concept of the vanishing point

 How to use the 3D Rotation and 3D Translation tools

 How to use the Property inspector and Transform panel in conjunction with the 3D tools

 Some workflow tips on arranging objects in Flash 3D space

One of the authors has been fond of anything related to 3D for years. In fact, he keeps a pair of red-and-

blue anaglyph glasses on top of his monitor—you know, for watching those cheesy 1950s science fiction

movies in 3D. Speaking of movies, sci-fi or otherwise, Flash is pretty hip on cinema too. In fact, one of the

hottest features of Flash in the past couple years is its video capabilities, which now include high-definition,

full-screen support. Ready to jam like Cecil B. DeMille? You just have to turn the page.

www.zshareall.com

http://www.zshareall.com

527

Chapter 10

Video

When Macromedia, now Adobe, launched Flash 8 Professional and included the Flash Video (FLV)

Encoder and playback component with the application, a valid argument could be made that this marked

the final acceptance of Flash as a viable web video medium. As more and more sites started featuring

Flash video, there was a corresponding decline in the number of sites that used the web video solutions

provided by QuickTime, Windows Media, and Real Player. By that time, Flash Player could be found on

more than 90 percent of all computers on the planet.

Flash video’s success actually has had more to do with cunning than with market acceptance. Most people

didn’t see Flash as a media player. They thought of it as being this “cute thing” that played animations.

When they suddenly realized they could stream audio (Chapter 5) and video through Flash Player without

excessive wait times or downloading an additional plug-in, it was basically “game-set-match” for the

others.

Flash CS5 continues to firmly entrench video into the application. In early 2008, Flash Player 9 was

updated to allow the inclusion of high-definition (HD) video, and this feature is in Flash CS5 and Flash

Player 10.1. You also get a totally “rejigged” encoder, now called the Adobe Media Encoder. With Flash

CS5, you have been handed a full video encoding and playback suite of tools that makes it dead simple to

add video to your Flash projects.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

528

Here’s what we’ll cover in this chapter:

 Streaming video

 Encoding an FLV

 Playing an FLV in Flash

 Playing full-screen video

 Adding captions to Flash video

 Adding filters and blend effects to video

The following files are used in this chapter (located in the Chapter10/ExerciseFiles_Ch10/Exercise/

folder):

 Rabbit.mov

 Vultures.mp4

 Rabbit.flv

 ThroughADoor.flv

 Controls.fla

 ASCuePoints.fla

 Captions.flv

 captionsFLV.xml

 Alpha.mov

 AlphaEx.fla

 FilmTV.mov

 Apparition.flv

 RainFall.fla

 Rain.flv

 BlobEffect.fla

 CuePoints.xml

 SupermanNoCuePoints.flv

 VideoJam.fla

www.zshareall.com

http://www.zshareall.com

VIDEO

529

The source files are available online from either of the following sites:

 www.FoundationFlashCS4.com

 www.friendsofED.com/download.html?isbn=1430229940

The authors would like to thank William Hanna, Dean of the School of Media Studies, at

the Humber Institute of Technology and Advanced Learning in Toronto, and Robert

O’Meara, a faculty member with the Film and Television Arts program at Humber, for

permission to use many of the videos in this chapter. The videos were produced by

students of Humber’s Interactive Multimedia program and Film and Television program.

We also want to thank Phoebe Boswell for letting us use her student project—The Girl

With Stories In Her Hair—and to her instructor, Birgitta Hosea, at Central Saint Martins

College of Art and Design in London, UK, for introducing us to Phoebe.

Video on the Web
Before we turn you loose with creating and playing Flash video, it is critically important that you understand

how it gets from the server to the user’s machine.

The Flash video format uses the .mp4, .mov, .flv, or .f4v extension. The first two must be encoded

using the H.264 codec and AAC encoding for the audio track. It plays only in Flash, Adobe Bridge, or

Adobe Media Player (a free AIR application available from www.adobe.com/products/mediaplayer/).

The key thing about this format is that the data is sent to the user’s computer from the server, and then

Flash Player plays it. To help you understand this process, let’s go visit the Hoover Dam in the United

States.

The Hoover Dam was built in the 1930s to control the Colorado River. When the dam was completed, the

water behind it backed up to form Lake Mead. Now the water flows along the Colorado River into Lake

Mead, and the dam releases that water, in a controlled manner, back into the Colorado River. That means

if the water rushes to the dam and overwhelms it, or the dam operator releases too much water, the

people downstream from the dam are in for a really bad day.

Streaming video is no different from the water flow to the Hoover Dam and beyond (see Figure 10-1). The

data in the FLV is sent, at a data rate established when the video was encoded, from the server to Flash

Player. The video is then held in a buffer and released, in a controlled manner, by Flash Player to the

browser. If the flow is too fast—the data rate is too high for the connection—the browser is overwhelmed,

and the result is video that jerkily stops and starts. This is because the buffer constantly emptying and

having to be refilled. In many respects, your job is no different from that of the crew that manages the flow

of water from the buffer behind the Hoover Dam back into the Colorado River. When you create the FLV,

the decisions you make will determine whether your users are in for a really bad experience.

www.zshareall.com

http://www.FoundationFlashCS4.com
http://www.friendsofED.com/download.html?isbn=1430229940
http://www.adobe.com/products/mediaplayer
http://www.zshareall.com

CHAPTER 10

530

Figure 10-1. When it comes to Flash video, you control the Hoover Dam.

Video formats
The first step in the process of creating the FLV file that will be used in the Flash movie is to convert an

existing video to the FLV format. This means you will be working with digital videos that use the following

formats:

 AVI (Audio Video Interleave): A Windows format that supports a number of compression

schemes but also allows for video without any compression

 DV: The format used when video moves directly from a video camera to the computer

 MPG/MPEG (Moving Pictures Experts Group): A lossy standard for video that is quite similar to

the lossy JPG/JPEG standard for still images

 MOV: The QuickTime format

For those of you wondering about the WMV (Windows Media Video) format, yes, you

can encode it. However, the encoding can be done only on a Windows computer. This

book is somewhat platform-agnostic, which explains why WMV didn’t make the video

format list here.

Do yourself and your users a favor, and check out the compressor used to create the video. If a lossy

compressor was used, you are going to have a serious quality issue. The compressors used to create FLV

files are also lossy, meaning you will be compressing an already-compressed video.

Both the QuickTime player and Windows Media Player show you compressor information. In the

QuickTime player, select Window ➤ Show Info. You will see a dialog box with movie information,

including the compressor used, as shown in Figure 10-2.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

VIDEO

531

Figure 10-2. QuickTime’s Movie info dialog box shows that the H.264 compressor was used for the The

Girl With Stories In Her Hair video.

Windows video files playing through the Windows Media Player are a bit different. Open a file in the Media

Player, right-click the file’s name, and select Properties from the context menu. You will see the

Properties dialog box, which identifies the video codec. Now that you know which file formats you can

use, you also need to know that three output formats are available to you:

 FLV: This is the common format used on the Web, which can be played by Flash Player 6 and

higher.

 F4V: This is the new kid on the block and was primarily developed to manage HD files that will

need to be converted to a format that is used by Flash Player 9,0,115,0 or higher. Think of this as

being an MP4 video for Flash, and you will be on the right track.

 H.264: This is a common format that you might know better as MPEG-4 or MP4. It is an

international standard (MPEG4 H.264) developed by the Moving Pictures Expert Group (MPEG)

and is also recognized by the International Standardization Organization (ISO).

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

532

From a Flash designer’s perspective, the H.264 format has some rather profound implications. The biggest

one is that video, for all intents and purposes, has become untethered—it is not device-dependent. The file

handed to you by your video producer can just as easily be played on a website as it can on an iPod,

Sony’s PlayStation Portable, or high-definition television (HDTV). It also means that, thanks to the addition

of hardware acceleration and multithreading support to Flash Player, you can play back video at any

resolution and bitrate, including the full HD 1080p resolution you can watch on HDTV.

Encoding an FLV
Surprisingly, the first step in the conversion process has absolutely nothing to do with Flash. Instead, open

the video in your player of choice and watch the video twice. The first time is to get the

entertainment/coolness factor out of your system. The second time you watch it, ask yourself a few

questions:

 Is there a lot of movement in this video?

 Is the audio of major importance?

 Is there a lot of color in the piece?

 Is the video in focus, or are there areas where the image becomes pixelated?

The answers to these questions will determine your approach to encoding the video.

To demonstrate encoding, we will use the Rabbit.mov file, located in this chapter’s Exercise folder. Go

ahead and open this file in QuickTime, and watch it twice.

Yes, the file is huge: just over 70MB. There is a reason. When creating Flash video, you need every bit of

information contained in the video when you do the conversion. Uncompressed video is about as big as it

gets. When you finish converting the video into an FLV, you will be in for a rather pleasant surprise.

Using the Adobe Media Encoder

To encode video, you use the Adobe Media Encoder CS5. This used to be known as the Adobe Flash

Video Encoder. The name change is deliberate. Adobe came to the conclusion that the Flash brand name

was being attached to a lot of stuff, and there was understandable concern that the brand was becoming

diluted. The release of Creative Suite 4 started the process of Adobe’s refocusing of the Flash brand. If

you have used Flash to encode video in previous, pre-CS4, iterations of the application, you will find that

things have really changed.

To begin, open the Adobe Media Encoder, found in C:\Program Files\Adobe\Adobe Media Encoder
CS5 on a Windows computer or Macintosh HD\Applications\Adobe Media Encoder CS5 on a Mac.

Then drag a copy of the Rabbit.mov file from your Exercise folder into the render queue, as shown in

Figure 10-3. Alternatively, you could click the Add button or select kFile ➤ Add. Then, using the Open

dialog box, navigate to your Exercise folder for this chapter, select the video, and click the Open button to

add the video to the queue. Just be aware that once a video is added to the queue, the clock starts

running. If you do nothing within the couple of minutes you get, the video will be created using the default

settings.

www.zshareall.com

http://www.zshareall.com

VIDEO

533

The drop-down lists in the Format and Preset areas actually aren’t as complicated as they may first

appear. The Format drop-down list offers the format choices FLV/F4V and H.264. The Preset list

includes presets for a variety of situations and formats. To keep this chapter manageable, we aren’t going

to go deep into the choices and formats. Instead, let’s just create a simple FLV file that will allow you to

explore this application.

Click the Preset drop-down arrow, and select Edit Export Settings at the bottom of the menu. This

will open the Export Settings window, as shown in Figure 10-4. At the left is a preview area. The area

underneath the video preview is where cue points can be added. We’ll talk about cue points later in this

chapter. The right side of the window consists of a series of tabs that allow you to choose a preset

encoding profile, select a filter, choose an output format, set the video compression, and set the audio

compression.

Figure 10-3. A file is in the render queue waiting to be encoded.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

534

Figure 10-4. The Export Settings window

We are not huge fans of the encoding presets in the Preset drop-down list. The problems with the

presets are that they assume the lowest common denominator, tend to be wrong, and result in files that

are unnecessarily large. For example, many of the presets have the audio track encoded to stereo, which,

as we explain later, usually just increases the file size and bandwidth demand, without adding any quality

to the audio. Making your own choices for the encoding, rather than using presets, puts you in control of

the process and allows you to produce files that meet your specific design needs, instead of satisfying a

broad, homogenous audience.

Previewing and trimming video

Under the preview area is the current time indicator. It displays time in the format hours: minutes: seconds:

milliseconds. The triangle at the top of the line is the jog controller. If you drag it back and forth, the video

will follow along.

Underneath the jog controller are two other triangles. The one on the left is the In point, and the one on

the right is the Out point. You can use these to trim the video. For example, assume there are two

www.zshareall.com

http://www.zshareall.com

VIDEO

535

seconds of black screen and no audio at the end of the video. If you drag the Out point to the start of the

stuff you don’t need, it will be removed when you create the FLV.

Here’s a neat little trick that can help with setting In and Out points. The preview

controls are very precise, and reaching an exact point in time can be an exercise in

tedium. Assume you want the current video to last 4 minutes and 14 seconds instead of

04:14:53. Drag the playhead slider rightward to the end of the video. Press and hold

the left arrow key. When the key is down, the milliseconds measure will reduce. When

you are close to the 000 milliseconds point, release the key, and then click the Out point

slider. The video will now have an Out point at that precise point in time.

Video settings

On the right side of the Export Settings window, click in the Format tab, and click the FLV radio

button. Then click the Video tab to open the Basic Settings area, as shown in Figure 10-5. This is

where you set the all-important video data rate.

If you want to change the name of the video, double-click the Output Name on the right

side of the Export Settings window to open the Save As dialog box. All this does is

save the filename. It does not create the FLV.

Figure 10-5. Setting the encoding values for the video portion of the movie

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

536

The various areas of the Video pane are as follows:

 Codec: The job of the codec (short for COmpressor/DECompressor or enCOder/DECoder) is to

reduce the data rate while maintaining image quality. In simple terms, there are two types of

codecs: lossy and lossless. Lossless codecs, like QuickTime’s Animation codec, add minimal

compression to preserve data, which explains why these files are massive and inappropriate for

direct web playback. The two codecs that are available for your selection here—Sorenson

Spark and On2 VP6—are lossy. They preserve playback quality while tossing out a ton of

information, which explains how a 1MB video file becomes an 800KB FLV or F4V file. Note that If

your target is Flash Player 7 or lower, your only choice is the Sorenson Spark codec. For our

example, select On2 VP6.

 Encode Alpha Channel: If your video contains an alpha channel, select this. Alpha channel

video can be encoded using the On2 VP6 codec only. For our example, this option should not be

selected.

 Resize Video: If this is selected, deselect it. This is not the place to resize video. If you really

need to resize a video, do it in Adobe Premiere, After Effects, Final Cut Pro, or another video-

editing application.

If you need to resize a video, be sure to maintain the video’s aspect ratio. When digital

video is created for your television, it is created at a 4:3 ratio. This ratio is called the

video’s aspect ratio and fits most computer monitors. Other common examples would be

widescreen television video, which has an aspect ratio of 6:5, and HDTV, which uses a

16:9 aspect ratio.

For example, the video you are encoding has a physical size of 320 pixels wide by 240

pixels high. The width is easily divisible by 4, and the height is divisible by 3. By

maintaining the aspect ratio, you avoid introducing artifacts (blocky shapes and other

nastiness) into the video when it is resized.

While we are on the subject of resizing video, never increase the physical size of the

video. If you need to change the size, use this area to reduce, not increase, the width

and height values. Increasing the physical dimensions of the video from 320 240 to

640 480 will only make the pixels larger, just as it does in Photoshop and Fireworks

when you zoom in on an image. The result is pixelated video, and it will also place an

increasing strain on the bandwidth, or flow of data into Flash Player.

In spite of our having said to never increase the size of a video, Flash Player 9,0,115,0

(and higher) now permits full-screen video playback. We’ll review this feature later in the

chapter. It changes video size in an exception-to-the-rules way.

www.zshareall.com

http://www.zshareall.com

VIDEO

537

 Frame Rate [fps]: This is how fast a video plays, measured in frames per second (fps). If you

are unsure of which frame rate to use, a good rule of thumb is to choose a rate that is half that of

the original file. If the original was prepared using the NTSC standard of 29.97 fps (close enough

to 30), select 15 fps. If the PAL standard was used (25 fps), rates of 12 or 15 fps are acceptable.

Of course, with the improvements to Flash Player, the industry is steadily moving toward 24 fps.

For this example, set Frame Rate to 15.

 Bitrate Encoding: Your choices are CBR (for constant bitrate) and VBR (for variable bitrate). If

you are streaming video through Flash Media Server 3 or using the Flash Video Streaming

Service, choose CBR, which, as the name implies, provides a level bitrate into Flash Player.

Choose VBR if you are intending to use a web server making standard HTTP requests. For this

example, select VBR.

 Encoding Passes: One pass means the video analysis and encoding are done at the same

time. Two passes means the encoder analyzes the video in the first pass looking for major

changes, and the second pass encodes the video to accommodate those changes. So, what’s

the difference? Two-pass encoding is the best for videos with numerous bitrate changes. For

example, you could have a video with a narrator who stays put for the first few seconds of the

video and, when he finishes, race cars go roaring by. The narration doesn’t require much to play,

but the cars zipping by will require a higher bitrate to display accurately. Encoding in two passes

allows the bitrate savings at the start of the video to be passed on to the action sequence. So,

Two is the right choice for our example.

 Bitrate [kbps]: This slider sets the bitrate for the video portion of the encoding process in

kilobits per second (kbps). Be very careful when choosing a Bitrate setting. For example, don’t

think you can supersize the quality and set the data rate to, say, the maximum of 10,000 kbps. Do

that, and you can guarantee that residents downstream from the Hoover Dam are in for a day that

involves scuba gear. The data rate for an FLV is the sum of the audio and the video data rates.

What should you choose? Until you become comfortable with creating FLV files, consider a

combined audio and video data rate of around 350 kbps to 400 kbps as being a fair target. For

the example, use 300 kbps.

 Set Key Frame Distance: This is in the Advanced area for a reason. Unless you have

mastered video, it is best to let the software do the work and leave this option unselected.

 Key frame interval: Enter a value here, and the Key frame placement selection will

change to Custom. Remember that first question we asked you to consider at the start of the

chapter: is there a lot of movement? The answer determines key frame placement. If you are

recording paint drying, having a key frame every 300 frames of the video would work. If you are

encoding a video of a Formula One race from trackside, you will want the key frames to be a lot

closer to each other, such as every 30 frames or so.

After you’ve set the video values, click the Audio tab, not the OK button, to continue.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

538

Audio settings

The Audio pane, shown in Figure 10-6, is where you manage the audio quality. As we pointed out in

Chapter 5, the default format for all audio in Flash is MP3. This explains why you have only that one

choice in the Audio pane.

Figure 10-6. Setting the data rate for the audio portion of the movie

You need to make two decisions here:

 Will it be stereo or mono?

 What will the data rate be?

Unless there is a persuasive reason—you are encoding a band’s video, for instance—stay with a Mono

setting for Output Channels. Don’t think you can improve the audio track by outputting it as a stereo

track if it was originally recorded in mono. You can’t change mono to stereo. All that does is double the

size of your audio by playing two synchronized mono tracks. Outputting stereo will only serve to increase

the final file size of the FLV.

Twirl down the Bitrate Settings. For Bitrate [kbps]; you should generally choose either 48 or

64. Anything lower results in an increasing degradation of audio quality. Anything higher only serves to

increase the demand on the bandwidth, with no appreciable quality gain. Still, 32 kbps is a good choice if

the soundtrack is nothing more than a voice-over, and 16 kbps is ideal if the soundtrack is composed of

intermittent sounds such as the buzzing fly sound used in the Butterfly project that started this book. For

this example, select 64 from the Bitrate [kbps] drop-down menu.

www.zshareall.com

http://www.zshareall.com

VIDEO

539

Cropping video

Let’s now turn our attention to the left side of the Export Settings window, as shown in Figure 10-7.

The top of the pane contains a Crop tool. You can use this tool to eliminate unwanted areas of the video.

When you click the tool, handles are added to the sides of the video, and you can use them to crop. If you

want to do it by the numbers, scrub across the values. The Crop Proportions drop-down list is very

important. It helps you to not only crop a video but also to maintain the all-important aspect ratio.

Figure 10-7. The left side of the panel allows you to crop the video, set the In and Out points, and

generally manipulate the final output.

Click the Output tab. You get one choice: Crop Setting. Provided you have selected the Crop tool in

the Source pane, the drop-down menu offers three choices. These choices have nothing to do with

physically cropping a video. They specify how to deal with the dead area once an aspect ratio has been

applied during the actual crop, as follows:

 Scale To Fit will scale the video to fit the area.

 Black Borders will keep the original aspect ratio of the video and fill areas on the sides where

there is no video with black.

 Change Output Size will change the size of the video to the dimensions of the crop.

You can toggle between the Source and Output panes by clicking the toggle button—

Switch To Output—to the right of the Crop Setting drop-down list.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

540

Running the render process

After you’ve set your export settings, click OK to return to the render queue. Then click the Start Queue

button to start the process.

You will see the progress bar move across the screen as the video is being rendered, and you will also

see the video being rendered in the preview area, as shown in Figure 10-8. If you click the Stop Queue

button, you will see a dialog box asking you whether you want to stop the process or finish the render. If

you have a number of videos in the queue, clicking the No button in the dialog box will stop the process,

and an Errors dialog box will appear, telling you that you stopped the render process. If you want to

make changes to the settings or restart the render process, select the video—its status will be set to Skip

in the Status area—and select Edit ➤ Reset Status.

Don’t be terribly surprised if you see your video look like it is being encoded twice. New to Flash CS5 is a

little message that tells you which pass of the two passes selected with the encoder is currently being

undertaken.

Figure 10-8. Rendering an FLV

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

VIDEO

541

Here’s a little-known technique that will make your life much less stressful. Selecting a

video in the render queue and clicking the Remove button will remove it from the render

queue. What if you have made a mistake and need to make a simple change to the

video or audio settings? If the video is still in the render queue and its status is set to

either Skip or Completed, you can select the video and choose Edit ➤ Reset

Status to put it back into the render queue and then click the Settings button to

return to the original video and audio settings. This is really handy in situations where

you have messed up a cue point or two. For this to work, though, you can’t move the

video from its original folder or delete the video from the render queue.

When the encoding is complete, a green check mark will appear in the Status area. Close the Adobe

Media Encoder, and open the Chapter 10 Exercise folder. If this is the first time you have used the Adobe

Media Encoder, you had better sit down. You will notice the FLV and the QuickTime movie are in the same

folder. Check out the file size of the FLV. The size has plummeted from around 59MB to 13MB, as shown

in Figure 10-9. Don’t panic—this is common with the Adobe Media Encoder. Remember that the On2 VP6

codec is lossy, and it really spreads out the keyframes. Both of these combine to create significant file-size

reductions. This also explains why it is so important that the source video not be encoded using a lossy

codec.

Figure 10-9. It is not uncommon to have an FLV shrink to 20 percent or less of the original file size.

Batch encoding

If there was one common complaint about encoding videos for Flash, it was that there was no way of

encoding a bunch of them all at once. Third-party software, such as Sorenson Squeeze and On2’s Flix

Pro, allowed for batch processing, but this feature was unavailable in Flash—that is, until now. Here’s how

to encode a folder full of videos:

1. Create a folder on your desktop named WatchMe or something like that.

2. Add a bunch of MOV and/or AVI files to this folder.

3. Open the Adobe Media Encoder.

4. Select File ➤ Create Watch Folder to open the Browse for Folder dialog box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

542

5. Navigate to the folder you just created, select it, and click Choose. When you return to the Adobe

Media Encoder, the folder and the files in it will appear, as shown in Figure 10-10.

Figure 10-10. You can do batch encoding.

6. Select a preset, including a custom one you may have created. This preset will be applied to all

the files in the folder. For better or worse, you can’t apply different encoding settings to each of

the files in the folder. It is sort of: “One setting for all.”

7. Click the Start Queue button to encode all the files.

When the encoding finishes, open your folder. You will see that the Adobe Media Encoder has created a

folder named Output and placed the encoded files in that folder. It has also created another folder,

Source, and moved the original files into it.

Creating an F4V file

The F4V format was introduced in conjunction with Flash Player’s ability to play H.264-encoded files. Even

though .mov files encoded with the H.264 compression can be played directly out of Flash Player, the F4V

format offers one significant difference: these files can’t be played anywhere but through Flash Player and

can’t be converted to another format and subsequently edited. Based on the ISO base media format, F4V

www.zshareall.com

http://www.zshareall.com

VIDEO

543

is becoming a secure format for HD video because the video track is encoded using H.264 and the audio

is compressed using the AAC compression standard. As well, it is ideally suited to video with the 16:9

aspect ratio, whereas FLV has always been the choice for video with a 4:3 aspect ratio. Here’s how to

create an .f4v file:

1. Open the Adobe Media Encoder, and add the Vultures.mp4 file in your Exercise folder to the

Render Queue.

2. Click the Settings button to open the Export Settings dialog box shown in Figure 10-11.

Click the Format tab, select the f4v option, and then click the Video tab to open the video

settings.

Figure 10-11. Creating an .f4v file

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

544

3. In the Video settings area, use these values:

 Frame Rate: Select 24. According to the summary, the original’s frame rate is 23.98 fps.

 Bitrate Encoding: Select VBR.

 Encoding Passes: Select Two.

 Bitrate Level: Select High from the drop-down. The plan for this video is to play it from

the desktop so data rate is not an issue.

 Quality: Select Best.

4. Click the Audio tab, and use these values:

 Output Channels: Select Stereo.

 Bitrate: Select 128 kbps.

5. Click OK to return to the render queue. Click the Start Queue button to start encoding the

video. Close the encoder when you finish.

More Media Encoder Goodness

The changes between the Adobe Media Encoder CS4 and its CS5 reincarnation are rather startling. In

many respects, the CS5 version is a sleek, well-oiled machine dedicated to a sole purpose: create video

for Flash Player. For example, if you were to click the Export formats available box for the

Vultures.mp4 file in the CS4 render queue, you would be presented with a list of 16 potential formats

ranging from Audio Interchange File Format to MPEG2 Blu-ray. The CS5 version gives you two choices:

H.264 and FLV/F4V.

The H.264 format is the most important because it is the most ubiquitous. You can find it playing video on

everything from an iPod to a 60-inch HD screen and from YouTube and Vimeo to your cell phone.

Another really interesting aspect of the Adobe Media Encoder can be found in the Export Settings

dialog box. If your output format is H.264, the preset drop-down list shown in Figure 10-12 appears. As you

can see, your choices range from the TV in your home to the formats preferred by Vimeo, YouTube, and

Apple’s iPod and Apple TV devices.

If you select one of the 3GPP choices—a common video format for cell phones—the Open in Device

Central area lights up. With the advent of Flash Player 10.1 and the increasing growth of the Android

platform, the Adobe Media Encoder CS5 is destined to be the device workhorse when it comes to video.

When you select the format and encode the video, it will be placed into a letterbox if the video’s and

device’s aspect ratios aren’t similar. When the encoding finishes, Device Central launches, and, as shown

in Figure 10-13, the video starts playing in the device chosen.

www.zshareall.com

http://www.zshareall.com

VIDEO

545

Figure 10-12. H.264 is the way to go when a video is destined for more than web playback.

Figure 10-13. You can preview the file in Device Central.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

546

Playing an FLV in Flash CS5
After encoding the video, you’re ready to have it play in Flash. There are three ways to accomplish this

task:

 Let the wizard do it for you.

 Use the FLVPlayback component.

 Use a video object.

The first two are actually variations on the same theme. Both will result in the use of the FLVPlayback

component, but they approach the task from opposite angles. The final method is the most versatile but

involves the use of ActionScript. Regardless of which approach you may choose, the end result is the

same: you are in the Flash video business.

Using the wizard

We’ll begin with an example of using the wizard. We’ll cover the steps involved in actually adding video to

Flash. If you have never used Flash video, this is a great place to start. Let’s get going:

1. Create a new Flash document, and select File ➤ Import ➤ Import Video. This will open the

Import Video wizard.

2. The first step in the process is to tell the wizard where your file is located. Click the Browse

button, and navigate to the folder where you placed the FLV created in the previous exercise, or

use the Rabbit.flv file in your Chapter 10 Exercise folder.

There are only two possible locations for a video: your computer or a web server. If the file is located on

your computer, the Browse button allows you to navigate to the file, and when you select it, the path to the

file will appear in the File path area, as shown in Figure 10-14. This rather long path will be trimmed, by

Flash, to a relative path when you create the SWF that plays the video.

3. Click the Load external video with playback component radio button. This tells Flash

it needs to stream the video into Flash Player.

If you have a lot of videos, you may have put them in a folder on your website. In this case, you need to

add an absolute path to the file. The path to Rabbit.flv would be www.mySite.com/FLVfile/
Rabbit.flv. The path to the Flash Video Streaming Service or Flash Media Server would be a bit

different—something like rtmp://myHost.com/Rabbit. (We won’t be getting into the use of the Flash

Video Streaming Service or Flash Media Server in this book. All videos will be played back either locally or

through an HTTP site.)

www.zshareall.com

http://www.mySite.com/FLVfile
rtmp://myHost.com/Rabbit
http://www.zshareall.com

VIDEO

547

Figure 10-14. Setting the path to an FLV using the wizard

If you are into beating yourself in the head with bricks, then by all means, be our guest

and select the Embed FLV in SWF and play in timeline option. This will place

the entire video into the SWF. If that FLV is, say, 7MB, the user will need to wait as that

7MB makes the timeline creep along. The other danger is the tendency for video to last

several minutes. Flash has a maximum timeline length of 16,000 frames. If the video is

substantially long, the odds are almost 100 percent Flash will run out of timeline. We’ll

talk more about embedding video in the “When video is not video” section later in this

chapter.

4. When the path is established, click the Next (Continue) button to move to the Skinning

page.

5. Click the Skin drop-down menu to see the choices available to you. Click a skin style, and the

preview area will change to show the chosen skin, as shown in Figure 10-15.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

548

Figure 10-15. What skin or control style will be used?

Skin? Think of it as a techie word for video controls.

You are presented with two major skin groupings: Over and Under. Skins containing the word Over will

overlay the controls directly on top of the video, which means you may want to configure the skin to

automatically hide until the user moves the mouse cursor over the video. You can do this later by selecting

the component and using the Properties panel to set the skinAutoHide parameter to true. Skins

containing the word Under place the controls below the video.

Pay close attention to the minimum width for each skin. For example, selecting SkinUnderAll.swf

requires a video that is at least 330 pixels wide. So, if your video is 320 pixels wide, the skin is going to

hang off the sides of the video. You can see this in the preview.

Selecting None in the Skin drop-down menu means no skin will be associated with the video. Choose this

option if you are going to create your own custom controls, use the components in the Video area of the

Components panel, or display the video without allowing for user interaction.

www.zshareall.com

http://www.zshareall.com

VIDEO

549

If you select Custom Skin URL in the Skin drop-down menu, you will be prompted to enter the path to

this skin. Use this feature if you have created a custom skin, such as one containing a client’s branding.

The path to this is best set as an absolute path.

The URL input area is used if you place the skin SWFs in a location on your site other than the folder

containing the FLV and the Flash SWF.

6. Select MinimaFlatCustomColorPlayBackSeek.CounterVolume.swf. Click the color chip to

open the Color Picker, choose a color, and the skin will change to that color.

The ability to add a custom color to a skin is rather neat. This way, you can, for example, easily use a

client’s corporate color in the controls. You can even make the color semitransparent—extremely useful in

an Over skin—by setting the alpha to less than 100 percent.

7. Click the Continue (Next) button to move to the Finish Video Import page. This page

simply tells you what will happen when you click the Finish button at the bottom of the page.

8. Click the Finish button. You will see a progress bar showing the progress of the video being

added to the Flash stage. When it finishes, the FLVPlayback component will be placed on the

Flash stage, as shown in Figure 10-16.

Figure 10-16. The video is “good to go.”

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

550

9. Click the video on the stage, and in the Properties panel, set its x and y coordinates to 0.

Now this is where it gets really neat. If you have used previous versions of the component, you found

yourself starting at a black box with an FLV icon in the middle of the black box. In many respects, this was

a placeholder, and if you wanted to see if you had the correct video, you would have to save and test the

file. No longer. The controls in the component are now “live.” Click the Play button, and the video plays.

Drag the scrubber, and you can move through the video. Click the volume button, and the audio track

mutes. Drag the Scrubber button left and right, as shown in Figure 10-17.

Figure 10-17. The controls in the FLVPlayback component are now “live.”

10. Save the movie. It’s important to save the FLA file to the same folder as the FLV you linked to.

The FLVPlayback component needs this path to ensure playback of the video.

11. Close the video in the SWF to return to the Flash movie.

12. Select Modify ➤ Document. In the Document Properties dialog box, click the Contents

radio button to shrink the stage to the video, and then click OK.

13. Select the component on the stage, and then press the left or right arrow key a few times.

Holy smokes—the controls are hanging off the stage! Depending on your publish settings, chances are

good that this means the skin will not display when the SWF is embedded in a web page, which renders

the controls useless. In the Publish Settings dialog box, the HTML tab’s Scale setting is set to Show

all by default, which doesn’t necessarily mean what it sounds like. It doesn’t mean “show everything on

the stage and pasteboard,” but rather, “don’t scale anything, and show what’s on the stage.”

You’re seeing a “gotcha” applicable only to the Under skins. When you use the FLVPlayback

component, only the component is seen when you shrink the stage. The controls, which are a separate

SWF added at runtime, aren’t visible. If you are shrinking the stage and the only content on the stage is

the FLVPlayback component, do yourself and your sanity a favor, and manually change the stage

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

VIDEO

551

dimensions. The width can be set to the width of the FLV, but add about 35 to 45 pixels to the height of the

stage to accommodate the skin.

14. Change the stage dimensions to 320 270.

15. Save the movie and test it.

There is one last thing you need to know before we move on. Open the Exercise folder containing the

FLV. As you see in Figure 10-18, the folder contains a number of files: the FLA, the SWF, another SWF

containing the name of the skin, the original MOV, and the FLV. Not everything needs to be uploaded to

your server. Leave the FLA and MOV on your local computer. If you are going to be embedding this

particular project into a web page, make things easy for yourself by putting the two SWFs and the FLV in

the same directory on your website. If they are not in the same folder, default settings will cause the video,

the controls, or both to be unavailable.

Figure 10-18. The two SWF files and the FLV must be in the same directory if you are uploading to a web

page.

A word about file paths

It’s certainly possible to put every single file into a separate directory—the HTML page, each SWF, and the

FLV—but it means you’ll need to meticulously specify the paths for all these files. Not only that, but it gets

even crazier if you use relative paths (paths without the http:// or your website’s domain name).

If you do find yourself in a situation where relative paths are a must and your files are scattered—this often

happens with automated content management systems (CMS)—keep in mind that relative paths depend

on the location of files in relation to each other, which hinges on the “point of view” of the document

making the request.

Most files requested by a SWF, such as the video player’s skin, must be requested from the point of view

of the HTML document that embeds the SWF. Let that thought sink in. When it comes to relative paths, the

point of view belongs to the HTML document, not the SWF. You may need to use the Custom Skin URL

setting, mentioned between steps 3 and 4 of the previous exercise, to specify the location of the skin SWF,

as follows:

1. Choose the desired skin.

2. Test the movie to generate the actual movie SWF as well as the SWF that represents the skin.

www.zshareall.com

http://or
http://www.zshareall.com

CHAPTER 10

552

3. Move the skin SWF where it belongs on the server.

4. Return to the authoring environment, and select the component on the stage.

5. Using the Properties panel, modify the skin parameter’s Custom Skin URL setting to

instruct Flash where to locate the skin SWF. You’ll specify the relative path as if the HTML page,

rather than the movie SWF, were looking for it.

FLV files are an exception. When a SWF requests an FLV, the point of view belongs to the SWF making

the request. Regardless of where the HTML document is, if the FLV is in a different directory from the

movie SWF, specify your relative path as if the movie SWF were looking for the video.

Using the FLVPlayback component

In the previous exercise, you used the wizard to connect an FLV to the FLVPlayback component. In this

exercise, you’ll be doing the process manually. Once you are comfortable with it, you will discover this

method to be a lot quicker than the previous one. Follow these steps:

1. Create a new Flash document, and save it to your Chapter 10 Exercise folder. Remember that

the FLA needs to be in the same folder as the FLV.

2. In the Components panel (Window ➤ Components), click the Video category. Drag a copy of

the FLVPlayback component onto the stage, as shown in Figure 10-19.

Figure 10-19. The FLVPlayback component is found in the Video section of the Components panel.

www.zshareall.com

http://www.zshareall.com

VIDEO

553

You will notice that the component has the same skin color from the previous exercise. This is normal.

Also, if you open the Library, you will see a copy of the component has been added to the Library.

This is a handy feature, because you can use the Library, rather than the Components panel, to add

subsequent copies of the FLVPlayback component to the movie.

3. Click the component on the stage, and open the Properties panel. The parameters, as shown

in Figure 10-20, for the component are set here. The parameters, listed here, allow you to

determine how the component will function:

 align: The choices in this drop-down list have nothing to do with the physical placement of

the component on the Flash stage. The choices you make here will determine the position of

the FLV in the playback area of the component if the component is resized.

 autoPlay: When the check box is selected, the default, the video plays automatically.

Deselect it, and the user will need to click the Play button in the component to start the

video. In either case, the FLV file itself starts downloading to the user’s computer, so keep

this in mind if you put several FLV-enhanced SWFs in a single HTML document.

 cuePoints: If cue points are embedded in the FLV, they will appear in this area.

 preview: If you select this and an FLV is connected to the component, you can see the

video without needing to test the movie. This feature, you discovered, is a bit redundant. It is

ideal for capturing a frame of the video.

 scaleMode: Leave this at the default value—maintainAspectRatio—if video is to be

scaled.

 skin: Select this, and the Select Skin dialog box will appear.

 skinAutoHide: Adding a check to this means the user will need to place the mouse over

the video, at run time, for the skin to appear.

 skinBackgroundAlpha: Your choice is any two-place decimal number between 0 to 1. 0

means the background is totally transparent, and 1 means there is no transparency.

 skinBackgroundColor: Select this, and the Flash color chip appears.

 source: Double-click this area, and the Content Path dialog box opens. From here, you

can either set a relative path to the FLV or enter an HTTP or RTMP address path to the FLV.

 volume: The number you enter—any two-place decimal number between 0 and 1—will be

the starting volume for the video.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

554

Figure 10-20. The FLVPlayback component now relies on the Properties panel to determine its look

and functionality.

4. With the component selected on the stage, set autoPlay to false by deselecting it, and

change the skinBackgroundColor to #999999 (medium gray).

5. Double-click the source parameter to open the Content Path dialog box, as shown in Figure

10-21.

Figure 10-21. Setting the content path to the FLV to be played in the component

www.zshareall.com

http://www.zshareall.com

VIDEO

555

6. In the Content Path dialog box, click the Navigate button—the file folder icon—to open the

Browse for source file dialog box. Navigate to the Chapter 10 Exercise folder, select the

ThroughADoor.flv file, and then click the Open button.

7. The relative path to the FLV will appear in the Content Path dialog box. Select the Match

source dimensions check box. This will size the component to the exact dimensions of the

FLV file. Then click OK.

8. Save the movie.

9. Test the movie in Flash Player. Alternatively, click the Play button on the skin to start playing the

video. When you have finished, close the SWF to return to the Flash stage.

Playing video using ActionScript

In the previous two exercises, you have seen different ways of getting an FLV file to play through the

FLVPlayback component. In this exercise, you won’t be using the component; instead, you’ll let

ActionScript handle the duties. This is also the point where you are going to get the opportunity to play with

some of the new video stuff. The video you will be using is an MP4 file that was “ripped” from a DVD. The

ability to use HD-quality video was added to Flash Player 9 in late 2007.

Playing video using ActionScript is a lot like connecting your new television to the cable in an empty room.

There are essentially three steps involved: connect, stream, and play.

When you walk into the room where you are about to hook up the television to the cable, the television is

sitting on a shelf, and there is a spool of coaxial cable lying on the floor. When you screw the cable into the

wall outlet, you are establishing a connection between the cable company and your home. When you

screw the other end of the cable into the television, the television is now connected to the cable company.

When you turn on the television, the show that is flowing from the cable company to your television starts

to play. Let’s connect our television to an FLV:

1. Create a new Flash document, and save it as Vultures.fla in this chapter’s Exercise folder.

Set its stage dimensions to 845 480.

2. Open the Flash Library. (If you don’t have the Library in your panel group, select Window ➤

Library to open it.) Click the Library drop-down menu in the upper-right corner of the panel,

and select New Video to open the Video Properties dialog box.

3. In the Video Properties dialog box, make sure the Video (ActionScript-controlled)

radio button is selected, as shown in Figure 10-22. Click OK to close the dialog box.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

556

Figure 10-22. Creating a video object that will play an FLV

4. In the Library, you will see a little video camera named Video 1 sitting in your Library. This

camera is called a video object. It’s a physical manifestation of the Video class, just as movie

clip symbols are instances of the MovieClip class. Drag your video object from the Library to

the stage. When you release the mouse, it will look like a box with a big X through it, as shown in

Figure 10-23.

5. Click the video object, and specify these values in the Properties panel:

 Instance name: myVideo

 Width: 854

 Height: 480

 X: 0

 Y: 0

When you add a video object to the stage, its default dimensions are 160 120. This is

why you need to physically set the object’s dimensions to match those of the video

playing through it.

www.zshareall.com

http://www.zshareall.com

VIDEO

557

Figure 10-23. The new video object on the stage

6. Save this file to the Chapter 10 Exercise folder.

7. Add a new layer named Actions. Select the first frame of the Actions layer, open the

Actions panel, and enter the following code:

var nc:NetConnection = new NetConnection();
nc.connect(null);

var ns:NetStream = new NetStream(nc);
myVideo.attachNetStream(ns);

The first line declares an arbitrarily named variable, nc, and sets it to an instance of the NetConnection

class. This provides the network connection between the player and the server. The second line

(nc.connect(null);) tells the player this is an HTTP connection, not an RTMP connection, which

requires Adobe’s Flash Media Server installed on your web server. Any requested video files, such as the

SWF itself or typical web page assets like JPEGs or GIFs, will download progressively. The third line

declares another variable, ns, and sets it to an instance of the NetStream class. This establishes the

stream—that is, the flow of video data. The fourth line connects the video object, with the instance name

myVideo, to the stream that is connected to the server.

8. Press Enter (Windows) or Return (Mac) twice, and enter the following code:

ns.client = {};

The client is the object that will hold such stuff as the metadata inside the video file. If this isn’t there you

are going to some rather bizarre messages in the compiler.

9. Press Enter (Windows) or Return (Mac) twice, and enter the following code:

ns.play("Vultures.mp4");

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

558

This line uses the NetStream.play() method to actually stream the video content into the video object on

the stage. The important thing to note here is that the name of the video is a string (it falls between

quotation marks) and the .mp4 extension is added to the name of the video. The important thing you need

to know here is the file extension—.flv, .f4v, .mp4, or .mov—must be included in the file’s name.

10. Save and test the movie. When Flash Player opens, the video starts to play, as shown in Figure

10-24.

Figure 10-24. Eight simple lines of ActionScript code drive the playback of this HD video.

To recap, if you want to play video using ActionScript, here is all of the code you will need to get started:

var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(nc);
myVideo.attachNetStream(ns);

ns.client = {};

ns.play("Vultures.mp4");

The only thing you will ever need to do to reuse this code is to make sure the video object’s instance name

matches the one in line 4, and change the name of the FLV, F4V, or MP4 file in the last line.

www.zshareall.com

http://www.zshareall.com

VIDEO

559

Now that you’ve seen how easy it is to play a NetStream instance, what about stopping

the video? Check out the NetStream class entry in the ActionScript 3.0 Language and

Components Reference, and you’ll see the answer: you have a number of methods to

tinker with, including pause(), resume(), and close(). We’ll talk more about these

methods in Chapter 14.

You might be thinking, “Hey, I have the FLVPlayback component. Why do I need code?” The answer can

be summed up in one word: size. The size of a code-driven SWF is about 1KB, and its FLV counterpart

weighs in at more than 55KB. The difference is simply because of the ActionScript involved with the

component under the hood.

The increasing use of video in banner advertising is forcing developers to think small, because the

maximum size of a banner ad SWF is often no more than 30KB. Obviously, the FLVPlayback component

is simply too “heavy” for use in banner ads.

Additionally, there is going to come a point in your life when the FLVPlayback component simply isn’t

going to cut it any longer. When you reach this point, you will be creating your own ActionScript-driven

controllers, as shown in Chapter 14, and this will require the use of a video object. The real payback for

you will come when you discover you can create your own custom controllers that weigh in at under 10KB.

There’s a snippet for that

In the previous exercise we asked you to enter the code that makes a video play in a video object. If you

found that to be a bit tedious, you can always use a code snippet that does exactly what you just did…with

a twist. You don’t even need to create the video object. This begs the obvious question: “So, why did you

make me type that code before showing me this?

The answer is simple: anybody can add a snippet, but, as you are about to discover, it’s better to know

what it does rather than blindly heave it in. Let’s get started:

1. Create a new Flash document, and save it as VultureSnippet.fla in this chapter’s Exercise

folder. Set its stage dimensions to 845 480.

2. Open the Code Snippets panel, and select Audio and Video ➤ Create a NetStream

Video.

3. Click the Add to current frame button in the panel. An Actions layer will appear on the

timeline, and the Script pane will open.

4. Review the code:

var fl_NC_2:NetConnection = new NetConnection();
fl_NC_2.connect(nullvar fl_NS_2:NetStream = new NetStream(fl_NC_2);
fl_NS_2.client = {};

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

560

var fl_Vid_2:Video = new Video();
fl_Vid_2.attachNetStream(fl_NS_2);
addChild(fl_Vid_2);

fl_NS_2.play("http://www.helpexamples.com/flash/video/water.flv");

This code is really no different from that in the previous exercise other than Adobe heaves the creation of

the NetStream object as the parameter for the NetConnection’s connect method.

The three lines in the middle are how the video object is created and used. The first line—var
fl_Vid_2:Video = new Video();—creates the video object. The second line attaches the NetStream to

the object. The last line—addChild(fl_Vid_2)—puts the object on the stage and makes it visible.

5. Change the path in the fl_NS_2.play method to ("Vultures.mp4").

6. Save and test the movie. We’ll bet you didn’t expect to see the video jammed into a small area.

The reason is, the snippet uses the default size for a video object, which is 320 x 240. In many

respects we set you up for that one to show you that an unhealthy reliance on “prerolled code”

can have unforeseen consequences. Let’s fix this.

7. Select the first frame of the Actions layer, and open the Actions panel.

8. Click once at the end of line 18, press the Return (Windows) or Enter (Mac) key, and add the

following:

fl_Vid_2.width = 845;
fl_Vid_2.height = 480;

9. Save and test the movie. That’s better.

Using the FLVPlayback control components

In the Video components area of the Components panel, you’ll find a bunch of individual buttons and

bars. They are there for those situations when you look at the skin options available to you and think,

“That’s overkill. All I want to give the user is a play button and maybe another one to turn off the sound.”

This is not as far-fetched at it may sound. There are a lot of websites that use custom players that are

nothing more than a series of the individual controls. In this exercise, you will build a custom video

controller using these video-specific user interface components.

1. Open the Controls.fla document in this chapter’s Exercise folder. You will see the only thing

on the stage is beveled box with a bit of branding on it. If you want, feel to change the text in the

Text layer to your name.

2. Select the Video layer, and drag an FLVPlayback component to the stage.

3. Open the Properties panel. Set the skin to None and the source to ThroughADoor.flv.

4. In the Properties panel, set the X and Y values of the FLVPlayback component to 0.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.helpexamples.com/flash/video/water.flv
http://www.zshareall.com

VIDEO

561

5. Select the Controls layer, and drag the following components to the stage:

 BackButton

 PlayPauseButton

 SeekBar

 VolumeBar

6. Hold down the Shift key, and select each of the controls on the stage.

7. Open the Align panel, and make sure To stage is not selected. Then click the Align

Vertical Center button. When you finish, your stage should resemble Figure 10-25.

Figure 10-25. The video control components, when added to the stage, are also added to the Library.

If you open the Library, you will see separate Play and Pause buttons. Don’t panic. The

PlayPauseButton is actually a combination of both of them.

This is the point in this exercise where what you have done is about to shift from interesting to way too

cool. With all of those components on the stage, you are probably preparing yourself, especially if you

used them in Flash 8, to start writing a bunch of code. But you can relax. As long as the components are in

the same frame as the FLVPlayback component, they become fully functional. Think about it—you have

just created a custom video controller in a “code-free zone.” Don’t believe us? Check it out yourself.

8. Save and test the movie. Drag the Seek control to the right and left, as shown in Figure 10-26.

See...we told you.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

562

Figure 10-26. A custom video controller created in a code-free zone

Navigating through video using cue points

Adobe has this amazing habit of enhancing the functionality of a feature in a new release of an application

with little or no fan fare. Flash CS5 is no exception.

Prior to this release adding ActionScript, cue points that allowed the user to navigate to specific points in a

video created a cumbersome workflow. It involved either adding the cue points in the Adobe Media

Encoder or adding them in the cue points area of the Component Inspector. The issue here was the

cue points were “hardwired” into the FLV. If the timing was off or there was a typo, you essentially started

the process all over again. This has all changed. Let’s see how:

1. Open the ASCuePoints.fla file in your Exercise folder. When it opens, you will see we have

added the FLVPlayback component to the stage along with five buttons that will be used to

navigate through the video. The video is the story of a young man who decides to skip college

and become a cartoon character. The neat thing about the video is it is broken into five sections.

Feel free to click the Play button on the component to review the video. We think you will find it

to be rather hilarious.

2. Scrub back to the start of the video, and with the component selected on the stage, twirl down the

Cue Points area of the Properties panel. This is where the magic happens.

3. Click the + sign to add a cue point. When you do you will, as shown in Figure 10-27, see the

Name, Time, and Type areas contain values. Click the cue point’s name, and change it from Cue

Point 1 to Decision. The other really “slick” feature here is the Time parameter is hot text,

meaning you can scrub across it to change the timing for the cue point if you think the time needs

to change. Also, take a look at the cuePoints area of the component. Notice how the cue point

now appears there?

www.zshareall.com

http://www.zshareall.com

VIDEO

563

Figure 10-27. Adding an ActionScript cue point just got a ton easier.

Before we move forward with this exercise, let’s get really clear about these things. Cue points can be added

to a video’s metadata and can be read by any application that understands metadata. The neat thing about

metadata and cue points is they stay with the video file. The bad news is ActionScript cue points work only

with Flash Player. The good news is they can be added or removed without affecting the video.

Cue points can be embedded into the FLV or can be contained in external files, usually XML documents.

We are not huge fans of embedding because XML offers a degree of flexibility you simply can’t obtain with

cue points embedded in an FLV. For example, many video sites will pop up little advertising messages

while the video plays. Putting these things into an XML document means they can be changed regularly

without having to open the FLA.

There are also two types of cue points: navigation and event. Navigation cue points let you “skip” to

sections of a video, whereas event cue points will trigger something in Flash Player when the cue point is

reached. A good example of this are those little ads we talked about in the previous paragraph.

4. Click the scrub bar of the video on the stage, and scrub to the point where the words starting

out appear. If the video won’t scrub to that point, click the Play button on the component, and

when the words appear, pause the video. Add a cue point named StartingOut at this point by

simply clicking the + sign to add it.

5. Scrub thorough the video, and add three more cue points when, as shown in Figure 10-28, you

see the words on the screen. Name them Recruits, Break, and Rejection.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

564

Figure 10-28. Get to the point in the video where you need a cue point and simply add it.

Next up is “wiring up” the buttons on the stage with the ActionScript that pops you through the video. If you

click the component, you will see we have given it the instance name of myVideo in the Properties

panel. As well, each button has been given an instance name. Let’s get wiring:

6. Select the Decision button on the stage, and open the Code Snippets panel. As you may

have guessed, “There is a snippet for that.”

7. In the Code Snippets panel, twirl down the Audio and Video folder, select the Click to

Seek to Cue Point snippet, and click the Add to current frame button at the top of the

panel. An Actions layer will be added to your timeline, and the Script pane will open.

If you are lazy like us, simply double-click a snippet to add it to the movie.

8. You need to make a couple of changes to the code. In line 10, change

fl_ClickToSeekToCuePoint_3 to fl_ClickToSeekToCuePoint_1. Don’t forget to make this

change in the next line as well. Line 16 needs a couple of changes too. Change

video_instance_name to myVideo and Cue Point 1 to Decisions. Make sure the word appears

between the quotation marks. Also, change the video instance name in line 17 to myVideo.

www.zshareall.com

http://www.zshareall.com

VIDEO

565

You are most likely looking at this code:

btn01.addEventListener(MouseEvent.CLICK, fl_ClickToSeekToCuePoint_1);

function fl_ClickToSeekToCuePoint_1(event:MouseEvent):void
{
var cuePointInstance:Object = myVideo.findCuePoint("Decision");
 myVideo.seek(cuePointInstance.time);
}

…and wondering “What does it do?”

The first line tells the button to listen for a mouse click and, when it “hears” that CLICK, to execute the

fl_ClickToSeekToCuePoint_1 handler.

The function tells Flash to poke through the video and look for a cue point named Decision. When it finds

that cue point, it is to shoot the video’s playhead to the time parameter associated with the video in the

Properties panel. There are four more buttons to wire up. We can do it the “ugly” way or the “elegant”

way. Let’s get the ugly way out of the way:

9. Select lines 10 to 18 of the code block, and copy them to the clipboard.

10. Click in line 19, and paste the code into that line. Feel free to delete the comments. They aren’t

needed. Make the following changes:

 Change the instance name of the button to bthn02.

 Change the number in fl_ClickToSeekToCuePoint_ 1 to a 2.

 Change the number in the function.

 Change the cue point name to StartingOut.

11. Repeat steps 9 and 10 for the remaining three buttons. When finished, your code will have a

separate handler for each button.

12. Save and test the movie. Click a button, and you go to that point in the video.

The elegant way is the approach a coder would use. Instead of separate handlers for each button, a coder

wraps the function kicked out by the snippet into a case statement. Here’s how:

13. Open the Actions panel, and delete all of the code in the Script pane.

14. Enter the following code block:

var cuePointInstance:Object;

// Add Event Listeners to all buttons on the stage
btn01.addEventListener(MouseEvent.CLICK, seekToCuePoint);
btn02.addEventListener(MouseEvent.CLICK, seekToCuePoint);

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

566

btn03.addEventListener(MouseEvent.CLICK, seekToCuePoint);
btn04.addEventListener(MouseEvent.CLICK, seekToCuePoint);
btn05.addEventListener(MouseEvent.CLICK, seekToCuePoint);

We create an object to hold the cue points and then tell each button to listen for a CLICK event and, when

it hears it, to execute the seekToCuePoint function.

15. Press the Return (Windows) or Enter (Mac) key twice, and add the following code:

function seekToCuePoint(evt:MouseEvent):void
{
 switch (evt.target.name)
 {
 case "btn01":
 cuePointInstance = myVideo.findCuePoint("Decision");
 myVideo.seek(cuePointInstance.time);
 break;
 case "btn02":
 cuePointInstance = myVideo.findCuePoint("StartingOut");
 myVideo.seek(cuePointInstance.time);
 break;
 case "btn03":
 cuePointInstance = myVideo.findCuePoint("Recruits");
 myVideo.seek(cuePointInstance.time);
 break;
 case "btn04":
 cuePointInstance = myVideo.findCuePoint("Break");
 myVideo.seek(cuePointInstance.time);
 break;
 case "btn05":
 cuePointInstance = myVideo.findCuePoint("Rejection");
 myVideo.seek(cuePointInstance.time);
 break;
 }
}

The key here is to note you haven’t really wasted that snippet. It was used in a more efficient manner. A

case statement simply checks to see whether the button has been clicked. If it hasn’t, then move on

looking for which one has been clicked. The break simply tells Flash where it has reached the end point of

that statement.

16. Save and test the movie.

www.zshareall.com

http://www.zshareall.com

VIDEO

567

Adding captions with the FLVPlaybackCaptioning component

A couple of years ago, one of the authors had written a piece about Flash video and how easy it was to get

video onto a website. The thrust of the article was that this was a wondrous technology and that video was

about to sweep the Web. The reaction to the article was strongly positive, and the author was feeling pretty

good about himself—that is, until he received the following e-mail:

Love your books and tutorials! They are very well explained. I have a question. Have you done

any tutorials on how to add captions to videos? For example, there is a CC button in your “Talking

Head” video box. I would love to learn how to write CC for that. I am deaf and would strongly

advocate for all websites that have videos to have captions, but that won’t happen right away due

to $ and timing. I will be making a small “Talking Head” video introducing myself in sign language,

but I want to have captions for hearing people to know what I am saying :-)

In our zeal to get video out there, we tend to forget that accessibility is a major factor in our business. And

accessibility is now the law around the world. Up until Flash CS3, video was often partially or totally

inaccessible to those with hearing impairments. What also caught our attention was the last line of the e-

mail. It is obvious captioning is a two-way street, and those of us without disabilities rarely see it that way.

This isn’t to say captions couldn’t be added to video in Flash 8. They could, but it required quite a bit of

effort on the designer’s or developer’s part to get them to work properly. It usually involved XML, cue

points in the FLV, and an understanding of how to use XML in Flash and to write the proper ActionScript to

make it all come together. Flash CS3 streamlined this process with the inclusion of the

FLVPlaybackCaptioning component, and it’s still right here in Flash CS5.

Before we get going, it is important that you understand this is not a point-and-click workflow. Entering cue

points by hand into the Video Import dialog box in Flash is a tedious business. For all but the shortest

of video clips, it makes best sense to use a special XML document to make it all work—easier to edit later,

too—and then you need to “connect” that document to the FLVPlaybackCaptioning component.

The FLVPlaybackCaptioning component allows for the display of captions in the FLVPlayback

component through the use of a Timed Text (TT) XML document. If you open the captionsF4V.xml

document in this chapter’s Exercise folder, you will see the Timed Text XML code used in this exercise:

<?xml version="1.0" encoding="UTF-8"?>
<tt xml:lang="en" xmlns="http://www.w3.org/2006/04/ttaf1
xmlns:tts="http://www.w3.org/2006/04/ttaf1#styling">
 <head>
 <styling>
 <style id="1" tts:textAlign="right"/>
 <style id="2" tts:color="transparent"/>
 <style id="3" style="2" tts:backgroundColor="white"/>
 <style id="4" style="2 3" tts:fontSize="20"/>
 </styling>
 </head>

www.zshareall.com

http://www.w3.org/2006/04/ttaf1%ED%AF%80%ED%B0%81xmlns:tts=
http://www.w3.org/2006/04/ttaf1%ED%AF%80%ED%B0%81xmlns:tts=
http://www.w3.org/2006/04/ttaf1#styling
http://www.zshareall.com

CHAPTER 10

568

 <body>
 <div xml:lang="en">

<p begin="00:00:3.0" dur="00:00:10.0">Audio: Sound of man walking.</p>
<p begin="00:00:14.0" dur="00:00:02.0">Audio: A bell rings </p>
<p begin="00:00:18.0" dur="00:00:02.0">Audio: A bell rings </p>
<p begin="00:00:22.0" dur="00:00:02.0">Audio: A bell rings </p>
<p begin="00:00:26.0" dur="00:00:04.0">Stale cologne, sweat and smoke on cheap
crimson velour</p>
<p begin="00:00:30"dur="00:00:03.0">Pot bellied foul men drink on the bottom
floor</p>
<p begin="00:00:33.0" dur="00:00:3.00" >They say "petal "and "flower" and stroke us
in our beds</p>
<p begin="00:00:37.0" dur="00:00:04.00">And then run home to kiss the tops of their
wives' heads.</p>
<p begin="00:00:41.0" dur="00:00:03.5">And I sit in my room ... she detangles my
hair</p>
<p begin="00:00:45" dur="00:00:02.5">To prepare for the next waiting in his
underwear</p>
<p begin="00:00:48.0"dur="00:00:03.5">Where am I? What is this. It must all be in
my head.</p>
<p begin="00:00:52.0" dur="00:00:1.50" >I was young once and pure.</p>
<p begin="00:00:54.0" dur="00:00:09.00">And my mother she said, "All stories on
earth exist in your scribbled hair. If you comb out the tangles you can be
anywhere! "</p>
<p begin="00:01:04.0" dur="00:00:02.5">And she placed me on her lap and she started
to comb.</p>
<p begin="00:01:07.0" dur="00:00:04.0"> And it hurt but she said, "With one stroke
you're in Rome</p>
<p begin="00:01:11.0"dur="00:00:04">With another you are dancing with a prince by
a lake</p>
<p begin="00:01:15.0" dur="00:00:3.00" >Or dining with flamingos eating sunflower
cake</p>
<p begin="00:01:18.0" dur="00:00:03.00">Or skipping on tight ropes all slathered
with gold</p>
<p begin="00:01:21.0" dur="00:00:03.5">You can run fast with leopards and never get
old.</p>
<p begin="00:01:25.0" dur="00:00:04.5">If you do as you're told and always comb
your hair."</p>
<p begin="00:01:30"dur="00:00:04.5">And I combed ... and I combed ... and I combed
ever since.</p>
<p begin="00:01:35.0" dur="00:00:3.50" >But I have only met toads and not once a
prince.</p>

www.zshareall.com

http://www.zshareall.com

VIDEO

569

<p begin="00:01:39.0" dur="00:00:04.50">I've not seen a flamingo. Sunflowers never
bloom.</p>
<p begin="00:01:44.0" dur="00:00:04.5">But I did see a rope though, hung in another
girl's room.</p>
<p begin="00:01:49.0" dur="00:00:03.5">But I am getting old and I can't help but
worry</p>
<p begin="00:01:53.0" dur="00:00:04.5">That my mother was wrong and then I think
…</p>
<p begin="00:01:58"dur="00:00:02.5">Sorry… no …no… it can't be</p>
<p begin="00:02:01.0" dur="00:00:3.50" >I need to believe that this hell that I'm
in is just a story </p>
<p begin="00:02:05.0" dur="00:00:04.50">Retrieved from a tangle straightened by a
stroke of the comb</p>
<p begin="00:02:10.0" dur="00:00:10.0">So tomorrow, with another, I just might wake
up in Rome </p>

 </div>
 </body>
</tt>

We get into XML in a big way in Chapter 13, so if the Timed Text XML code doesn’t look

especially meaningful to you yet, don’t worry. You’ll see some similarity to HTML, which

may give you a sense of familiarity. In this case, you’re looking at a document that

adheres to the Timed Text specification set by the W3C, the same folks who wrote the

HTML specification. The FLVPlaybackCaptioning component follows that standard.

If you really want to dig into the specification, you can find it at www.w3.org/
AudioVideo/TT/.

You will notice that you can set the styling for the text and that each caption needs to have a start point

and an end point. This means each caption must have a begin attribute, which determines when the

caption should appear. If the caption does not have a dur or end attribute, the caption disappears when

the next caption appears or when the FLV file ends. The begin attribute means “This is where the caption

becomes visible.” The dur attribute means “This is how long the caption remains visible.” Alternatively—

and this is really a matter of taste—you can omit dur and replace it with end, which means “This is where

the caption stops being visible.”

Where do you get those numbers? You can use the time code in the Adobe Media Encoder to find them,

or you can use the time code displayed in the QuickTime or Windows Media Player interfaces. Another

place would be in the video-editing software used to create the video in the first place.

Follow these steps to apply the captions in the preceding XML example to a video:

1. Open a new Flash document, and save it to the CaptioningVideo folder in your Chapter 10

Exercise folder.

www.zshareall.com

http://www.w3.org
http://www.zshareall.com

CHAPTER 10

570

2. Drag the FLVPlayback component to the stage. In the Properties panel, set its source to

Stories.f4v (make sure the Match source dimensions check box is selected) and the

skin parameter to SkinUnderAll.swf. Name the layer video.

3. Set the stage dimensions to 480 450; in the Properties panel, set the component’s x and y

position to 0,0.

4. Add a new layer named text. Select the Text tool, and draw a text box under the

FLVPlayback controls. In the Properties panel, give the text box the Instance name of

txtCaption, change the Text Engine to Classic text, and select Dynamic Text from the

Text Type drop-down.

5. Set the font to one of your choosing, the text size to 16 points, and the color to black (#000000).

6. Twirl down the Paragraph settings, and select Multiline from the Behavior drop-down.

7. Add a new layer named Captions. Drag a copy of the FLVPlaybackCaptioning component

to this new layer. Move the component to the pasteboard.

8. Select the FLVPlaybackCaptioning component, and open the Properties panel. Twirl

down Component Parameters, and you will see the following parameters (Figure 10-29):

 autoLayout: The check mark, which is the default, lets the FLVPlayback component

determine the size of the captioning area.

 captionTargetName: This parameter identifies the movie clip or text field instance where

the captions can be placed. The default is auto, which means the component will make that

decision and run the captions over the video using a font of its choosing. If you are using one

of the Over skins, this is a dangerous choice because the skin will cover the captions. In

steps 4 to 6 you added a text box, and this is the place to explain what was going on.

The captions between the <p> </p> tags will be pulled out of the XML document and placed over the

video. We are not huge fans of this practice, which explains the text box. The captions are going to appear

in it. You may have also noticed that we select Classic Type as the text engine in the Properties

panel. The Captioning component can’t use TLF text without the use of ActionScript. That’s the reason

for the decision regarding the text engine and the Dynamic Text text type.

 flvPlaybackname: This is the instance name for the FLVPlayback component, which is set in

the Properties panel. If there is only one instance of the component, leave the value at the

default of auto.

 showCaptions: If this is set to false, deselected, the captions will not display (they can be

turned on with ActionScript or by clicking the captions button on the skin.

 simpleFormatting: If you have no formatting instructions in the XML document, set this to

true by not turning off the check mark.

 source: The location of the Timed Text XML document used to supply the captions.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

VIDEO

571

Figure 10-29. The FLVPlaybackCaptioning component and its parameters

9. Use these settings for the Captioning component:

 autoLayout: Deselected

 captionTargetName: txtCaption

 showCaptions: Selected

 source: captionsF4V.xml

10. Save and play the video. The captions will appear, as shown in Figure 10-30.

The authors want to thank Phoebe Boswell for letting us use her student project—The

Girl With Stories In Her Hair—in this exercise and her instructor, Birgitta Hosea, at

Central Saint Martins College of Art and Design in London, UK, for introducing us to

Phoebe. Phoebe did all of the work on this amazing video including the animation,

writing, and narration. Every now and then we bump into students who make us stop in

our tracks and say, “Wow.” Phoebe is one of those students.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

572

Figure 10-30. The captions appear in the text box, not over the video.

Preparing and using alpha channel video

There will be times when you need a talking head video or you want to move the subject of the video from

the studio to another location. These are the instances where an alpha channel video fits the bill. If you

watch the weather on your local television station, you are seeing this in action. The weather reporter

stands in front of a green wall and starts pointing to fronts and cloud formations. But the stuff being pointed

at isn’t actually on the wall. To create the scene, the weather reporter is pulled out of the green

background location and superimposed on the radar image.

The type of video where a green or blue background is removed, or keyed, is called alpha channel video.

If you are a Photoshop CS5 or Fireworks CS5 user, you are quite familiar with the concept of an alpha

channel or masking channel. The difference in a video-editing application is that the channel or mask is in

motion.

How do you know you have been handed a video containing an alpha channel? Open it in the QuickTime

player, and check the movie information. If the codec used to prepare the video is Animation and the

number of colors is Millions+, the channel is there.

The ability to use this type of video was introduced in Flash 8 Professional. To use this feature in Flash

CS5, you need to select the On2 VP6 codec in the Adobe Media Encoder. This means that if your target

Flash Player is Flash Player 7 or older, you can’t use alpha video.

www.zshareall.com

http://www.zshareall.com

VIDEO

573

To see alpha channel video In action, let’s try it with a short video. You will encode a small clip of a young

adult who has just been informed by his friend that he is dead as the result of being hit by a bus. Then you

will place the video over an image in Flash.

1. Open the Adobe Media Encoder, and import the Alpha.mov file from this chapter’s Exercise

folder into the render queue.

2. Click Settings … in the Adobe Media Encoder to open the Export Settings window. Click

the Format tab, and select FLV. The F4V and H.264 formats do not support alpha channels.

3. Click the Video tab. Select the On2 VP6 codec and the Encode Alpha Channel option, as

shown in Figure 10-31. If you fail to select this check box, you will lose all transparency in the

background.

Figure 10-31. Make sure you select the Encode Alpha Channel option.

4. Twirl down the Bitrate Settings. Select VBR encoding and Two encoding passes. Reduce

the Bitrate setting to 400 kbps, and change the frame rate to 15 fps.

5. Click the Audio tab, and change the Output Channels setting to Mono and Bitrate to 80

kbps.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

574

6. Click OK to return to the render queue.

7. Click the Start Queue button. When the render process is finished, quit the Adobe Media

Encoder.

8. Open the AlphaEx.fla file in Flash. You will see we have tossed an image of a store—Dead

Betty’s Dyes—into the Background layer.

9. Select the Video layer, and drag an FLVPlayback component to the stage. In the Properties

panel, set the source parameter to your alpha video, and set the skin parameter to None. With

the component selected, in the Properties panel, set its X and Y values to 0,0.

10. Save and test the movie. The video appears as if filmed over the background image, as shown in

Figure 10-32.

Figure 10-32. Alpha video in action

Going full-screen with video

In the autumn of 2006, Adobe quietly announced that full-screen Flash video was no longer a dream. Full-

screen video was released as a part of the Adobe Flash Player 9 beta. But even though it was well

received, many thought the process was a bit too convoluted. Between its introduction and Flash CS5, full-

screen video became easier to add to you movies and deploy on the Web.

Depending on how you want to approach the application of full-screen video, it can be either dead simple

or require a bit of poking around with ActionScript and in the web page’s HTML. Let’s explore both

methods.

Full-screen video the ActionScript/HTML way

In this example, we are going to let Flash write the necessary HTML and JavaScript code. Here’s how:

1. Open a new Flash movie, and save it to the FullScreen folder in your Chapter 10 Exercise

folder.

2. Set the stage size to 400 300 pixels, and set the stage color to #006633 (dark green).

www.zshareall.com

http://www.zshareall.com

VIDEO

575

3. Drag an FLVPlayback component to the stage, and specify the following parameters:

 skin: SkinOverAllNoCaption.swf

 skinAutoHide: true

 skinBackGroundColor: #999999 (medium gray)

 source: FilmTV.mov

4. Save the file as FullScreenSkin.fla.

5. Select File ➤ Publish Settings to open the Publish Settings dialog box, as shown in

Figure 10-33.

Figure 10-33. The Publish Settings dialog box

6. Make sure the Flash and HTML options are selected.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

576

7. Click the HTML tab. In the Template drop-down, select Flash Only-Allow Full Screen, as

shown in Figure 10-34.

Figure 10-34. Choose the proper HTML template to add full-screen functionality.

8. Click the Publish button. When the progress bar finishes and closes, click the OK button to

close the dialog box. When you return to Flash, save the file.

9. Minimize Flash, and navigate to the folder where you saved the SWF and HTML files.

When you published the HTML file, you actually created more than one document: the HTML file and the

SWF file, which is embedded in the HTML. The HTML file also contains JavaScript that allows Flash to

play in the browser without user interaction (some browsers require users to click in order to indicate their

intent to play active content). Technically, these files can all be placed in separate folders, but it requires

custom coding. Do yourself a favor and place all of these files (the FLV, SWFs, and HTML documents

shown in Figure 10-35) in the same directory when you upload the project to a web server.

Figure 10-35. The only file that doesn’t get uploaded to your web server is the FLA.

10. Open the HTML file in either your favorite HTML editor (such as Dreamweaver CS5) or a word

processing application.

As you can see, Figure 10-36, Flash has written the necessary code that enables the button in lines 26

and 41 of the code block.

11. Double-click the HTML file to open it in a browser.

12. When the video starts, click the Full Screen button in the bottom-right corner of the controller.

The video fills the screen, as shown in Figure 10-37. You can either press the Esc key or click the

Full Screen button again to reduce the video to actual size.

www.zshareall.com

http://www.zshareall.com

VIDEO

577

Figure 10-36. Set two allowFullScreen attributes in the HTML’s <object> and <embed> tags to true

to allow full-screen playback.

Figure 10-37. Full-screen video is a reality with Flash CS5.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

578

Full-screen video using Dreamweaver CS5

The previous exercise contained a “fatal flaw.” If you are a web designer, you probably looked at that

exercise and said, “That ain’t the way a designer does it.” We agree. More often than not, the web

designer is going to only require the SWF, and they will put it into place in a predesigned layout. Let’s

assume the designer already has a Dreamweaver CS5 page prepared and needs to add the SWF and the

full-screen capability. Here’s how:

1. Open a new Dreamweaver CS5 HTML page, and save it to your FullScreen folder in this

chapter’s Exercise folder.

2. Switch to Design View, and click once on the page.

3. Select Insert ➤ Media ➤ SWF (Figure 10-38), and when the Select Swf dialog box opens,

navigate to the SWF you created in the previous exercise. Select it, and click OK to close the

dialog box. When you return to the Dreamweaver page, you will see the SWF is nothing more

than a great big gray box. If you test the page in a browser (File ➤ Preview in Browser ➤

Choose a browser), you will discover that the Full Screen button doesn’t work. You need to

tell Dreamweaver to make that button operative.

Figure 10-38. You insert the SWF, not the FLV/F4V, file into Dreamweaver.

4. Select the SWF on the page, and click the Parameters button in the Dreamweaver

Properties panel. This will open the Parameters dialog box.

www.zshareall.com

http://www.zshareall.com

VIDEO

579

5. Click once on the + sign, which is the Add parameter button, and enter AllowFullScreen as

the parameter. Press the Tab key to go to the Value area of the parameter just entered and

enter true. As shown in Figure 10-39, this parameter is now added to the lineup. Click OK to

close the Parameters dialog box, and test the page in a browser.

Figure 10-39. Dreamweaver needs to be told that the Full Screen button is live.

When video is not video
Up to this point in the chapter, we have treated video as entertainment. The user simply watches it. In this

case, video is a rather passive medium. However, sometimes video becomes content and does not require

a player, captions, or even full-screen capability. In this case, video can be imported directly into a Flash

movie clip, which makes it fully accessible to Flash as content on the stage.

Before we start, we want you to be real clear on a fact of video life: video files are large, and importing any

of the files you have worked with so far in the chapter directly onto the Flash timeline would be a major

error. When considering working with video content on the Flash timeline, think short—loops of about two

seconds—and think small. The physical size of the video should match precisely the area of the stage

where it will be used.

The FLV files used in this exercise were all created in Adobe After Effects. For details

about creating such videos, see From After Effects to Flash: Poetry in Motion Graphics

by Tom Green and Tiago Dias (friends of ED, 2006).

Embedding video
Earlier, we told you that embedding video in the timeline was, well, evil. Now we are going to show you

when this can actually be a good thing. The following exercise demonstrates how this works:

1. Create a new Flash document, and change the stage size to 468 pixels wide by 60 pixels high,

which is a common banner ad size.

2. Select File ➤ Import ➤ Import Video. This will launch the Import Video wizard.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

580

3. On the Select Video page, navigate to the Apparition.flv file in your Chapter 10 Exercise

folder.

4. On the same page, select Embed video in SWF and play in timeline. You will see a

missive at the bottom of the dialog box warning you of the evils of this technique, but don’t

worry—the file isn’t that big. Click the Continue button to open the Embedding page.

5. On the Embedding page, select Embedded video from the Symbol type drop-down menu.

Also be sure the check boxes for Place instance on stage, Expand timeline if

needed, and Include audio are selected, as shown in Figure 10-40. Click the Continue

button.

Figure 10-40. Embedding an FLV file in the Flash timeline

6. On the Finish Video Import page, click the Finish button to return to the Flash stage. You

will see a progress bar, and when it finishes, the video will be on the stage, and the timeline will

expand to accommodate the number of frames in the video.

7. Select the video, and in the Properties panel, set its X and Y values to 0. If you open the

Library, you will also see the video is in a video object.

8. Add a new layer to the timeline and enter your name.

9. Save and test the movie. The weird ghostlike apparitions move around behind your name (see

Figure 10-41).

Figure 10-41. Embedded video can be used as content.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

VIDEO

581

Embedding video as a movie clip

In this next exercise, you are going to create a rainy day in the mountains of Southern California. In this

example, you will discover the power of matching Flash’s blend modes with video.

1. Open the Rainfall.fla file in your Chapter 10 Exercise folder. You will see that we have

placed an image of the mountains on the stage.

2. Click the first frame of the Video layer. Select File ➤ Import to stage. In the Import

dialog box, select the Rain.flv file, and click Open. This will launch the Import Video wizard.

3. Embed the video in the timeline, as in this previous exercise, but this time, when you reach the

Embedding page, select Movie clip as the symbol type, as shown in Figure 10-42. This is a

good way to go, because it routes all the necessary timeline frames into a movie clip timeline,

rather than expanding the main timeline off a mile to the right.

Figure 10-42. Embedded video can be turned into a Flash movie clip.

4. The new movie clip will appear in the first frame of the Video layer. Using the Properties

panel, set its X and Y values to 0. Obviously a big, black movie clip that hides the mountains isn’t

doing the job. Let’s fix that.

5. Select the movie clip on the stage, and in the Properties panel, set the movie clip’s Blending

option to Add. The rain becomes visible, as shown in Figure 10-43.

6. Save and test the movie. Sit back and enjoy the rain fall.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

582

Figure 10-43. Use the Add mode to remove the black background in the FLV.

Interacting with video content

So far, you have discovered how video content can interact with Flash content. In the next exercise, you

are going in the opposite direction: Flash content interacting with video content.

1. Open the BlobEffect.fla file in this chapter’s Exercise folder. You will see we have already

placed an embedded video on the timeline. The video is a blobs effect. To see it, open the Blobs

movie clip in the Library, and when the Symbol Editor opens, press Enter (Windows) or

Return (Mac). As you can see in Figure 10-44, green blobs ooze from the top of the window and

coalesce into a giant blob, which then splits apart into smaller blobs.

Figure 10-44. We start with some green blobs, which is an FLV file embedded into a movie clip.

2. Click in the Text layer, select the Text tool (or press T), and enter your name. Use a font and

size of your choosing. In the Properties panel, change the color of the text to #FFFF00 (bright

yellow).

3. With the text selected, convert the text to a movie clip symbol named Name.

4. With the Name movie clip symbol selected, select Overlay from the Blending drop-down

menu.

www.zshareall.com

http://www.zshareall.com

VIDEO

583

The text will disappear. This is because the Overlay mode either multiplies or screens the colors,

depending on the destination color, which is the color immediately under the text. In this case, the yellow

text is against a black background, so you can’t see the effect.

5. Save and play the movie. Notice how the text changes and becomes visible as the blobs pass

under it, as shown in Figure 10-45.

Figure 10-45. A classic example of Flash content interacting with video content

Adding cue points
You can add cue points to an FLV file in four ways:

 Add them when you create the FLV file in the Adobe Media Encoder.

 Add them using the FLVPlayback component’s parameters.

 Add them using the addASCuePoint() method in ActionScript.

 Add them using an XML document.

The first two methods are what we call destructive. Once you add a cue point using those two methods, it

can’t be removed. This means if your timing is off, the video will need to be reencoded and new cue points

added. Here’s some self-defense if you go with either of those methods: don’t remove the video from the

render queue until the video is approved for play. In this circumstance—and it works only for cue points

added in the Adobe Media Encoder—you select the video in the render queue and choose Edit ➤ Reset

Status. When you return to the Cue Points tab, all the cue points will be there, and they can be

removed and changed.

The second method is one we showed you earlier in the chapter. You can use the cue points feature of the

Properties panel to add them. The downside to this is if changes need to be made you need to have

ready access to the original FLA.

The last two ways are the most flexible because, if the timing is off, you simply open the code and change

a number.

Here, we will concentrate on using an XML document to insert the cue points. Before we dig into the XML,

you should know that in Flash video, there are three flavors of cue points:

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

584

 Navigation cue points: These cue points do exactly what the name implies: they are used to

navigate, seek, and trigger ActionScript methods. If you create a navigation cue point, Flash will

actually insert a keyframe at that point in the video.

 Event cue points: These are the most common. They tell Flash and/or ActionScript to do

something when they are encountered.

 ActionScript cue points: These can be used only if you are using the Cue Points area in the

Properties panel. They can be used either for navigation or to initiate events while the video

plays.

In the upcoming exercise, you will create event cue points that will be used to tell Flash to display a

caption.

An alternate XML format for cue points

We tend to think the Timed Text format described earlier in this chapter is the way to go for cue points, if

only because it’s a nonproprietary specification. However, it’s good to know your options. You may just

decide to use the alternate approach described in this section instead. If you do, there is a very specific

format you must follow. Let’s look at it.

Open the CuePoints.xml document in this chapter’s Exercise/YourTurn folder. You can use

Dreamweaver CS5, a simple text editor, or even a word processor for this purpose. Just make sure that

when you save the file, you save it as plain text. When the document opens, the first “chunk” of code you

will encounter is the following:

<?xml version="1.0" encoding=“UTF-8” standalone="no" ?>
<FLVCoreCuePoints>
 <CuePoint>
 <Time>9000</Time>
 <Type>event</Type>
 <Name>fl.video.caption.2.0.0</Name>
 <Parameters>
 <Parameter>
 <Name>text</Name>
 <Value><![CDATA[<font face="Arial, Helvetica, _sans"
size="12">Look ... up in the sky ... look...]]></Value>

 </Parameter>
 <Parameter>
 <Name>endTime</Name>
 <Value>11.0</Value>
 </Parameter>
 </Parameters>
 </CuePoint>
</FLVCoreCuePoints>

www.zshareall.com

http://www.zshareall.com

VIDEO

585

This is the syntax that must be used. Deviate from it at your own peril. The first line specifies the encoding

for the document, and the second line tells Flash that anything between the <FLVCoreCuePoints> tags is

to be considered within the context of a cue point.

Each cue point you will add must be enclosed between <CuePoint> and </CuePoint> tags. The <Time>

tag is the start of the cue point, and this number must be expressed in milliseconds. The next tag, <Type>,

tells Flash that the cue point is to be an event cue point, and the tag following it, <Name>, is the name of

the cue point.

The rules regarding naming are rigid. The <Name> tag must be fl.video.caption.2.0 followed by a

series of sequential numbers to guarantee unique values. In our sample XML, it goes fl.video.
caption.2.0.0, fl.video.caption.2.0.1, and so on.

The parameters contain the styling data for the text that will appear in the caption and an end time for the

caption. Later in the actual XML document, you’ll see that we used the <i> tag to identify who is speaking

by setting the person’s name in italics.

The endTime property, which must be expressed in seconds, will be the time when the caption disappears

from the screen. This number can be an integer (no decimals) or can contain up to three decimal places.

Finally, you may optionally contend with using color in captions, and there are a couple of rules involving

this as well. If you scroll down to caption 2.0.7 in the file, you will see the text in the caption uses

#FF0000, which is a bright red. A couple of lines later, the backgroundColor parameter changes the

background color of the caption to 0x01016D, which is a dark blue.

The key here is how the colors are identified. Colors are specified by hexadecimal values, but the

indication that the color is in hexadecimal notation—# or 0x—depends on where it’s being stated. The first

change to the red uses the pound sign, #, as traditionally used in HTML. Why? It’s because it appears

within HTML-formatted content. The second change—to the dark blue—uses the format for specifying

hexadecimal notation in ActionScript, 0x.

If you do change the background color of a caption, that color will “stick.” This means all subsequent

captions will use this background color. If you need only a single change, as in our example, change the

backgroundColor parameter back in the next cue point. In our case, we changed it to black again

(0x000000), as seen in caption 2.0.8.

Do your sanity a favor and separate each caption with an empty line or two in the XML. This makes the

captions easier to read and locate. The blank space, called whitespace, will be ignored by Flash.

What does all of this have to do with cue points and FLV files? You are about to find out. First, though, you

need to download a cartoon.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

586

HTML TAGS AND FLASH

HTML tags may be used only if they’re supported by Flash. They are as follows:

• Anchor tag (<a>)) : If you want to make a hyperlink without using the Properties panel, this
is your tag. This tag supports two attributes:

• href: An absolute or relative URL, up to 128 characters in length. This attribute
corresponds to the Link setting of the Properties panel and is required if you want
the hyperlink to actually do something. If you’re opening a web document, use the http:
or https: protocol. If you want to trigger ActionScript instead, use the event: protocol.
More on this in the section “Hyperlinks and Flash text.”

• target: One of four values that correspond to the Target setting of the
Properties panel: _blank (opens the URL in a new browser window), _parent
(opens the URL in the parent frameset of an HTML frameset), _self (opens the URL in the
same window or frame as the current HTML document that holds this SWF; this is the
default behavior), and _top (opens the URL in the topmost window of a frameset,
replacing the frameset with the new URL).

• Bold tag () : Makes text bold, if the current font supports it. Yes, even though HTML jockeys
are all using nowadays, Flash Player doesn’t support it. Use the tag.

• Break tag (
) : Represents a line break.

• Font tag () : Provides three ways to format the styling of text, by way of the following
attributes:

• color: A hex value representing a color.

• face: The name of a font.

• size: The size of the font in pixels. You may also use relative sizes, such as +2 or –1.

• Image tag () : Displays a graphic file, movie clip, or SWF inside a text field. Supported
graphic formats are JPEG, GIF, and PNG. This tag may be configured by way of quite a few
attributes:

• src: This, the only required attribute, specifies the URL of an external image or SWF, or the
linkage class for a movie clip symbol in the Library (see the “Symbol essentials” and
“Sharing assets” sections of Chapter 3). External files do not appear until they are fully
loaded, so depending on your needs, you may want to embed content in the SWF itself. To
refer to embedded Library content, simply use the linkage class as the value for the src
attribute——instead of the path to an external file.

• id: If you want to control the content of your image tag with ActionScript, you’ll need to
know the instance name of the movie clip that contains that content. This is where you
provide that instance name.

• width and height: These specify the width and height of the image, SWF, or movie clip
in pixels. If you like, you may scale content along the x axis and y axis by setting these
attributes arbitrarily.

www.zshareall.com

http://www.zshareall.com

VIDEO

587

• align: This determines how text will flow around the image, SWF, or movie clip. The
default value is left, and you may also specify right.

• hspace and vspace: Just as with HTML, these values determine how much “padding”
appears around the image, SWF, or movie clip. Horizontal space is controlled by hspace,
and vertical space is controlled by vspace. The default is 8 pixels. A value of 0 gets rid of
the padding, and negative numbers bring in the edges, pulling in adjacent content with
them.

• checkPolicyFile: This instructs Flash Player to check for a cross-domain policy file on
the server associated with the image’s or SWF’s domain.

• I ta l ic tag (<i>) : Makes text italicized, if the current font supports it. Like our note for the tag,
use <i> for italics in text field HTML, as opposed to the tag generally preferred by web
developers nowadays.

• List i tem tag () : Indents text and precedes it with a round bullet. In the case of normal HTML,
 tags may be further managed by parent list tags. The bullets of unordered lists (), for
example, may be specified as circle, disk, or square. The bullets of ordered lists () may be
specified as numbers, roman numerals, or letters. This is not the case in the microcosm of Flash HTML.
Lists require neither a nor an tag, are unordered only, and feature only round bullets.

• Paragraph tag (<p>) : Our good, old-fashioned paragraph tag. Paragraphs come with a built-in
line break, and you get two attributes with this tag:

• align: This affects the text alignment. Valid settings are left, right, center, and
justified—the same alignments available in the Properties panel.

• class: This specifies the name of a CSS class selector, which can be used to stylize
content.

• Span tag () : This tag doesn’t do anything on its own, but it accepts a class attribute that
supports CSS, and that attribute is styling.

• Text forma t tag (<textformat>) : In many ways, this is the HTML version of the TextFormat
class. Use the following parameters to stylize text content:

• blockindent: Determines block indentation.

• indent: Determines indentation of the first line only and accepts both positive and
negative values.

• leading: Affects line spacing. It accepts both positive and negative values.

• leftmargin, rightmargin: Determines the left and right margins of the text.

• tabstops: Specifies tab stops.

• Under l ine tag (<u>)) : Makes text underlined. This tag is the easiest way to underline text in
Flash (other than through CSS styling).

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

588

Your turn: create XML captions for video

In the 1940s, the original Superman cartoons were produced by a gentleman named Max Fleischer. A

small number of these cartoons have entered the public domain, which means that they are free for you to

download and use. One of them, “Superman: the Mechanical Monsters,” is the cartoon you will be

captioning. To remain purer than pure, we aren’t including the cartoon in the Exercise downloads. We

would respectfully ask that you head over to www.archive.org/details/superman_the_
mechanical_monsters. The download options are on the left side of the page, offering files in different

compressions and sizes. In theory, it doesn’t matter which file you download. We used the 256Kb MPEG4

(27MB) version.

We find it rather fascinating that the copy of the video that plays on the page is Flash

video. It’s a low-quality one, but it’s Flash video all the same.

Now that you have downloaded the source video, proceed as follows:

1. Open the Adobe Media Encoder, and drag the video from its location into the render queue.

2. Open the Export Settings window. Enter Superman as the output filename, and select FLV

as the format.

3. Click the Video tab. Ensure you are using the On2 VP6 codec, Deselect Resize Video if it is

selected; in the Bitrate settings, use VBR and Two encoding passes. Reduce the Bitrate

value to 300.

4. Click the Audio tab. Change Output Channels to Mono, and reduce Bitrate to 64 kbps.

Let’s now turn our attention to the cue points area under the preview. This is where all of the pain, sweat,

and aggravation that went into creating the XML document comes into play. The care and diligence you

put into ensuring all of the tags in the XML document are correct are about to pay off. How so? Let’s add

the first cue point manually to give you the idea.

5. Scrub the playback head of the FLV to the 00:00:09;500 mark of the video.

6. Click the + button (which is the Add Cue Point button). Enter fl.video.caption.2.0.0 as

the name of the cue point. Notice how the default value for Type is Event.

7. Click the Add Parameter button, and enter Text into the name area. Click in the Value area,

and enter Up in the sky,

look!.

8. Click the Add Parameter button, and enter endTime as the name and 10.9 as the value. The

cue point appears in the cue point area, as shown in Figure 10-46.

Now repeat steps 6, 7, and 8 about 30 more times to add the remaining cue points. (Yeah, we are

kidding.)

www.zshareall.com

http://www.archive.org/details/superman_the_
http://www.zshareall.com

VIDEO

589

Figure 10-46. Manually adding cue points to an FLV

Obviously, going the manual route is tedious at best. Surely there must be an easier method. There is:

embed the CuePoints.xml document directly into the FLV file. Let’s use that technique.

9. Select the cue point, and click the Remove Cue Point button (the – sign) to remove the cue

point you just added.

10. Click the file folder icon (the Navigate button) in the cue points area. This will open the Load

Cue Points File dialog box. Navigate to the 15_YourTurn_CuePoints folder, select the

CuePoints.xml file, and click the Open button.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

590

In the cue points area, you will notice all the cue points in the XML document have been added. If you

select the first one, you will see that the parameters have also been added, as shown in Figure 10-47.

Seeing the cue point parameters can be a little tricky. Don’t click the cue point’s name.

That will select the name. Click in the gray area of the strip between the Cue Point

Name and Time areas, and the parameters for that cue point will appear.

Figure 10-47. Load the XML, and the cue points and their parameters are added in less than one second.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

VIDEO

591

11. Click the OK button to return to the render queue. Click the Start Queue button to encode the

cartoon.

12. Return to Flash CS5 and create a new document. Save this document to the YourTurn folder.

13. Drag an FLVPlayback component to the stage, add a skin (we used

SkinUnderAllNoFullScreen.swf), and set the source parameter to the FLV file you just

created. When the dialog box closes, you will see all of the event cue points from the XML

document are listed.

14. Drag a copy of the FLVPlaybackCaptioning component anywhere onto the pasteboard or

stage (it doesn’t really matter where, because the component is invisible in the published SWF).

You will notice you don’t need to add the CuePoints.xml document as a parameter in the

FLVPLaybackCaptioning component. All it has to do is be present in the SWF. You only need to do

configure the parameter when using Timed Text captions.

15. Save and test the movie. Notice how the captions automatically appear, as shown in Figure

10-48.

Figure 10-48. The FLVPlaybackCaptioning component only needs to be in the SWF and doesn’t

require configuration.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

592

Bonus round

You don’t need to add the cue points in the XML document in the Adobe Media Encoder. There is a new

way of doing it. Here’s how:

1. Open the CuePoints.xml document in Dreamweaver CS 5 or a text editor.

2. Select the word event in the first <type></type> tag, and using the Search and Replace

feature of your software, change the word from event to actionscript.

3. Save the file as Superman.xml.

4. Open a new Flash document, save it to the 15_YourTurn_CuePoints folder. Heave an

FLVPlayback component onto the stage, and set the source to the SupermanNoCuePoints.flv

file in that folder.

5. Select the component on the stage, and in the Cue Points area of the Properties panel,

click the Import ActionScript Cue Points button, which opens the Import

ActionScript Cue Points dialog box.

6. Navigate to the Superman.xml file you just created, and click Open. You will see a small Alert

box telling you that you have just imported 33 cue points. Click OK. When the alert closes, all of

the cue points and their parameters, as shown in Figure 10-49, will appear.

7. Add a Captioning component to the pasteboard and test your movie.

What this should tell you is that you need to determine, up front, when the cue points in an XML document

will be added to the FLV. If it is during the encoding of the video, then you need to put event or

navigation between the <type> </type> tags. If it is during author time, then use actionscript as the

<type>.

Finally, if you think these two exercises are nothing more than “mildly interesting,” you would be making a

profound error in judgment. One of the reasons Flash video rarely appears on government or other publicly

funded/subsidized websites is that video was, for all intents and purposes, inaccessible. The ability to

easily add captioned video and to turn the captions on and off has opened up a market that was otherwise

closed to Flash designers and developers.

www.zshareall.com

http://www.zshareall.com

VIDEO

593

Figure 10-49. The XML cue points can be added using the Properties panel.

Your turn: play with alpha video
In this exercise, we introduce you to a couple of new concepts. The first is that video doesn’t necessarily

need to use the FLVPlayback component and reside on the main timeline for it to work. The second

concept is that just because it is video is no reason for not having fun with it. Let’s start jamming with

video:

1. Open the VideoJam.fla file in the Chapter 10 Exercise folder. You will notice we have provided

the background image.

2. Create a new movie clip symbol, and name it Video.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

594

3. In the Symbol Editor, open the Library, and select New Video from the Library drop-

down menu. Just click OK when the Video Properties dialog box opens.

4. Drag the video object from the Library onto the stage. In the Properties panel, give it the

instance name of myVideo, set its X and Y values to 0, and change its Width and Height

values to 320 and 214.

5. Add a new layer to the movie clip, and name it Actions. Select the first frame of the Actions

layer, open the Actions panel, and enter the following code:

var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(nc);
myVideo.attachNetStream(ns);

ns.client = {};
ns.play("Alpha.flv");

6. Return to the main timeline, select the Video layer, and drag your new movie clip symbol to the

stage.

7. Save and test the movie.

What you have just discovered is video can be put into a movie clip and will still play on the main timeline.

This is an important concept for two reasons:

 The resulting SWF is under 30KB, meaning you can use it in banner ads. In fact, if you want it to

be even smaller, remove the image, and the file size drops to 1KB.

 Objects contained in movie clips are open to creative manipulation.

Let’s continue and check out that last point.

8. Select the movie clip on the stage, and twirl down the Filters area of the Properties panel.

Add a Drop Shadow filter, and apply these values:

 Blur X: 15

 Blur Y: 15

 Strength: 75%

 Quality: High

 Distance: 10

9. Test the movie.

www.zshareall.com

http://www.zshareall.com

VIDEO

595

You’ll see that the people in the video have all developed shadows, as shown in Figure 10-50. This is

because the video, like a box drawn in a Flash file, a Fireworks PNG, or a Photoshop image, contains an

alpha channel. In the case of video, this channel moves, and Flash applies the drop shadow to the

channel. This looks OK, but let’s give the subjects a bit of depth.

Figure 10-50. Filters can be applied to video contained in a movie clip.

10. Select the movie clip on the stage, and add a Bevel filter to the video with these values:

 Blur X: 6

 Blur Y: 6

 Quality: High

 Distance: 3

11. Save and test the movie.

The subjects take on a bit of depth, and you have also added a hint of backlighting, as shown in Figure

10-51. Don’t get aggressive with filters; subtlety counts.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

596

Figure 10-51. Multiple filters can be applied to video.

Hang on, these guys are ghosts. Can you turn them into ghosts? You bet.

12. In the Filters area, select the Drop Shadow filter, and select Knockout, Inner Shadow,

and Hide Object.

13. Test the movie.

You have a 3D ghost. Interesting, but can you do better, of course.

14. In the Filters area, select the Drop Shadow filter and deselect Knockout, Inner Shadow,

and Hide Object.

15. Twirl down Display in the Properties panel.

16. Select the video on the stage, and select Overlay from the Display area’s Blending drop-

down menu.

17. Test the video.

You’ll see that the subjects take on a “ghost-like” appearance, as shown in Figure 10-52.

www.zshareall.com

http://www.zshareall.com

VIDEO

597

Figure 10-52. Don’t be afraid to use the blend modes to create some interesting effects.

Your turn: think big, really big!
In this final exercise in this chapter, we want you to think big, and we mean really big. We are talking full-

screen, HD video. Using the FLVPlayback component to go full-screen has one small issue: the stage is

what goes full screen. That means the content on the stage scales up with it. With HD content—720p and

higher—this put a huge strain on the computer. The solution, which has been part of Flash Player since

Flash Player 9.0.115.0 quietly switched on HD, is to use hardware acceleration.

Hardware acceleration is applied through Flash Player. Simply right-click (Windows) or Control+click (Mac)

any video playing in a web page to open the Flash Player dialog box. Click the Display icon (It looks

like a monitor), and you will see the dialog box shown in Figure 10-53. Select Enable hardware

acceleration, and you are good to go.

www.zshareall.com

http://www.zshareall.com

CHAPTER 10

598

Figure 10-53. Enabling hardware acceleration

We suggest you open the fullScreenRect.fla file in your Exercise folder, and take a peek at the code.

The “magic” is found in the in the goFullScreen function at the end of the code:

function goFullScreen(e:MouseEvent):void
{
 stage.fullScreenSourceRect = screenRect;
 stage.displayState = StageDisplayState.FULL_SCREEN;
}

The first line of the function—stage.fullScreenSourceRect = screenRect;—essentially tells Flash to

create a rectangle that will hover over the stage. This rectangle, in extremely simplistic terms, will be filled

with the video object and the button. The next line tells the stage to pop out to full screen, and when it

does, only the rectangle and its contents are scaled out to full-screen, and hardware acceleration takes

over to play the video.

What we suggest you do is to add this code to your Code Snippets panel and to make the changes

indicated in the comments.

Finally you can use the HTML template—Flash Only: Allow Full Screen—in the Publish

Settings or use Dreamweaver to tell the HTML page to permit full-screen video.

If you want to try it, open the fullScreenRect.html page in your Exercise folder in a browser.

What you have learned
In this chapter, you learned the following:

 How video can be streamed from your web server

 How to use the Adobe Media Encoder

 How to encode video containing an alpha channel

 Several methods of embedding and streaming video without using the FLVPlayback component

 How to display HD content in Flash Player

www.zshareall.com

http://www.zshareall.com

VIDEO

599

 How to add Timed Text captions to a video and how to use the FLVPLaybackCaptioning

component

 An alternate XML captioning approach

 The power of the creative use of filters and blend effects that can be applied to video

This has been quite the chapter, and we suspect you are just as excited about the possibilities of Flash

video as we are. The key to the use of Flash video is really quite simple: keep an eye on the pipe. The

Adobe Media Encoder is one of the most powerful tools in the Flash video arsenal, and mastering it is the

key to Flash video success. From there, as we showed you in several exercises, the only limit to what you

can do with Flash video is the one you put on your creativity. Just don’t overdo it. Video need to be

regarded as content not entertainment and just because “I can do it” is no reason to use it. Video, now, is

nothing more than a JPEG image on the stage, and there must be a valid reason for its inclusion.

As you started working with the Flash video components, we just know you were wondering, “How do

those user interface components work?” Great question, and we answer it in the next chapter.

www.zshareall.com

http://www.zshareall.com

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

601

Chapter 11

Building Interfaces with the UI Components

Since early in its life, Flash has proven itself the leader in web animation. In recent years, that dominance

has nudged into the realm of online applications as well. For user-facing applications, you need user

interface (UI) elements, plain and simple—something to receive input from the person viewing your

content or display information in a specific way, such as in a grid or selection box. Sure, you’ve already

seen how button symbols work, and you’re aware that input text fields accept hand-typed content. They

are a good start, but they are really nothing more than the tip of the iceberg.

The UI components that ship with Flash CS5 are a major improvement over the set that first appeared in

Flash 8, in a number of ways: they are smaller (much smaller), they perform better, (faster), and they are

much easier to customize.

As a bonus, Flash CS5 even gives you the previous set, known as the v2 components,

but those work only with ActionScript 2.0. That’s an important point! They’re for

publishing older movies if you find that necessary. Choosing the Flash document type or

changing your publish settings between ActionScript 3.0 and 2.0 automatically updates

the Components panel to offer the correct set. You cannot mix and match components

designed for different versions of ActionScript. If you were to use ActionScript 1.0, you

would lose the UI components altogether!

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

602

Here’s what we’ll cover in this chapter:

 Using the Flash CS5 UI components

 Using ActionScript 3.0 to control components

 Changing component skins

The following files are used in this chapter (located in Chapter11/ExerciseFiles_Ch11/Exercise/):

 Button02.fla

 ButtonTarget.fla

 StyleComponent.fla

 CheckBox.fla

 ColorPicker.fla

 ComboBox.fla

 DataGrid.fla

 Label.fla

 List.fla

 NumericStepper.fla

 ProgressBar.fla

 RedLeaves.jpg

 RadioButton.fla

 ScrollPane.fla

 Slider.fla

 TextArea.fla

 TextInput.fla

 TileList.fla

 Mug01.jpg–Mug08.jpg

 UILoader.fla

 Canoe.jpg

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

Anyone familiar with HTML development knows how easy it is to add a check box, radio button, or other

form element into a document. These are usually used in “Contact Us” pages, online surveys, and other

application scenarios. Flash components provide you the same set of “widgets,” but you also get a whole

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

603

lot more, including components not possible in a browser alone. A smidgen of ActionScript is required to

wire up components, but for the most part, adding them is a drag-and-drop operation.

Out of the box, the Flash UI components are styled in a modest, attractive manner that comfortably fits a

broad range of designs. Of course, Flash being what it is—free from the relative constraints of HTML—you

may want to customize their appearance, and you can. Designers and developers familiar with Flash 8

might warn you with a shudder that you’re in for a barrel of headaches. Tell the old-timers they can breathe

easy. Things have improved considerably in Flash CS5.

We’ll start our exploration with the Button component and spend a bit more time with it than the others,

simply because once you “get it,” you get it. To be sure, certain components are more complex than

others, and we certainly won’t skimp as we visit each one. But if you’re a complete newcomer, you may

want to read through the “Button component” section first, and then breeze through the other headings

until you find components of interest to you.

Button component
At first glance, the Button component is just another button symbol, but the two shouldn’t be confused.

As discussed in Chapter 3, button symbols have a specialized timeline, made of Up, Over, Down, and Hit

frames. As such, button symbols are very flexible: Over artwork can be made to spill over the button’s Up

shape, paving the way for quick-and-dirty tooltips and other tricks. Hit artwork can make the button

invisible—but still clickable—if it is the only frame with content. In contrast, the Button component has no

discernable timeline. It’s a self-contained component and is much more conservative (at first glance) than

its wild, partying cousin the button symbol. Figure 11-1 shows an example of the Button component.

We also need you to prepare yourself. We are going to be spending what may, to you, seem to be an

inordinate amount of time on something so simple. In actual fact, much of what we are going to talk about

applies to all of the components. It is time well spent.

Figure 11-1. The Button component—pretty conservative, even without the tie

Using one or more instances of the Button component in your movie will add 15KB to

the SWF if no other components share the load.

Using the Button component

What makes the Button component so special? In two words, consistency and toggleability. The first of

those, consistency, will be evident in each of the components we visit. If you accept the default skin for

every component, you’ll get a reliable uniformity among your UI widgets. The second word (OK,

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

604

toggleability isn’t actually a word) means that you get a button that optionally stays enabled after you click

it and releases when you click it a second time. This useful feature is possible without a lick of ActionScript

knowledge. Here’s how:

1. Create a new Flash document, and click the Components button on the toolbar to open the

Components panel.

2. In the Components panel, twirl down the User Interface branch. When it opens, you’ll see

the list of available UI components. Drag an instance of Button to the stage, as shown in Figure

11-2.

Figure 11-2. Adding a UI component to the stage is as easy as dragging and dropping.

Doing this drops a copy of the Button component and a folder named Component Assets into your

Library. You can ignore the Component Assets folder for the time being. Any time you want additional

Button instances from this point forward, drag them from your Library.

3. To give your button an instance name, click it on the stage, and then type myButton into the

Instance Name field of the Properties panel.

Under normal circumstances, you should make your instance name something more meaningful—say,

btnContact or submitForm —but for now, myButton will do.

4. If you like, use the Free Transform tool to change the dimensions of the button. Note that it

resizes much like any symbol, but its text label stays the same size.

Skewing or rotating the button makes its label disappear because font outlines in

components are not embedded by default. See Chapter 6 for more information font

embedding.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

605

5. Out of the box, the button’s label is the self-descriptive term Label. Let’s change that. Open the

Properties panel, twirl down Component Parameters, and double-click the right column in

the label row. Change the word Label in the Value column to Activate, as shown in Figure

11-3. When this button becomes a toggle, you’ll make it actually activate something. For now,

leave the toggle parameter at its default setting of deselected.

Figure 11-3. Instance names and parameters are now found in the Properties panel.

6. Rename your button’s layer from Layer 1 to button, and create a new layer. Name the new

layer scripts, and lock that layer.

Wait a minute! Wasn’t this exercise supposed to happen “without a lick of ActionScript knowledge”? In fact,

it does. The configuration of your button—even the toggling part you’ll see in step 9—all takes place within

the Properties panel. The following code simply demonstrates that the button actually works (for an

explanation of what this ActionScript does, see Chapter 4). ActionScript isn’t required to get the toggle to

do its thing.

7. Click inside frame 1 of the scripts layer. Open the Actions panel (Window ➤ Actions), and

enter the following ActionScript:

myButton.addEventListener(MouseEvent.CLICK, clickHandler);
function clickHandler(evt:MouseEvent):void {
 trace("By George, I've been clicked!");
}

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

606

8. Test your movie (to verify that a button click sends the message “By George, I’ve been clicked!”

to the Output panel).

9. To make this button a toggle, return to the Properties panel’s Component Parameters area,

and click the toggle parameter to add a check mark. Test the movie again, if you like, to confirm

that the button now stays in when you click it and pops out again when you click it a second time.

Compare your work with Button01.fla in the Complete folder for this chapter.

The parameters available in the Component Parameters tab are also available via

ActionScript. They’re simply properties of the component’s class. For example, instead

of using the Properties panel to change the toggle parameter, you could have

referenced the component’s instance name:

myButton.toggle = true;
myButton.addEventListener(MouseEvent.CLICK, clickHandler);
function clickHandler(evt:MouseEvent):void {
 trace("By George, I've been clicked!");
}

Note the use of the assignment operator (=), which sets a value, rather than the

comparison operator (==), which consults a value. Properties set with ActionScript

override parameters set in the Properties panel.

Adding button events

To actually make use of this toggled/untoggled state, you will need to use the BaseButton.selected

property of the Button component instance on the stage. Many button-like components, including

Button, CheckBox, and RadioButton, inherit from the BaseButton class family tree. This means they

support a selected property, just as their ancestor does. The button’s instance name lets you access this

property easily.

1. Open the Button02.fla file in this chapter’s Exercises folder. This file picks up where we left

off in the previous exercise. The only difference is a movie clip containing a JPEG image has

been added to the Library. You’re going to make this movie clip draggable, but only when the

button is enabled.

2. Create a new layer, and name it Weird Viking. Select the new layer, and drag an instance of

the movie clip viking to the stage. Give this movie clip the instance name dude.

3. In the scripts layer, select frame 1, and add the following new ActionScript beneath the

existing code:

dude.addEventListener(MouseEvent.MOUSE_DOWN, dragViking);
function dragViking(evt:MouseEvent):void {
 if (myButton.selected == true) {

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

607

 dude.startDrag();
 }
};
dude.addEventListener(MouseEvent.MOUSE_UP, dropViking);
function dropViking(evt:MouseEvent):void {
 dude.stopDrag();
};

The key here is the if statement in the MouseEvent.MOUSE_DOWN handler, which is a custom function

named dragDude(). The if evaluates the button’s selected property as described previously. When it’s

set to true, dragging commences by way of the MovieClip.startDrag() method, as shown in Figure

11-4; otherwise, dragging is ignored. In the MouseEvent.MOUSE_UP handler, dragging is stopped.

Figure 11-4. Checking the button’s selected property means that you can perform actions only when the

button is clicked.

To see the full list of events available to the Button component, look up the

BaseButton class in the ActionScript 3.0 Language and Components Reference. Don’t

forget to select the Show Inherited Styles hyperlink beneath the Events heading!

4. For extra credit, let’s handle the MouseEvent.CLICK event to add a bit of polish. Press the Enter

(Windows) or Return (Mac) key a couple times after the existing code and type the following

additional ActionScript:

myButton.addEventListener(MouseEvent.CLICK, clickHandler);
function clickHandler(evt:MouseEvent):void {
 if (myButton.selected == true) {
 dude.buttonMode = true;
 } else {
 dude.buttonMode = false;
 }
};

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

608

What’s going on? This is nothing more than a third event handler. This one listens for a click and then

triggers a custom function named clickHandler(). The function uses an if statement, just as you saw in

the previous step, but this time, the evaluation sets the MovieClip.buttonMode property of the dude

instance to true or false, depending on the toggled state of the button. When the button is toggled, the

mouse cursor turns into a finger pointer as it rolls over dude. When the button is not toggled, the cursor

remains in its default state: an arrow.

Referencing components in event handlers

In the previous code example, the Button component was referenced directly by its instance name in the

event handler function. Here’s another look, just as a reminder, with the instance name in bold:

function clickHandler(evt:MouseEvent):void {
if (myButton.selected == true) {
 dude.buttonMode = true;
 } else {
 dude.buttonMode = false;
 }
};

There’s another way to get to that button—another way to make that same reference—and it can come in

handy when you have numerous instances of a given component on the stage. Why? Because although

you could write a separate function to handle events for each component, you might want to consolidate

your functions in order to reduce complexity in your code.

First, consider a scenario with three Button components. Their label parameters are set to Apples,

Bananas, and Pears in the Properties panel, and their instance names, respectively, are set to btn1,

btn2, and btn3 in the Properties panel. If you want to populate a dynamic text field whose instance

name is output with the most recently clicked Button‘s label, you could do it like this:

btn1.addEventListener(MouseEvent.CLICK, clickHandler1);
btn2.addEventListener(MouseEvent.CLICK, clickHandler2);
btn3.addEventListener(MouseEvent.CLICK, clickHandler3);

function clickHandler1(evt:MouseEvent):void {
 output.text = btn1.label;
};
function clickHandler2(evt:MouseEvent):void {
 output.text = btn2.label;
};
function clickHandler3(evt:MouseEvent):void {
 output.text = btn3.label;
};

So far, nothing new—and ultimately, nothing wrong. The code works, but it could be written in a more

compact way. Consider the following abbreviated version:

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

609

btn1.addEventListener(MouseEvent.CLICK, clickHandler);
btn2.addEventListener(MouseEvent.CLICK, clickHandler);
btn3.addEventListener(MouseEvent.CLICK, clickHandler);

function clickHandler(evt:MouseEvent):void {
 output.text = evt.target.label;
};

In this case, all three buttons are associated with the same function, clickHandler(), rather than the

individualized clickHandler1(), clickHandler2(), and clickHandler3(). So, how does the Button

referencing work? The individual instance names are no longer part of the picture.

It all hinges on the evt variable between the function’s parentheses. That variable, evt, points to an

instance of the MouseEvent class—namely, the event triggered (MouseEvent.CLICK) when the user clicks

any of the Button components. The click itself is an object. As such, evt features whatever properties

and other class members are defined by the MouseEvent class. One of those properties is target

(inherited from the Event class), which points to the object that dispatched the event in the first place.

Here, the dispatcher is going to be btn1, btn2, or btn3, and the expression evt.target is as good a

reference as any of those instance names. Because the expression evt.target points to an instance of

the Button class, you can tack label onto the end of it. See the ButtonTarget.fla file in this chapter’s

Complete folder for a working example of the code just discussed.

Considering UI component weight

One final note before we start playing with the look of this component. Unlike normal Library assets, UI

components add to the weight of your movie whether or not they’re used. This is why seasoned Flash

developers regard these things in much the same way Dracula regards garlic. The reason for this is that

components are set to export for ActionScript. Right-click (Windows) or Control+click (Mac) any

component in your Library, and choose Properties to see for yourself in the Linkage area of the

Symbol Properties dialog box.

The first UI component in your movie usually adds the most weight, proportionately speaking, to the SWF.

Some components weigh more than others, but all of them rely on a base framework that provides

functionality for the whole set. For this reason, your first instance of Button will add 15KB. The second

and third instances won’t add anything. Your first CheckBox instance, on its own, will add 15KB, and

additional CheckBox instances will add nothing. However, if you already have a Button instance in the

movie and then add a CheckBox, the combined total of both components is only 16KB.

To remove the weight of these components—in case you change your mind and decide

to omit them from your design—delete the component(s) and Component Assets

folder from the Library.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

610

Changing the Button component’s appearance

What you’re about to see can be achieved with most of the UI components, not just Button. (Some

components have little or no visual element, so there are exceptions.) This is good news, because it

means you’ll get the basic gist right off the bat.

There are two ways to alter a UI component’s appearance:

 Skinning, which generally deals with the material substance of the component, such as the

shape of the clickable surface of a button or the drag handle of a scrollbar

 Styling, which generally deals with text, style, and padding

Skinning

Before Flash CS3, the practice of skinning UI components was an exercise in alchemy. Only the wisest

and purest of wizards would trust themselves to toss mysterious ingredients into the frothing cauldron. All

of that changed when the components were rewritten for ActionScript 3.0, and the improvement remains

intact in Flash CS5. In fact, it couldn’t get much easier. Here’s how:

1. Create a new Flash document, and drag an instance of the Button component to the stage.

Double-click the button, and you’ll see a convenient “buffet table” of the various visual states

available to the button, as shown in Figure 11-5.

Figure 11-5. Skinning UI components is really easy.

2. The up skin is the button’s default appearance. Double-click that, and you’ll come to the symbol

that represents the up skin for this component, complete with 9-slice scaling, as shown in Figure

11-6. This particular skin happens to be made of three layers.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

611

Figure 11-6. A mere two levels in, and you’re ready to change the appearance of the button.

3. Select an area in one of these layers, and change the button’s appearance, perhaps like Figure

11-7. The choice is yours. Make sure that the existing shapes, or any new ones, align to the

upper left (0,0) of the symbol’s registration point. Adjust the 9-slice guides as necessary.

Figure 11-7. Adjust the existing shapes or create new ones.

4. Select Edit ➤ Edit Document or click the Scene 1 link to return to the main timeline. What

the...? In the authoring environment, your button hasn’t changed. Folks, this is a fact of life with

skins in Flash: there is no preview mode for skinning.

5. Test your movie to see that your alteration appears, for both buttons, as the new up skin in the

published SWF. Click any button to verify that the remaining skins (for example, down) function

as before. To see this in action, we have included an SkinButton.fla file in this chapter’s

Complete folder.

To reskin a component completely, every skin symbol must be edited or replaced.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

612

Styling components

As you’ve seen, components are easy enough to customize, even if a complete job takes some effort. You

may have noticed an important omission, however, while poking around the skin symbols. Even though the

Button component features a text label, none of the skins contains a text field. What if you want a

different font in there, or at least a different color? ActionScript to the rescue.

Each component has its own list of styled elements. Many overlap, but you can see the definitive list for

each in the class entry for that component. For example, find the Button class entry in the ActionScript 3.0

Language and Components Reference, and then browse the Styles heading, as shown in Figure 11-8.

Don’t forget to click the Show Inherited Styles hyperlink to see the full listing. Remember, the

Button class gives you details on the Button component; the SimpleButton class gives you details on

button symbols.

Components that include text elements, such as the Button component, support the inherited

UIComponent.textFormat style, which lets you make changes to the button’s text label. Other button

styles include the inherited LabelButton.icon, which lets you specify an optional image for the button in

addition to text.

Figure 11-8. The full list of the Button component’s styles can be found in the Help menu.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

613

For this sort of styling, ActionScript allows you to affect the following:

 All components in a document

 All components of a certain type (for example, all Button components)

 Individual component instances

Let’s see it in action:

1. Open the StyleComponents.fla file in the Chapter 11 Exercise folder. You’ll see three

instances of the Button component and one of the CheckBox component, as shown in Figure

11-9. Note that each has its own label.

Figure 11-9. Styling is about to change these components.

2. Click once in the first frame of the scripts layer. Open the Actions panel, and type the

following ActionScript into frame 1 of the scripts layer:

import fl.managers.StyleManager;
import fl.controls.Button;

var fmt1:TextFormat = new TextFormat();
fmt1.bold = true;
fmt1.color = 0xFF0000;

var fmt2:TextFormat = new TextFormat();
fmt2.bold = false;
fmt2.color = 0x0000FF;

StyleManager.setStyle("textFormat", fmt1);
StyleManager.setComponentStyle(Button, "textFormat", fmt2);
btn2.setStyle("icon", "star");

3. Test the movie.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

614

You’ll notice the following changes:

 The check box’s label is red and bold.

 The buttons’ labels are blue and not bold.

 The second button contains an icon.

Chapter 6 discusses the TextFormat class in detail, but there are a few twists here that deserve some

clarification.

First up are the opening two lines, which use the import statement. We’ve been sidestepping this one so

far because the import statement isn’t often necessary in timeline code. In ActionScript 3.0 class files—

that is, code written outside Flash altogether—the import statement is not only more prevalent, but it’s

actually required in order let the compiler know which other classes you intend to use. In contrast, Flash

takes care of this for you—for the most part—in keyframe scripts. This just happens to be an exception.

Without those first two lines, Flash will get confused about what you mean later when you mention

StyleManager and Button directly.

These hierarchical class arrangements are called packages. To find the package for

other components so that you can carry the preceding styling knowledge to other

scenarios, look up the component’s class in the ActionScript 3.0 Language and

Components Reference. When you’re looking at the component’s class entry, you’ll see

a number of headings immediately beneath the name of the class, including Package,

Class, and Inheritance. The Package heading is the one you want. Most

components, including Button, belong to the fl.controls package. As an example of

the oddball, ScrollPane belongs to the fl.containers package. In keyframe scripts,

you only need to import classes outside the flash package, such as fl.managers,

fl.controls, fl.containers, and the like.

Two variables, fmt1 and fmt2, are declared and set to instances of the TextFormat class, and each is

given its own styling. Here’s where it gets interesting.

The StyleManager class has two methods you can use to apply styling to components. The first of these,

StyleManager.setStyle(), applies formatting to all components. In this case, we’re setting the

textFormat style of all components—specifically, all components that have a textFormat property—to

the fmt1 instance of the TextFormat class. We programmed this style to make text red (0xFF0000) and

bold, and it is indeed applied to all three buttons and the check box. You can specify any styling you like,

and the textFormat style is common to many components.

“Wait a minute, guys,” you may be saying. “Only the check box is red!” This is true. The reason for this is

the other method, StyleManager.setComponentStyle(). That one applies styling to all components of a

certain type, which explains why it accepts three parameters. Here, we’ve specified Button and then set

the textFormat style of all Button instances to fmt2. This overrides the red, bold formatting of fmt1

applied in the previous line. Comment out the second StyleManager line:

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

615

StyleManager.setComponentStyle(Button, "textFormat", fmt2);

And now test your movie again to prove it.

A good way to tell which style will take effect is to remember this: the more specific the style—for example,

Button components vs. all components—the higher priority it takes. If you holler to everyone in the room

(StyleManager.setStyle()), giving instructions to wear green scarves, then everyone will do so. If you

holler a second time, telling only the tall people to change their scarves to purple

(StyleManager.setComponentStyle()), then only the tall people will comply. The instruction you’ve

given the tall people is more specific—it applies only to people taller than six feet—and because of that,

you can rest assured that, given the choice between two sets of instruction, the tall folks will follow the

more specific set and wear purple.

This precedence goes a step further: the UIComponent.setStyle() method is invoked directly and

specifically on a particular instance of the Button class, which in this case is the component whose

instance name is btn2. It works just like StyleManager.setStyle() in that it accepts two parameters:

the style to change and its new setting. Here, the LabelButton.icon style, which Button inherits, is set

to "star", which refers to the linkage class of the star asset in the Library. Right-click (Windows) or

Control+click (Mac) the star asset, and choose Properties to verify this.

And now you’ve had a quick tour of the lobby and one of the rooms here at the UI Component Hotel. There

are other rooms, of course, some more elaborate than others, but the layout for each is basically the same.

CheckBox component
You met CheckBox briefly in the “Button component” section, but let’s take a closer look. This component

is essentially a toggle button with its label on the side. Click the box or its label, and the box gets a check

mark, as shown in Figure 11-10. Click again, and the check mark goes away.

Figure 11-10. The CheckBox component is essentially a toggle button with its label on the side.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

616

The Component Parameters tab of the Properties panel is fairly light for CheckBox:

 label: Sets the text label

 labelPlacement: Determines the position of the label (left, right, top, or bottom)

 selected: Lets you display an instance with the check mark showing by default

Double-click any CheckBox instance to change the skinning for all. Styling works as described in the

“Button component” section.

Using one or more instances of the CheckBox component in your movie will add 15KB

to the SWF if no other components share the load.

Let’s take a look at how to interact with check boxes via ActionScript:

1. Open the CheckBox.fla file in this chapter’s Exercise folder. Note that each CheckBox

instance has its own label and instance name.

2. Open the Actions panel, and enter the following ActionScript into frame 1 of the scripts layer:

addEventListener(Event.CHANGE, changeHandler);

function changeHandler(evt:Event):void {
 var str:String = "";
 if (cb1.selected == true) {
 str = "Wrong. Try again." + "\n";
 }
 if (cb2.selected == true) {
 str = "Wrong. Try again." + "\n";
 }
 if (cb3.selected == true) {
 str = "Correct!";
 }
 output.text = str;}

This assigns an event handler to the main timeline, listening for Event.CHANGE events. This event handler

could have been attached to each CheckBox instance individually, but by doing it this way, the events of

all three can be handled at the same time. When any of the three CheckBox instances is changed by

clicking, each member of the group is checked in turn—via the CheckBox.selected property—to see

whether it is selected. If so, the value of its label is added to a string that is ultimately assigned to the

Textfield.text property of a text field beneath them.

3. Save and test the movie. Click the boxes, and see how the code adds the associated text.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

617

ColorPicker component
ColorPicker is a fun component, because nothing like it exists in the realm of HTML—at least, not

without a swarm of complicated JavaScript! But of course, color pickers are common in applications like

Microsoft Word, Adobe Photoshop, and even Flash itself. In a nutshell, the ColorPicker component is a

clickable color chip that reveals an assortment of colors when selected, as shown in Figure 11-11. It allows

the user to choose one of the presented colors or optionally to type in a hexadecimal value, and then the

chosen color is available for use.

Using one or more instances of the ColorPicker component in your movie will add

19KB to the SWF if no other components share the load.

Figure 11-11. The ColorPicker component lets users choose from a range of colors.

Double-clicking a ColorPicker instance inside the authoring environment makes its skins editable, and

styling works the same as it does for the Button component. The palette of colors displayed by this

component is also editable but requires just a bit of ActionScript, as shown in the following example:

1. Open the ColorPicker.fla file in this chapter’s Exercise folder, and note that the component

itself has the instance name cp. The text field next to it has the instance name paragraph, and

the text in the container consists of the first paragraph of this section.

2. Click into frame 1 of the scripts layer, and open the Actions panel. You will see the following

ActionScript:

var fmt:TextFormat = new TextFormat();

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

618

cp.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 fmt.color = cp.selectedColor;
 paragraph.setTextFormat(fmt);
};

Here, a variable, fmt, is declared and set to an instance of the TextFormat class. An Event.CHANGE

event listener is assigned to the ColorPicker instance, cp. This event listener does two things. First, it

sets the TextFormat.color property of the fmt instance to the selected color of the cp instance (see

Chapter 6 for more information about the TextFormat class). Second, it applies that format to the text field

with the instance name poem.

3. Let’s determine which colors to display. Update the existing ActionScript to look like this (new

code in bold):

var fmt:TextFormat = new TextFormat();

cp.colors = new Array(
 0x6E1E46,
 0xA12F1C,
 0xD47565,
 0x557A40,
 0x79A11C
);
cp.selectedColor = cp.colors[0];

cp.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 fmt.color = cp.selectedColor;
 paragraph.setTextFormat(fmt);
};

Specifying your own color palette couldn’t be easier. Just provide the desired hexadecimal values—up to

1,024 individual colors—as array elements to the ColorPicker.colors property of your component

instance (note the 0x prefix for each color that indicates the hexadecimal format). If you specify your own

colors, as shown, the default palette is replaced altogether, and your chosen colors run left to right,

wrapping if necessary, as seen for the default colors in Figure 11-11. To see the color chip display color,

set the ColorPicker.selectedColor property. (Here, it’s set to the first element in the colors array.)

4. Drag the ColorPicker instance to the lower-right corner of the stage.

5. Test the movie to see that the pop-up color palette is smart enough to position itself to the upper

left of the color chip.

Note that in the Component Parameters tab of the Properties panel, the color palette’s text field can

be hidden by deselecting the showTextField parameter. You’ll also see that you can set the

component’s selectedColor property as a parameter.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

619

ComboBox component
The ComboBox component is similar to the <select> element in HTML, except that it doesn’t have the

<select> element’s optional size and multiple attributes. ComboBox gives users the ability to make

one selection at a time from a drop-down list, as shown in Figure 11-12. In addition, the component can be

made editable, which lets the user manually type in a custom selection.

Figure 11-12. ComboBox lets users make one selection at a time from a drop-down list.

ComboBox skinning is a little more complicated than Button skinning, but the basic approach is the

same. The complexity stems from the fact that the ComboBox combines two other components: List and

TextInput (which are described later in this chapter).

Adding a ComboBox instance to your movie puts three components into your Library—ComboBox,

List, and TextInput—plus the Component Assets folder used by all UI components. Double-clicking

a ComboBox instance in the authoring environment opens the first tier of skins (see the left image in Figure

11-13). Double-clicking the List element in this tier opens the skins for the embedded List component

(the right image in Figure 11-13).

Using one or more instances of the ComboBox component in your movie will add 35KB

to the SWF if no other components, other than the automatically included List and

TextInput, share the load.

In turn, the skins for List include a third tier for scrollbars. In spite of this nesting, individual skins are

nothing more than symbols, usually with 9-slice guides, such as the up and over skins for the Button

component. Styling works the same as it does for the Button component.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

620

Figure 11-13. ComboBox skins (left) include nested elements, such as List skins (right).

Let’s experiment with ComboBox:

1. Open the ComboBox.fla file in this chapter’s Exercise folder, and select the ComboBox

instance on the stage. Note that in the Component Parameters tab of the Properties panel,

some information has already been entered into the dataProvider parameter, as shown in

Figure 11-14. This is an array of objects, each of which represents the visible portion of a drop-

down choice (label) and the hidden value each label contains (data).

Figure 11-14. An array of objects defines the labels and data that populate a ComboBox.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

621

2. Double-click the right column of the dataProvider row to open the Values dialog box, as

shown in Figure 11-15.

Figure 11-15. The Values dialog box lets you specify the content and order of a ComboBox instance.

3. Click the + button at the top left of the Values dialog box to create a new entry, which will appear

below the existing Circle entry.

4. Double-click the right column of the label0 row, and change the existing stand-in label to

Square. Double-click the right column of the data row, and enter the value square. Pay

attention to the capitalization. Click OK to close the Values dialog box.

5. Test your movie to verify that the combo box now includes a Square choice that changes the

shape to its right.

How does this work? Let’s take a look. The shapes symbol in the Library contains a series of shapes

drawn every few frames of its own timeline. Frame labels are provided for each shape, and it is these

frame labels that are represented by the data row in the Values dialog box.

6. Click into frame 1 of the scripts layer to see the ActionScript that pulls this off:

cbx.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 shapes.gotoAndStop(cbx.selectedItem.data);
};

The ComboBox instance is referenced by its instance name, cbx. An Event.CHANGE event triggers a

custom function, changeHandler(), that tells the shapes instance—a movie clip—to stop at a particular

frame label. The frame label is determined by the data property of the ComboBox component’s currently

selected item. How? This is accomplished by way of the ComboBox.selectedItem property, which

features the label and data parameters supplied in the Component Parameters area of the

Properties panel.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

622

7. To populate the ComboBox component by way of ActionScript, add the following line before or

after the existing code:

cbx.addItem({label:"Triangle", data:"triangle"});

This is pretty straightforward! The other parameters in the Component Parameters area are just as

intuitive:

 editable: Determines whether the user can type in a custom selection (if so, check for this

value by referencing the ComboBox’s instance name and then the text property)

 prompt: Determines the default text (in this example, the phrase “Select a shape”)

 rowCount: Determines how many selections to show in the drop-down list (if there are 15

selections and the value of rowCount is 5, only five will show, but the rest will be available with a

scrollbar).

DataGrid component
The DataGrid component is the one of the more complex components in the UI arsenal. Its purpose falls

almost entirely in the realm of ubergeek interface programmers, but we’re going to give you a cursory look,

including a basic sample file. In short, the DataGrid component gives you a spreadsheet-like, sortable

display for tabular data, as shown in Figure 11-16.

Figure 11-16. DataGrid displays scrollable, sortable tabular data.

Using one or more instances of the DataGrid component in your movie will add 40KB

to the SWF if no other components share the load.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

623

Open the DataGrid.fla file in this chapter’s Exercise folder for a working demonstration. Click into

frame 1 of the scripts layer to see the ActionScript. Here’s a bird’s-eye view of that code:

dg.addColumn("num");
dg.addColumn("eng");
dg.addColumn("ger");
dg.addColumn("fre");

These first lines reference the DataGrid component’s instance name, dg, and instruct the component to

add four columns. These column names are arbitrary and, here, represent a column for numbers and then

their English, German, and French equivalents.

dg.addItem({num:1, eng:"one", fre:"un", ger:"eins"});
dg.addItem({num:2, eng:"two", fre:"deux", ger:"zwei"});
dg.addItem({num:3, eng:"three", fre:"trois", ger:"drei"});
dg.addItem({num:4, eng:"four", fre:"quatre", ger:"vier"});
dg.addItem({num:5, eng:"five", fre:"cinq", ger:"fünf"});
dg.addItem({num:6, eng:"six", fre:"six", ger:"sechs"});
dg.addItem({num:7, eng:"seven", fre:"sept", ger:"sieben"});
dg.addItem({num:8, eng:"eight", fre:"huit", ger:"acht"});
dg.addItem({num:9, eng:"nine", fre:"neuf", ger:"neun"});
dg.addItem({num:10, eng:"ten", fre:"dix", ger:"zehn"});

You cannot populate the DataGrid from the Component Parameters area of the Properties panel,

and we’re sure you can see why. It’s much easier to type in the data in the relatively spacious environs of

the Actions panel. Here’s how to give each column a name:

dg.getColumnAt(0).headerText = "Numeric";
dg.getColumnAt(1).headerText = "English";
dg.getColumnAt(2).headerText = "German";
dg.getColumnAt(3).headerText = "French";

These lines make the header text a bit “friendlier” to the eye.

Test the movie to see how it all comes together. Click the headers to sort each column. When you sort the

Numeric column, you’ll see something odd. By default, sorting is alphabetical, which puts the numbers 1

and 10 right next to each other. To fix that for columns that contain numerical data, remove the comment

(//) from the final line of ActionScript so that it looks like this:

dg.getColumnAt(0).sortOptions = Array.NUMERIC;

What about retrieving which cell has been selected? The selectedItem property for the

DataGrid component returns the contents of the whole row you click, not just the

clicked cell. It is possible to return the selected cell, but it requires something called the

CellRenderer class and more ActionScript, and frankly, it rockets way out of the

atmosphere that makes this book breathable.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

624

Label component
Label is something of an oddball in the UI components collection. Unless you’re an avid programmer,

we’re almost certain you’ll want to forego Label in favor of a text field (covered in Chapter 6). Why?

Practically speaking, from a designer’s point of view, Label doesn’t really do anything that can’t be

accomplished with a text field—and besides, by using a text field, you’ll save the 14KB that an instance of

Label would have brought to the table.

Labels don’t really have skins, and double-clicking an instance will tell you as much. Styling works the

same as for Button, but again, trust us on this one...just use a text field. If you still want to see a Label

component in action, check out Label.fla in the Exercise folder.

List component
The List component is akin to the <select> element in HTML when its optional size and multiple

attributes are specified. This component is basically a ComboBox component without the drop-down

aspect—it’s always dropped down—and it allows multiple selections, as shown in Figure 11-17.

Figure 11-17. The List component is scrollable and optionally allows multiple selections.

Like ComboBox, the List component has nested skins, so when you double-click an instance in the

authoring environment, the skins become available for editing in tiers. Styling is handled the same way as

described in the “Button component” section.

Using one or more instances of the List component in your movie will add 29KB to the

SWF if no other components share the load.

The Component Parameters area in the Properties panel is relatively hefty for the List component,

as shown in Figure 11-18. Most of the choices pertain to scrolling (the distance to scroll horizontally and

vertically, whether scrolling should be automatic or constant, and so on). The important parameters are

allowMultipleSelection and dataProvider.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

625

Figure 11-18. The data and the labels are added in the dataProvider area.

To populate your user’s choices in a given List instance, double-click the right column of the

dataProvider row, and use the Values dialog box, as described in the “ComboBox component”

section. Selecting allowMultipleSelections (the default value is does not have the check mark) lets

your users hold down Ctrl (Windows) or Cmd (Mac) while they click in order to select more than one of the

listed choices (this is like the multiple attribute in HTML).

To see how List works, open the List.fla file in this chapter’s Exercise folder. Note that the instance

name for the List instance is list, which works only because ActionScript is a case-sensitive

language—you couldn’t call it List, because that’s the name of the class that defines this object. In your

own work, you’ll want to use an instance name that describes the list’s use (in this case, that might be the

word ingredients). Note that the dynamic text field, next to the List instance, has the instance name

output.

Click into frame 1 of the scripts layer, and type the following ActionScript:

list.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 var str:String = "The secret ingredient(s): ";
 for (var i:uint = 0; i < list.selectedItems.length; i++) {
 str += list.selectedItems[i].data;
 if (i < list.selectedItems.length - 1) {
 str += ", ";
 } else {
 str += ".";
 }
 }
output.text = str;
};

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

626

This one may look more complicated than it actually is, so let’s break it down. As always, we’re using

addEventListener() to associate a custom function with an event. In this case, the event is

Event.CHANGE, and the function, named changeHandler(), does three things.

1. First, the variable str holds the phrase "The secret ingredient(s): ".

var str:String = "The secret ingredient(s): ";

2. Next, a for loop repeats a particular set of actions. The duration of the loop depends on the

number of selected items, based on the Array.length property of the selectedItems property

of the List component. The variable i starts at zero and increments at each “lap” around the

loop, so that this line:

str += list.selectedItems[i].data;

refers to the first selected item (item 0) on the first lap, then the second selected item (item 1) on

the second lap, and so on. There’s a .data tacked onto the end because List items are made

up of two parts: label and data, which are—bingo!—the elements that make up the

dataProvider parameter described previously. An if statement adds a comma between items

in the middle and a period after the item at the end.

3. Finally, the str variable, which has continuously been updated by this process, is set to the

TextField.text property of the output instance.

The net result is that List selections populate a dynamic text field with the ingredients of Kraft Cucumber

Ranch salad dressing.

For extra credit, add the following line after the existing ActionScript:

list.addItem({label:"Ingredient 11", data:"natural flavor"});

This shows that it’s also possible to populate a List instance programmatically.

NumericStepper component
NumericStepper is a compact little gadget that lets the user specify a numeric value, either by typing it

in or by clicking up and down arrow buttons, as shown in Figure 11-19. For example, let’s assume you

have 10 widgets for sale. The numeric stepper component restricts a user from ordering 11 widgets. You,

as a designer, can specify your own desired minimum and maximum values, as well as the size of each

increment (count by ones, by twos, by tens, and so on). These values can be set via the Component

Parameters area of the Properties panel.

Figure 11-19. The NumericStepper component

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

627

NumericStepper’s skins can be edited by double-clicking an instance, and styling can be applied as

described in the “Button component” section. This component carries with it the TextInput component,

so you’ll see both in your Library if you add NumericStepper to your movie.

Using one or more instances of the NumericStepper component in your movie will

add 18KB to the SWF if no other components (other than the automatically included

TextInput) share the load.

Let’s play with the NumericStepper component:

1. Open the NumericStepper.fla file in the Chapter 11 Exercise folder. Note that the

NumericStepper instance has the instance name ns and that the thermometer movie clip

has the instance name thermometer.

2. In the Library, double-click the thermometer movie clip to enter its timeline, and you’ll see a

red rectangle (masked by a green shape) with the instance name mercury, as shown in Figure

11-20. You’re going to set the height of this nested movie clip based on the value of the

NumericStepper.

Figure 11-20. The mercury will rise and fall in response to NumericStepper clicks.

3. Select Edit ➤ Edit Document, or double-click the Scene 1 link to return to the main timeline.

4. Click into frame 1 of the scripts layer, and type the following ActionScript:

ns.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 thermometer.mercury.height = ns.value;
};

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

628

5. Test your movie. Click the up and down arrow buttons to see the component in action. Close the

SWF when you are finished experimenting.

The MovieClip.height property of mercury is set to the value of NumericStepper—ns.value—as

referenced in terms of the ns instance. The mercury movie clip is nested inside thermometer, which

explains the matching hierarchical reference thermometer.mercury.

ProgressBar component
Used often for preloading, the ProgressBar component gives you a rising thermometer-style animation

to display load progress when loading files of known size and gives you a barber pole–style animation to

indicate that the user must wait (for example, for files of unknown size to load or for processes to finish).

Figure 11-21 shows an example.

This component doesn’t have a whole lot to skin, but you can access what’s there by double-clicking a

ProgressBar instance. Styling works as it does for the Button component, but ProgressBar doesn’t

even have text, so your styling choices are fairly slim.

Figure 11-21. The ProgressBar component and its parameters

Using one or more instances of the ProgressBar component in your movie will add

16KB to the SWF if no other components share the load. That means 16KB of

nonpreloadable content (the preloader itself!), so don’t put much else into the frame that

contains the ProgressBar component.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

629

Here’s an exercise designed to show you how the ProgressBar component works:

1. Open the ProgressBar.fla file in this chapter’s Exercise folder. Note that a ProgressBar

instance exists in frame 1 with the instance name pb, as well as a text field with the instance

name output. In frame 5, you’ll find a fairly heavy image of red leaves on a tree branch, snapped

by one of the authors. In the scripts layer, there’s a MovieClip.stop() method in frames 1

and 5.

2. Click into frame 1 of the scripts layer. Note the existing stop() method. Type the following

ActionScript after that method (new code in bold):

stop();

root.loaderInfo.addEventListener(Event.COMPLETE,
completeHandler);

function completeHandler(evt:Event):void {
 play();
};

pb.source = root.loaderInfo;

Here, first, the playhead stops at this frame. Next, an Event.COMPLETE handler is assigned to the

LoaderInfo instance associated with the root property of the main timeline. Say again? Yeah, this one is

a bit different from what you’ve seen.

In the same way that the stop() method is invoked here on the main timeline—appearing, as it does,

without an object reference prefix—the root property is also being invoked implicitly on the main timeline.

(root is a property of the DisplayObject class, which means MovieClip and other classes have it by

inheritance.) The root property refers to the topmost display object in a given display list. In this context, it

essentially refers to the display list of the main timeline (everything that’s visible—or will be visible—on the

main timeline, including that onion photo on frame 5).

The main timeline, being a movie clip, features a loaderInfo property, which points to an instance of the

LoaderInfo class that (as its name suggests) manages loading information for the object at hand. In this

case, when the movie itself has completed loading, the Event.COMPLETE event is dispatched, and the

completeHandler() function invokes MovieClip.play() on the main timeline, causing the playhead to

resume play until it encounters the second stop() method on frame 5. It’s frame 5 that reveals the image.

Notice that, so far, none of this yet touches the ProgressBar component. That happens only at this point.

Immediately after the event handler, the ProgressBar.source property, by way of the pb instance, is

associated with the root.loaderInfo reference. As if by magic, that’s all it takes to set the thermometer-

style movement in motion.

3. Test the movie. When the SWF launches, select View ➤ Simulate Download from the SWF’s

menu bar to see the ProgressBar component in action. Selecting View ➤ Download

Settings lets you select the speed of the simulated Internet connection.

4. Close the SWF.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

630

5. Let’s also display a text message indicating a percent loaded. In the Actions panel, add a few

more lines below the existing code:

pb.addEventListener(ProgressEvent.PROGRESS,
progressHandler);

function progressHandler (evt:ProgressEvent):void {
 output.text = Math.floor(pb.percentComplete).toString() + "%";
};

The ProgressBar component features a percentComplete property, which we’re using here. The

addEventListener() method is invoked against the pb instance, listening for a

ProgressEvent.PROGRESS event. The function it performs sets the output text field’s text property to a

rounded-down string version of the progress percentage, with the percent sign tacked onto the end for

good measure.

RadioButton component
Radio buttons are gregarious. They belong in groups and courteously defer to each other as each takes

the spotlight. What are we talking about? We’re talking about a component identical in functionality to radio

buttons in HTML. Groups of RadioButton components are used to let the user make a single selection

from a multiple-choice set, as shown in Figure 11-22.

Figure 11-22. The RadioButton component lets the user make a single selection from a multiple-choice

set.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

631

Double-clicking a RadioButton instance provides access to its skins, which you can edit as described in

the “Button component” section. Styling works the same way.

Using one or more instances of the RadioButton component in your movie will add

16KB to the SWF if no other components share the load.

To see RadioButton components in action, open the RadioButton.fla file in this chapter’s Exercise

file. Because radio buttons work in groups, the Component Parameters tab of the Properties panel

has a “collective consciousness” parameter we haven’t seen with other components: groupName. Select

each of the three radio buttons in turn, and verify that each belongs to the same group, syntax, even

though each has its own distinct label: Method, Property, and Operator (see Figure 11-23). Note also

the empty dynamic text field whose instance name is output. You’re about to wire up the radio buttons to

that text field.

Figure 11-23. RadioButton instances must be associated with a group name.

Click into frame 1 of the scripts layer, and type the following very condensed but interesting

ActionScript:

rb1.group.addEventListener(Event.CHANGE,
changeHandler);

function changeHandler(evt:Event):void {
 output.text = rb1.group.selection.label;
};

What makes this interesting? In most of the event-handling samples in this chapter, you’ve invoked the

addEventListener() method on an object that you personally gave an instance name. Here, that might

have been rb1, but that’s not the focal point in this case. You’re not adding an event listener to a particular

radio button but rather to the group to which these buttons belong. The RadioButton class provides a

group property, which means that each instance knows to which group it belongs. It’s the group that

dispatches the Event.CHANGE event, which occurs when any one of these radio buttons is clicked.

It doesn’t matter which radio button’s group property you use, because all of them point to the same

RadioButtonGroup instance. The associated function updates the output text field by sending it the

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

632

selected button in this group—in particular, that button’s label property, which is either Method,

Property, or Operator.

Note that the Component Parameters area gives you the option to supply a value for

each radio button. This allows you to say one thing and do another, just as in the List

example. The difference is that the List choices were label and data, and here they

are label and value, and the data type of value is typed as Object, not String. The

text field wants a string, so you would change that line of ActionScript to output.text
= rb1.group.selection.value.toString();. For example, if you change the value

of the Operator RadioButton to Correct, you turn this exercise into a quiz.

ScrollPane component
The ScrollPane component lets you have eyes bigger than your stomach. If you want to display a super-

large image—so large that you’ll need scrollbars—ScrollPane is your component; Figure 11-24 shows it

in action.

Figure 11-24. ScrollPane provides optional scrollbars to accommodate oversized content.

ScrollPane has nested skins because of its scrollbars, so double-clicking an instance during authoring

will open its skin elements in tiers. Styling works the same as described in the “Button component” section,

although with no text elements, most of your customization work will probably center around skins.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

633

Using one or more instances of the ScrollPane component in your movie will add

21KB to the SWF if no other components share the load.

In this example, there’s no need for ActionScript.

1. Open the ScrollPane.fla file in this chapter’s Exercise folder. Select the ScrollPane

instance, and click the Parameters tab of the Component Inspector panel.

2. In the Component Parameters area, double-click the right column of the source row. Type

Redleaves.jpg.

3. Test the movie. Pretty slick! The source parameter can be pointed to any file format that Flash

can load dynamically, including JPEGs, GIFs, PNGs, and other SWFs.

Slider component
The Slider component is conceptually the same thing as NumericStepper, except that instead of

clicking buttons to advance from one number to the next, the user drags a knob along a slider, as shown in

Figure 11-25. You, as designer, are responsible for setting the minimum and maximum values, and this

component lets you specify whether sliding is smooth or snaps to increments specified by you.

Figure 11-25. Slider lets the user drag a handle back and forth to specify a value.

Slider has no text elements, so styling is fairly light. What’s there works as it does for the Button

component. Skinning also works as it does for Button: double-click a Slider instance in the authoring

environment to change the knob and track skins.

Using one or more instances of the Slider component in your movie will add 17KB to

the SWF if no other components share the load.

To see how the Slider component works, open the Slider.fla file in this chapter’s Exercise folder.

Note that the instance name for the Slider instance is slider, which works only because ActionScript is

a case-sensitive language. You couldn’t call it Slider, because that’s the name of the class that defines

this object. Also note the instance names circle1 and circle2 on the two circles. You’re about to wire

up the Slider component to adjust their width and height.

Click into frame 1 of the scripts layer, and type the following ActionScript:

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

634

slider.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 circle1.scaleX = slider.value / 100;
 circle2.scaleY = slider.value / 100;
};

When the Event.CHANGE event is dispatched—this happens as the knob moves along the track—the

slider’s value property is used to update scaling properties of the circle movie clips. Why divide by

100? In movie clip scaling, 0 percent is 0 and 100 percent is 1. Because the Slider instance happens to

have its maximum parameter set to 100, the division puts value into the desired range, as shown in

Figure 11-26.

Figure 11-26. A single Slider instance can adjust many objects. Hey, that looks like a face!

Be sure to experiment with the parameters in the Properties panel’s Component Parameters area.

Most of them are intuitive, but liveDragging and snapInterval might not be. The liveDragging

parameter tells Slider whether to update its value property as the knob moves, as opposed to when it is

released. When you set liveDragging to false (deselected), the circles will resize only after you

reposition the knob and then release it. The snapInterval parameter tells Slider how often to update

its value property. To demonstrate, set liveDragging to true (a check mark), and then change

snapInterval to a small number, such as 1. When you drag the knob, you’ll see the circles resize

smoothly. Change snapInterval to 10 and test again, and the circles resize less smoothly, because

you’re asking value to count by tens.

You may be surprised to find a direction parameter (its values are horizontal and vertical). Why

not just use the Free Transform tool to rotate this slider? Well, try it. We’ll wait...that’s kind of weird,

right? It doesn’t work. Components are a sophisticated phenomenon, even though they look so simple.

Now, what if you want a slanted slider, not horizontal or vertical? Here’s a trick: select the Slider

instance, convert it to a movie clip (Modify ➤ Convert to Symbol), and give that movie clip an

instance name such as sliderClip. When both the movie clip and its nested Slider have instance

names, you’re set.

sliderClip.slider.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 circle1.scaleX = sliderClip.slider.value / 100;
 circle2.scaleY = sliderClip.slider.value / 100;
};

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

635

TextArea component
Chapter 6 introduced you to text fields and containers. Consider the TextArea component a text field in a

tux. It has an attractive, slightly beveled border, lets you limit how many characters can be typed into it

(like input text fields), and is optionally scrollable (see Figure 11-27). This component is akin to the

<textarea> element in HTML.

Figure 11-27. TextArea is the James Bond of text fields.

TextArea is skinnable, but the parts are few. You’ll see a nested skin for the scrollbars when you double-

click an instance in the authoring environment. More likely, you’ll want to style its text contents, which

works as described in the “Button component” section.

Using one or more instances of the TextArea component in your movie will add 21KB

to the SWF if no other components (other than the automatically included

UIScrollBar) share the load.

Open the TextArea.fla file in this chapter’s Exercise folder to see an example of populating a

TextArea instance with text. (We figured it would be cruel to make you type in a lengthy bit of sample text

on your own.) Note that the TextArea component can display HTML text, as shown in the sample file, or

plain text. Use the component’s ActionScript htmlText or text properties accordingly.

Notice that the Component Parameters tab of the Properties panel shows only a text parameter for

supplying text. We can’t imagine anyone using that tiny space to enter more than a sentence, so reference

that parameter as a property in your ActionScript. Assuming ta is the TextArea component’s instance

name, here’s the code:

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

636

ta.htmlText = "<p>HTML text here, with styling.";

or it could look like this:

ta.text = "Plain text content here.";

TextInput component
The TextInput component is the single-line kid brother of TextArea. For this reason, to trump it up,

we’ll show it displaying one of the shortest short stories in the world, attributed to Ernest Hemingway (see

Figure 11-28).

Figure 11-28. TextInput is a single-line component, mainly used for user input.

TextInput is primarily used to collect typed user input, like HTML-based “Contact Us” forms, and can

even be set to display password characters as asterisks (see the displayAsPassword parameter). The

component is skinnable—just double-click an instance in the authoring environment—but there’s not much

to skin. Styling works as described in the “Button component” section.

Using one or more instances of the TextInput component in your movie will add 15KB

to the SWF if no other components share the load.

To see the TextInput component in action, open the TextInput.fla file that accompanies this chapter.

Note the two TextInput instances, with instance names input (top) and output (bottom). Select each

component in turn, and look at the Parameters tab of the Component Inspector panel as you do. For

the top TextInput instance, the displayAsPassword and editable parameters are set to true. For

the bottom one, both of those parameters are set to false. You’re about to make the upper component

reveal its password to the lower one.

Click into frame 1 of the scripts layer, and type the following ActionScript:

input.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 output.text = input.text;
};

As text is typed into the upper TextInput instance, the Event.CHANGE handler updates the lower

instance’s text content with that of the upper instance’s content. Because of the parameter settings, the

text content is hidden above but clearly displayed below.

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

637

TileList component
TileList is not unlike the ScrollPane component. Both load files for display, optionally with scrollbars,

but TileList displays numerous files—JPEGs, SWFs, and so on—in the tiled arrangement shown in

Figure 11-29.

Double-click a TileList instance to edit its skins. You’ll see a second tier of skins for the scrollbars.

Styling may be accomplished as described in the “Button component” section.

Using one or more instances of the TileList component in your movie will add 32KB

to the SWF if no other components share the load.

Figure 11-29. TileList displays a tiled arrangement of content, optionally scrolling as necessary.

Quite a few parameters are listed in the Component Parameters area of the Properties panel for this

component, but they’re all easy to grasp. For example, there are settings for the width and number of

columns, height and number of rows, direction or orientation (horizontal or vertical), and scrolling

settings (on, off, and auto, the last of which makes scrollbars show only as necessary). The

dataProvider parameter is the most important, because that’s where you define the content to show. It

works the same as the dataProvider for ComboBox, except that instead of label and data properties,

TileList expects label and source.

If you find the Component Parameters a bit confining, you can always use ActionScript to add items to

the TileList. To try this, open the TileList.fla file in the Chapter 11 Exercise folder. Note that the

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

638

TileList instance has the instance name tl, and the dynamic text field below it has the instance name

output.

Click into frame 1 of the scripts layer, and type the following ActionScript:

tl.addItem({label:"Mug 6", source:"Mug06.jpg"});
tl.addItem({label:"Mug 7", source:"Mug07.jpg"});
tl.addItem({label:"Mug 8", source:"Mug08.jpg"});

tl.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 output.text = tl.selectedItem.label;
};

The first three lines use practically the same approach we used for adding an additional item to the

ComboBox instance in that section of the chapter. Mugs 1 through 5 are specified in the Properties

panel. Here, these three lines of code give us a few more mug shots (heh, mug shots—we love that joke).

In the event handler, the changeHandler() function updates the output text fields’ text property with the

label value of the TileList’s selected item.

TileList also supports multiple selections, like the List component. The sample

code in the “List component” section provides the same basic mechanism you would use

here, except instead of targeting the data property, you’ll probably want to target label,

as shown in the preceding single-selection sample.

UILoader component
If the Flash CS5 UI components all went to a Halloween party, UILoader would show up as the Invisible

Man (see Figure 11-30).

Figure 11-30. Practically speaking, UILoader has no visual elements (and yes, this figure is empty; being

able to include it cracks us up).

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

639

So, what’s the point? Ah, but UILoader is such a selfless, giving component! Its purpose is to load and

display content other than itself. This lets you avoid using the Loader class (which you’ll encounter in

Chapter 14), just in case the thought of ActionScript makes you feel like you discovered half a worm in

your apple. Simply enter a filename into the source parameter of the Properties panel’s Component

Parameters area, and you’re set (see Figure 11-31).

Figure 11-31. Just enter in the name of a supported file format, and Flash will load it.

Using one or more instances of the UILoader component in your movie will add 15KB

to the SWF if no other components share the load.

Here’s a UILoader component exercise:

1. Open the UILoader.fla file that accompanies this chapter. Double-click the UILoader

instance, and you’ll see message that no skins are available. Since we aren’t speaking to this

component with ActionScript (yet), it doesn’t need an instance name.

2. In the Parameters tab of the Component Inspector panel, enter the filename

Redleaves.jpg into the right column of the source row. This references a JPG file in the same

folder as your FLA.

3. Test your movie, and you’ll see the leaves load into its UILoader container.

4. Deselect the maintainAspectRatio parameter and test again. This time, the image loads a

bit squished. Our personal preference is usually to maintain aspect ratio. The scaleContent

parameter determines whether the loaded content is scaled or cropped in its container.

www.zshareall.com

http://www.zshareall.com

CHAPTER 11

640

5. Our friend ProgressBar is about to make a cameo appearance. Drag an instance of the

ProgessBar component to the stage below the UILoader instance, and give the UILoader

instance the instance name loader.

6. Select the ProgressBar instance, and in the Parameters tab, set its source parameter to

loader—that’s the instance name you just gave the UILoader instance (see Figure 11-32).

You’re associating the two and telling the ProgressBar component to check with the UILoader

component to divulge how much of the requested file has loaded.

Figure 11-32. It’s very easy to show the load progress for a UILoader instance.

7. Test your movie again.

8. In the SWF’s menu bar, select View ➤ Simulate Download to see some super-easy

preloading action.

9. Close the SWF.

10. To wrap up, let’s add a teensy bit of ActionScript. (Don’t worry, that half a worm we mentioned

earlier was just a centipede—half a centipede.) To make sure ActionScript talks to the

ProgressBar instance, give it an instance name. We’re using pb. Click into frame 1 of the

scripts layer, and type the following ActionScript:

pb.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(evt:Event):void {
 removeChild(pb);
};

11. Test the movie for the last time. You’ll see what this ActionScript does: it makes the progress bar

disappear when loading is complete.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING INTERFACES WITH THE UI COMPONENTS

641

UIScrollBar component
If you read any other sections of this chapter, you’ve probably already been introduced to the

UIScrollBar component. This component is a humble but useful member of the team, because it allows

other components to have scrollbars. UIScrollBar is skinnable by double-clicking any instance in the

authoring environment. Styling doesn’t make much sense, but it is possible as described in the “Button

component” section.

Using one or more instances of the UIScrollBar component in your movie will add

18KB to the SWF if no other components share the load.

So as to avoid repeating ourselves, we’ll direct your attention to the “Using the UIScrollBar component”

section in Chapter 6 to see this component in action.

What you have learned
In this chapter, you learned the following:

 How to use every one of the Flash CS5 UI components

 How to write the ActionScript that controls components

 How to skin a component

 How to manage components in a Flash movie

Clients are fickle. One day the black Times Roman they asked for is fabulous, and the next day it “just has

to be” green Helvetica Narrow. This can be a huge waste of time. They start with one image and suddenly

there are 100. You can spend hours opening Flash files and physically making the changes, or pawing

through ActionScript looking for code that formats text or handles the images. Is there an easier way?

XML. We have been talking about it throughout this book, and the time has arrived for you to explore

XML’s powerful relationship with Flash.

Intrigued? Turn the page.

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

643

Chapter 12

XML (Dynamic Data)

To this point in the book, we have dangled the use of XML in front of you with no real explanation of how it

works. That time has arrived.

Flash is a social creature. Not only does it rub elbows with HTML—coexisting happily with text, JavaScript,

images, audio, video, CSS, and more—but it can also reach out past its own SWF boundaries to

collaborate with data hosted on a server.

In the hands of an experienced programmer, Flash can interact with database applications by way of the

URLLoader and URLVariables classes, perform web service and Flash remoting calls, and even slap a

secret handshake with Ajax, thanks to the ExternalInterface class. All this from a browser plug-in that

began its life as a way to improve on animated GIFs! It’s easy to see why Flash has become a widespread

phenomenon, and its versatility makes equally social creatures of the countless designers and developers

who end up warming their diverse mitts around the same campfire because of it.

This book isn’t here to make programmers out of artists. We don’t have the page count to delve into most

of the concepts just mentioned, but we are going to introduce you to a markup language called XML that,

with a bit of help from ActionScript, can make your SWFs dynamic.

Here’s what we’ll cover in this chapter:

 Retrieving and filtering XML data using E4X syntax

 Using retrieved data in collaboration with ActionScript

The following files are used in this chapter (located in Chapter13/ExerciseFiles_Ch13/Exercise/):

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

644

 LoadXML.fla

 flashBooks.xml

 LoadXML-E4XBonusRound.fla

 CopyMotion.fla

 CopyMotion.xml

 XFLexercise.fla

The source files are available online at www.friendsofED.com/download.html?isbn=1430229940.

If you haven’t already worked with XML, we bet our next single malt Scotch you’ve at least heard of it. The

letters stand for eXtensible Markup Language, and extensibility—the ability to create your own HTML-like

tags—is almost certainly the reason XML has become a towering champ in data communication.

Countless markup languages and file formats are based on XML, including SMIL, RSS, XAML, MXML,

RDF, WAP, SVG, SOAP, WSDL, OpenDocument, XHTML, and so on—truly more than would fit on this

page. We’ll leave the letter combinations to a Scrabble master.

“That’s fine and dandy,” you might be saying, “but, guys, what is XML?” Fair enough. The remarkable thing

about this language is that it can basically be whatever you want it to be, provided you stick by its rules.

The W3C defines the syntax recommendation for XML (XML 1.0, fifth edition, which is the latest at the time

this book was written) at www.w3.org/TR/2008/REC-xml-20081126/.

The main purpose of XML is to let you share data. In fact, XML is so flexible that newcomers are often

baffled about where to even begin. On paper—or rather, on the screen—XML looks a lot like another

famous W3C specification: HTML. However, rather than using the predetermined tags and attributes

supplied by HTML, XML lets you organize your content into descriptive tags of your own design. While

HTML formats data for display, XML actually describes data. The combination of familiar, hierarchical

format and completely custom tags generally makes XML content easy to read, both to computers and to

humans. By separating your data from the movie, you give yourself the opportunity to change content from

the outside, affecting SWFs without needing to republish them.

In a minute you are actually going to write the following XML:

<flashbooks>
 <book></book>
 <book></book>
 <book></book>
 <book></book>
 <book></book>
</flashbooks>

If you are new to this language, we’ll bet you looked at it and thought, “Has something to do with a bunch

of Flash books.” You are correct, and that’s the beauty and simplicity of XML. There is nothing here about

formatting text or any other stuff. All it does is present data—a list of Flash books.

So, are you ready to write some XML?

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.zshareall.com

XML (DYNAMIC DATA)

645

Writing XML
Here’s a typical scenario. One of the authors has a rather extensive collection of Flash books in his office.

The collection expands and contracts based upon the current version of Flash, and he thinks it would be

rather neat to keep a running inventory of his collection. Rather than list all 50 or 60 of them, he decides to

start out with 5 core titles and grow from there. The reason for the 5 titles is simple: if he can get 5 books

organized, then it is no big deal to get 50, 500, or even 5,000 books into the document.

The decision is to start with books from friends of ED, and he decides to start with: ActionScript 3.0 Image

Effects, Flash Applications for Mobile Devices, ActionScript for Animation, Foundation ActionScript 3.0,

and Flash Math Creativity. Each book has its own page count, author, and publisher. Where to begin?

Let’s take a look.

Every XML document must have at least one tag, which constitutes its root element. The root element

should describe the document’s contents. In this case, we’re dealing with Flash books, so let’s make that

our root:

<flashbooks></flashbooks>

The rest of our elements will stack themselves inside this first one. Every title is its own book, so we’ll add

five custom <book> elements:

<flashbooks>
 <book></book>
 <book></book>
 <book></book>
 <book></book>
 <book></book>
</flashbooks>

Again, these tag names aren’t things that exist in XML. It’s up to you to decide which elements make

sense for the data at hand, to name those elements accordingly, and then to use them.

Note that each opening tag has a closing tag partner (with a slash in it), which is a characteristic required

by the XML standard. If an element doesn’t contain further data inside it, that element can optionally serve

as its own opening and closing tags. In such a case, the <book></book> pairing would look like this:

<book />. But here, each book has a title, so these elements will remain as tag pairs.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

646

The next step—adding a title—seems obvious enough:

<flashbooks>
 <book>
 <title> ActionScript 3.0 Image Effects </title>
 </book>
 <book>
 <title> Flash Applications for Mobile Devices </title>
 </book>
 <book>
 <title> ActionScript for Animation </title>
 </book>
 <book>
 <title> Foundation ActionScript 3.0</title>
 </book>
 <book>
 <title> Flash Math Creativity </title>
 </book>
</flashbooks>

The difference here is that the <title> tags contain textual data instead of additional elements, but you

get the idea. Hold on a minute—all of these tags contain data! The <title> tags contain text nodes (that

is, nonelement text content), and the <book> and <flashbooks> tags contain XML element nodes (that is,

descriptive tags). It doesn’t take much effort to connect the rest of the dots. An excerpt of the completed

document might look something like this:

<flashbooks>
 <book>
 <title> Flash Applications for Mobile Devices </title>
 <publisher>friendsofED</publisher>
 <pageCount>663 pages</pageCount>
 </book>
 . . .</flashbooks>

Actually, that isn’t complete after all, is it? The author is missing. The thing about these books is there may

be one author on the cover or a number of authors on the cover. For that, another tier of elements is in

order:

<flashbooks>
 <book>
 <title> Flash Applications for Mobile Devices </title>
 <publisher>friendsofED</publisher>
 <pageCount>514 pages</pageCount>

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

647

 <authors>
 <author>Richard Leggett</author>
 <author>Weyert de Boer</author>
 <author>Scott Janousek</author>
 </authors>
 </book>
 . . .
</flashbooks>

That would certainly do it. The tag names are meaningful, which is handy when it comes time to retrieve

the data. The nested structure organizes each concept into a hierarchy that makes sense. Nicely done, but

in a sizable collection, this particular arrangement might come across as bulky. Is there a way to trim it

down? Sure thing. Remember that XML allows you to create your own attributes, so you have the option of

rearranging the furniture along these lines:

<flashbooks>
 <book title=" Flash Applications for Mobile Devices " publisher="friendsofED"
pageCount ="514 pages">
 <authors>
 <author>Richard Leggett</author>
 <author>Weyert de Boer</author>
 <author>Scott Janousek</author>
 </authors>
 </book>
 . . .
</flashbooks>

The exact same information is conveyed. The only difference now is that some of the data has been

shifted to tag attributes, or attribute nodes, rather than tags. HTML provides the same mechanism, by the

way. Consider the src attribute of an tag (). All it does here is

change how the data would be retrieved, as you’ll see in the “Using E4X syntax” section of this chapter.

Which approach is better? Honestly, the choice is yours. It’s not so much a question of “better” as it is what

best matches your sense of orderliness. Ironically, this open-ended quality, which is one of XML’s

strongest assets, is the one feature that is the hardest for those who are new to the subject to grasp. It

doesn’t have to make sense to anyone but you.

Working with and structuring an XML document follows the first principle of web

development: “No one cares how you did it. They just care that it works.” Find what

works best for you, because in the final analysis, your client will never pick up the phone

and say, “Dude, that was one sweetly structured XML document you put together.”

Having said that, if you are part of a collaborative work group, be sure that everyone

involved agrees on terminology before you start.

Folks, this is a bit like a ceramics class. As long as you’re careful around the kiln, no one can tell you

whose vase is art and whose isn’t. Just work the clay between your fingers, let a number of shapes mull

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

648

around your mind, and then form the clay into a structure that appeals to you. While you’re at it, keep a few

rules in mind:

 If you open a tag, close it (<tag></tag>).

 If a tag doesn’t come in two parts—that is, if it contains only attributes, or nothing at all—make

sure it closes itself (<tag />).

 Close nested tags in reciprocating order (<a><c /> is correct, but

<a><c /> will “blow up”).

 Wrap attribute values in quotation marks or single quotation marks (<tag done="right" />,

<tag done=wrong />).

The flashbooks example we just discussed would be saved as a simple text file with the .xml file

extension, as in flashBooks.xml. In fact, it isn’t a bad idea, once you have finished writing your XML

document, to open it in a browser like Firefox to see whether there are any problems.

Now that our introductions have been made, let’s get social.

Feel free to use a text editor such as Notepad on Windows or TextEdit on the Mac to

create your XML files. Just be sure you add the .xml extension to the file’s name. If you

have Dreamweaver CS5, that’s even better, because it automatically writes the

document declaration for you at the top, and it offers tools such as code completion to

speed up your workflow. Also, keep in mind that manually writing XML is just one

approach. As you start becoming more comfortable with using XML, you will eventually

find yourself drifting toward server-side scripting—such as PHP—to handle complex

data management.

Loading an XML file
XML in Flash has had a rather rocky relationship simply because, until a couple of years ago, it was right

up there with beating yourself in the head with a brick. Things have changed, significantly for the better.

The ActionScript required for loading an XML document isn’t complicated. You’ll need an instance of the

XML and URLLoader classes, and, of course, an XML document. In our case, the document will always be

an actual XML file, although XML documents can be built from scratch with ActionScript.

Open the LoadXML.fla file that accompanies this chapter. Click into frame 1 of the scripts layer, and

open the Actions panel to see the following code:

var xmlDoc:XML = new XML();
var loader:URLLoader = new URLLoader();
var req:URLRequest = new URLRequest("flashBooks.xml");
loader.load(req);

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

649

loader.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(evt:Event):void {
 loader.removeEventListener(Event.COMPLETE, completeHandler);
 xmlDoc = XML(evt.target.data);
 trace(xmlDoc);
};

Let’s break it down. The first two lines declare a pair of variables: xmlDoc and loader, which point to

instances of the XML and URLLoader classes, respectively. The third line declares a third variable, req,

which points to an instance of the URLRequest class and specifies the location of the actual XML

document.

Line 4 then invokes the URLLoader.load() method on the loader instance, specifying req as the

parameter. The req parameter’s value—"flashBooks.xml" in this example—is the name of your XML

file, including a file path if necessary. This procedure starts the load process, but the data isn’t available

until the XML document has fully arrived from the server. For this reason, the final block attaches an

Event.COMPLETE listener to the loader instance and then defines the associated function,

completeHandler().

In response to a completely loaded document, the event handler function sets the value of the xmlDoc

instance to the data property of the target property of the evt parameter passed into the function. That’s

a mouthful, but you’ll understand it when we look at the expression in smaller chunks.

To begin with, we remove the event listener attached to the XML loader to keep our code clean. The

incoming parameter, evt, is an instance of the Event class. As is possible with any other class, Event

features properties, one of which is called target. The target property refers to the object that

dispatched this event in the first place, which is xmlDoc. Being an instance of the XML class, xmlDoc

features a data property, which refers to the text content of the flashBooks.xml file—in other words, the

actual XML data. To let Flash know it should interpret this text content as XML, the expression

evt.target.data is wrapped inside a pair of parentheses (()) and preceded by XML. This is called

casting, where one data type (String) is converted to another compatible type (XML), and the expression

is passed to the xmlDoc variable. At this point, the text file’s XML tags become a “living XML object” inside

the SWF, accessible via the xmlDoc variable.

To prove it with this sample, a trace(xmlDoc) function call sends the full set of book nodes to the

Output panel. Test the movie, and compare the Output panel’s content to the flashBooks.xml file

itself, which you can open with Dreamweaver CS5 or any simple text editor.

The preceding sample code will serve as the basis for all loading for the rest of the chapter. It’s really that

simple. Even better, ActionScript 3.0 makes it just as easy to actually use XML, so let’s jump right in.

Using E4X syntax
In ActionScript 2.0, interacting with an XML class instance was, as we said, like beating yourself on the

head with a brick. This was because of the way XML nodes were accessed once loaded, which wasn’t by

the practical tag names supplied earlier in the chapter.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

650

Until Flash CS3 (and therefore ActionScript 3.0) arrived on the scene, XML in Flash was not up there on

the list of “cool things I really need to do.” In fact, many designers and developers (one of the authors

among them) regarded the use of XML as being akin to slipping on ice and, on the way down, knowing you

were in for a world of hurt.

Readers familiar with Flash XML prior to CS3 will doubtless groan to remember obtuse expressions, such

as xmlInstance.firstChild.firstChild.childNodes[2]. Flash developers used properties like

firstChild and childNodes because they had to, not because it was fun. Then there was the now

defunct XMLConnector component, which complicated things more than it simplified the process.

ActionScript 3.0 does away with this groping, thanks to something called E4X.

Dots and @s

What is E4X, and what makes it so good? Seemingly named after a military missile project, those three

characters form a cutesy abbreviation of ECMAScript for XML. It’s an ECMA International specification that

has been around for a while, but it provides a completely new, simplified way to access data in an

ActionScript 3.0 XML instance.

What’s ECMA? The letters stand for European Computer Manufacturers Association,

which was formed in 1961. They got together a few years back to devise the

ECMAScript Language Specification, which is the basis for JavaScript and ActionScript.

They have moved quite beyond their computer roots, and today the organization is

officially known as Ecma International.

In E4X, element nodes are referenced by the name you give them. Paths to nested elements and

attributes are easily expressed by a neatly compact syntax of dots (.) and at symbols (@). This syntax

closely matches the dot-notation pathing you’re familiar with from the Twinkie example in Chapter 4.

Let’s see how it works. If you haven’t done so already, open the LoadXML.fla file in this chapter’s

Exercise folder. Click into frame 1 of the scripts layer, and open the Actions panel to reveal the

ActionScript. The trace() function at line 9 is about to illustrate a number of dynamite E4X features.

Testing the movie as it stands puts the full XML document’s contents into the Output panel, as shown

here:

<flashbooks>
 <book title="Flash Applications for Mobile Devices" publisher="friendsofED"
pageCount="514">
 <authors>
 <author>Richard Leggett</author>
 <author>Weyert de Boer</author>
 <author>Scott Janousek</author>
 </authors>
 </book>

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

651

 <book title="ActionScript 3.0 Image Effects" publisher="friendsofED"
pageCount="663">
 <authors>
 <author>Todd Yard</author>
 </authors>
 </book>
 <book title="ActionScript 3.0 Animation: Making Things Move"
publisher="friendsofED" pageCount="542">
 <authors>
 <author>Keith Peters</author>
 </authors>
 </book>
 <book title="Flash Math Creativity" publisher="friendsofED" pageCount="264">
 <authors>
 <author>David Hirmes</author>
 <author>JD Hooge</author>
 <author>Ken Jokol</author>
 <author>Pavel Kaluzhny</author>
 <author>Ty Lettau</author>
 <author>Lifaros</author>
 <author>Jamie MacDonald</author>
 <author>Gabriel Mulzer</author>
 <author>Kip Parker</author>
 <author>Keith Peters</author>
 <author>Paul Prudence</author>
 <author>Glen Rhodes</author>
 <author>Manny Tan</author>
 <author>Jared Tarbell</author>
 <author>Brandon Williams</author>
 </authors>
 </book>
 <book title="Foundation ActionScript 3.0" publisher="friendsofED" pageCount="566">
 <authors>
 <author>Steve Webster</author>
 <author>Todd Yard</author>
 <author>Sean McSharry</author>
 </authors>
 </book>
</flashbooks>

So far, so good. But if you don’t care about the root element, <flashbooks>, and simply want to see the

<book> elements, update the trace() line to read trace(xmlDoc.book);. Once you do that, test the

movie again. This time, the <flashbooks> tag doesn’t show, because you’re accessing only its children.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

652

To view <book> elements individually, use the array access operator, [], and specify the desired element,

starting your count with 0:

trace(xmlDoc.book[0]);
// displays the first <book> element (Flash Applications for Mobile Devices)
// and its children

trace(xmlDoc.book[1]);
// displays the second <book> element (ActionScript 3.0 Image Effects)
// and its children

Now, what about attributes? To see those, just precede an attribute’s name with the @ symbol as part of

your dot-notation path reference. For example, if you want to see the title attribute of the first <book>

element, type the following:

trace(xmlDoc.book[0].@title);

To see the second <book> element’s title, substitute 0 with 1; to see the third, substitute 1 with 2; and so

on. Based on this pattern, the last element’s title attribute would be xmlDoc.book[4].@title. But we

know to use the number 4 only because we’re aware how many <book> elements there are. What if we

didn’t know? In that case, it helps to understand exactly what you’re getting back from these E4X results.

What you’re getting are instances of the XMLList class, and that means you can invoke any of the

methods that class provides on these expressions.

For example, you’ve already seen that the expression xmlDoc.book returns a list of all the <book>

elements. That list is a bona fide XMLList instance. So, by appending an XMLList method—say,

length()—to the expression, you get something useful (in this case, the length of the list, which is 5). We

know that in this context counting starts with zero, so to see the title attribute of the last <book>

element, put the following somewhat complex expression inside the array access operator ([]):

trace(xmlDoc.book[xmlDoc.book.length() - 1].@title);

It may look a little scary, but it isn’t when you reduce it to its parts. The expression

xmlDoc.book.length() - 1 evaluates to the number 4.

To see the title attribute of all <book> elements, drop the array access operator altogether:

trace(xmlDoc.book.@title);

In the Output panel, you’ll see that the combined results run together, as shown in Figure 12-1. This is

because these attributes don’t have any innate formatting. They aren’t elements in a nested hierarchy;

they are just individual strings.

www.zshareall.com

mailto:0].@title
mailto:4%5D.@title.Butweknowtousethenumber4onlybecausewe%E2%80%99reawarehowmany
mailto:4%5D.@title.Butweknowtousethenumber4onlybecausewe%E2%80%99reawarehowmany
mailto:1].@title
mailto:book.@title
http://www.zshareall.com

XML (DYNAMIC DATA)

653

Figure 12-1. Unless they have their own line breaks, attributes will run together.

In this situation, another XMLList method can help you. To make each title appear on its own line, append

toXMLString() to the existing expression:

trace(xmlDoc.book.@title.toXMLString());

Swap title for the pageCount attribute, as follows:

trace(xmlDoc.book.@pageCount.toXMLString());

As shown in Figure 12-2, you’ll see page counts for each book instead of titles in the Output panel.

Figure 12-2. Any element’s attributes can be retrieved.

What about looking at a list of the authors? Viewing individual authors is just as easy. Update the trace()

function to look like this:

trace(xmlDoc.book[0].authors .author [1]);

This trace() function instructs Flash to look at the first <book> element’s <authors> element and then pull

out that node’s second <author> element, which happens to be Weyert De Boer. For fun and to see how

easy E4X makes things for you, contrast the preceding intuitive reference with its ActionScript 2.0 equivalent:

xmlDoc.firstChild.firstChild.firstChild.childNodes[1]. Which would you rather use?

Moving back to the kinder, gentler world of ActionScript 3.0, update the trace() function as follows to see

the whole 15-member cast of the fourth book:

trace(xmlDoc.book[3].authors .author);

www.zshareall.com

mailto:book.@title.toXMLString
mailto:book.@pageCount.toXMLString
http://www.zshareall.com

CHAPTER 12

654

This time, you get elements again, complete with their tag markup, as shown in Figure 12-3. This is just like

tracing xmlDoc.book earlier, where the Output panel showed <book> elements and their descendants.

Figure 12-3. Accessing elements selects the elements themselves, as well as their children.

Node types

In the previous section, when you used the array access operator—xmlDoc.book[0].
authors.author[3]—Flash gave you the immediate descendant of the <author> tag you specified,

which was a text node (that is, just a string). Here, you’re looking at a list of element nodes and their text

node descendants. If you want just the text nodes, you can use another XMLList method,

descendants(), to retrieve what you’re after. You’ll see an example in just a bit. First, make sure you

grasp the idea that, when you see the expression <author>Keith Peters</author>, you’re not just

looking at one node; you’re looking at two.

Both the tag (<author>) and its content (Keith Peters, in this case) comprise the element and text

nodes mentioned earlier. The W3C XML recommendation actually specifies a dozen node types, but

ActionScript 3.0 supports only a few of them: element, attribute, text, comment, and processing instruction.

(And this is actually a relief, because knowing those few lets you easily pull out a tag’s content.)

Add the descendants() method to the end of your E4X expression to see it in action:

trace(xmlDoc.book[4].authors .author .descendants());

Like attributes, text nodes don’t have any inherent formatting. To put each string on its own line, slap the

toXMLString() method on the end:

trace(xmlDoc.book[4].authors.author.descendants().toXMLString());

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

655

The result is exactly the sort of thing you might use to populate a text field, as shown in Figure 12-4.

Figure 12-4. Like attributes, text nodes are nothing more than strings.

Remember that we are dealing with text in this example. Although the results may look

rather plain, you can format and manipulate them in a number of ways, as outlined in

Chapters 6 and 13.

To see how the descendants() method works, try it at the end of the expression xmlDoc.book.authors,

like this:

trace(xmlDoc.book[4].authors.descendants());

The result might surprise you: not just immediate descendants, but all descendants are shown (see Figure

12-5). The first child, <author>Steve Webster</author>, appears at the top of the list. This includes the

<authors> element along with its own “offspring,” a text node. Next on display is the first grandchild,

Steve Webster (the first child’s child). After that comes the second child, the second child’s child (that is,

the second grandchild), and so on. The list makes sense, but if you were expecting only a list of immediate

children, well, now you know better.

Figure 12-5. The descendants() method reveals all descendants.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

656

E4X filtering

All right, we’ll give you one more illustration of E4X (we’ve saved the best for last). The flashBooks.xml

file included with this chapter’s Exercise folder files has slightly different pageCount attributes from those

shown earlier in the chapter. Instead of a whole phrase, such as 500 pages, these attributes show only

numbers. Why? It’s because E4X allows you to evaluate comparisons so you can filter content based on

specific criteria.

Let’s say you want to know which books have a page count longer than 550 pages. Return again to our

humble trace() function, and update its parameter to the following:

trace(xmlDoc.book.(@pageCount > 550));

The result is a list of the <book> elements whose pageCount attribute is greater than 550, along with all

their children (see Figure 12-6).

Figure 12-6. E4X allows filtering by way of comparison operators.

The parentheses tell Flash that you’re intending to filter the returned XMLList instance. Inside the

parentheses, the expression is a simple comparison, @pageCount> 550, which in plain English would be,

“Yo, dude, which <book> elements’ pageCount attributes match this criterion?” Flash searches every

<book> element in the bunch because nothing appears between the word book and the dot that begins the

next expression.

What if you want only the title of these books? Try this:

trace(xmlDoc.book.(@pageCount > 550).@title.toXMLString());

The trick to understanding this expression, as always, is to break it into its parts. On its own, each concept

is usually easy enough to understand. These concepts—these subexpressions—are separated by dots. A

blow-by-blow account of the preceding trace() goes like this:

www.zshareall.com

mailto:book.(@pageCount
mailto:book.(@pageCount
mailto:550).@title.toXMLString
http://www.zshareall.com

XML (DYNAMIC DATA)

657

1. xmlDoc.book returns an XMLList instance composed of all the <book> elements in the xmlDoc

instance.

2. Of this list, the expression .(@pageCount >550) filters only those <book> elements whose

pageCount attribute is greater than the value 550.

3. The subexpression .@title refines the results further by pulling only the title attribute.

4. Finally, .toXMLString() invokes the XMLList.toXMLString() method to clean up the results.

Double dots and more

True, we already said “one more illustration of E4X,” and that’s the preceding one. If you’re in a hurry to

dispense with all this theory and jump head first into a practical application, we tip our fedoras and invite

you to make a beeline for the next section. But we figure at least a handful of you are wondering whether

it’s possible to return book titles based upon who helped write the book. Dead simple.

Open the LoadXML-E4XBonusRound.fla file that accompanies this chapter, and click into frame 1 of the

scripts layer. Most of the ActionScript should look familiar. The important part appears in lines 9 through

12, because it introduces three things: an operator called the descendant accessor (..), a new XML

method called parent(), and the for each..in statement:

for each (var node:XML in xmlDoc..author.(descendants() == "Keith Peters"))
{
 trace(node.parent().parent().@title);
}

The for each..in statement was introduced to ActionScript 3.0 thanks to the E4X specification. A similar

ActionScript statement, for..in, has been available for quite some time. You point for..in at an object,

and it loops through that object’s properties—however many properties there happen to be. But note that a

for..in statement loops on the properties’ names, rather than the properties themselves. This can be

either nifty or frustrating, depending on your needs. In contrast, the new for each..in statement loops

on an object’s actual properties, which is great for what we need in this particular endeavor.

To understand the mechanism of this E4X filtering, let’s start with a skeleton and slowly build up to the

skin. Here are the bones:

for each (someProperty in someObject) {
 // do something
}

The someObject in question is the hardest part of this equation, but based on what you’ve seen, it

shouldn’t be impenetrable. This object is an XMLList instance determined by the expression

xmlDoc..author.(descendants() == "Keith Peters"). Up to this point, you would have used the

longhand version to retrieve the same list. The longhand version looks like this:

xmlDoc.book.authors.author.(descendants() == "Keith Peters");

www.zshareall.com

mailto:.(@pageCount
mailto:.@title
mailto:parent().@title
http://www.zshareall.com

CHAPTER 12

658

This version is still as valid as ever. But the descendant accessor (the double dots) lets you skip past the

intermediate nodes—book and authors—straight to the element you’re after. Pretty slick! Stepping

through the subexpressions piece by piece, then, we get the following:

 xmlDoc..author: All <author> elements in the xmlDoc instance, no matter to which

intermediate nodes they belong.

 .(descendants() == "Keith Peters"): Of that list, a comparison of the descendants of each

<author> element against a particular string. These descendants are text nodes that happen to

represent author names, and the comparison looks for a match with the string "Keith Peters".

The returned XMLList instance is the someObject from our skeleton.

That gives us the following:

var node:XML;
for each (someProperty in xmlDoc..author.(descendants() ==
"Keith Peters")) {
 // do something
}

The replacement for our stand-in someProperty is an XML instance, stored in an arbitrarily named

variable, node.

var node:XML;
for each (node in xmlDoc..author.(descendants() == "Keith Peters")) {
 // do something
}

All this means is that the for each..in statement is going to make laps around the node list returned by

the comparison expression. On each lap, it will update the value of that node variable to the latest XML

node it finds in that list. The node variable becomes the XML object in question. It’s an XML reference,

which means you can work your recently acquired E4X magic on it.

This is where the parent() method comes into play. Remember that at this point you’re dealing with an

element node (<author>) whose descendant matches the string "Keith Peters". As an XML instance,

the <author> node has access to the XML.parent() method, which pretty much works in the same way

as the MovieClip.parent property. The parent of <author> is <authors>, and the parent of <authors>

is <book>. Given that point of view, the title attribute, referenced with the @ symbol, makes sense:

var node:XML;
for each (node in xml..author.(descendants() == "Keith Peters")) {
 trace(node.parent().parent().@title);
}

www.zshareall.com

mailto:parent().@title
http://www.zshareall.com

XML (DYNAMIC DATA)

659

Namespaces

In spite of everything you’ve just seen, there will come a day when you pull on your E4X wizard hat, roll up

your oversized E4X wizard sleeves, wave the wand...and nothing happens. You won’t see anything in your

XMLList instance. It won’t be because you’ve done anything wrong, only that you’ve omitted something:

the acknowledgment of an occasionally present XML namespace. In XML, namespaces are a way to filter

or label certain elements in order to control their visibility. Namespaces basically give elements a secret

handshake, and you can’t see the elements unless you know it.

So, what’s a namespace? The namespace concept is not unique to XML. It has been part of computer

programming almost since there were computers. The idea behind a namespace is that, at any given time,

a single name should refer to a single item regardless of whether it is a variable, function, or even a

document. Think of your favorite sports team. Each player on that team wears a shirt with a number on it,

and that number is unique to that player. No other player on the team can wear that number. When they

play against the opposition, there may be someone on the other team wearing that same number, but,

again, that number—or namespace—is used only by that player on that team.

XML documents don’t require namespaces, but many use them, including iTunes playlists, ATOM and

RSS feeds, and even Flash. In fact, let’s use a bit of XML content that was generated by the Commands ➤

Copy Motion as XML command. The Copy Motion as XML command provides a way to encode

certain kinds of motion tweens into XML data, and its root element contains three namespaces. Here’s one

example, which is available as CopyMotion.xml in the Exercise folder for this chapter:

<Motion duration="24" xmlns="fl.motion.*" xmlns:geom="flash.geom.*"
xmlns:filters="flash.filters.*">
 <source>
 <Source frameRate="24" x="150" y="120" scaleX="1" scaleY="1"
rotation="0" elementType="movie clip" symbolName="Symbol 1">
 <dimensions>
 <geom:Rectangle left="0" top="0" width="80" height="60"/>
 </dimensions>
 <transformationPoint>
 <geom:Point x="0.5" y="0.5"/>
 </transformationPoint>
 </Source>
 </source>

 <Keyframe index="0" tweenSync="true"/>
</Motion>

In XML, namespaces are defined by xmlns attributes—in this case, in the <Motion> element. Of the three

defined, two have identifiers (geom and filters), and one doesn’t, which means it’s there but doesn’t have a

name. Given what you know and assuming the preceding XML is loaded into an XML instance named

xmlDoc, you would expect to see the contents of the <Source> element with an E4X expression like this:

trace(xmlDoc..Source);

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

660

The problem is that if you test that—you can use CopyMotion.fla in the Exercise folder—you’ll find that

the Output panel does not display anything. To get your data back, you’ll need to use the Namespace

class, which is easy to do. Here’s how:

1. In CopyMotion.fla, click into frame 1, and open the Actions panel to view the full code and

trace() function:

var xmlDoc:XML = new XML();
var loader:URLLoader = new URLLoader();
var req:URLRequest = new URLRequest("CopyMotion.xml");
loader.load(req);

loader.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(evt:Event):void {
 xmlDoc = XML(evt.target.data);

 trace(xmlDoc..Source);
};

2. Enter the following new ActionScript just before the trace() function:

var ns:Namespace = new Namespace("fl.motion.*");

This declares a variable, ns, which is set to an instance of the Namespace class. This instance is fed the

value portion of the XML document’s first mxlns attribute ("fl.motion.*") as a parameter.

3. At this point, that ns variable gives you a prefix you can use to unlock your data. Use the name

qualifier operator (::) between the ns variable, and the node will “unlock.”

var ns:Namespace = new Namespace("fl.motion.*");
trace(xmlDoc..ns::Source);

4. Test the movie, and your <Source> element comes out of hiding, as shown in Figure 12-7.

Figure 12-7. Using a namespace instance can bring data back to light.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

661

If you look carefully at the results in the Output panel, you’ll see that the <Source> element now contains

additional attributes not in the original XML document. Those are the namespaces. Why they show up

here is one of the mysteries of life. But at least you won’t be caught by surprise if you run into this sort of

XML content.

5. If you don’t know an xmlns attribute’s value before writing your ActionScript, you can use the

XML.namespace() method to grab the namespace currently in use. Replace the "fl.motion.*"

parameter you entered just a moment ago with the following:

var ns:Namespace = new Namespace(xmlDoc.namespace());
trace(xmlDoc..ns::Source);

6. Test again, and you’ll see the same Output panel content, even though ActionScript supplied

the namespace information for you.

That’s it for the fundamentals of the relationship between XML and Flash. When you reach Chapter 14,

you will get a deeper understanding of how to use it and where it fits when you create a slide show, an

MP3 player, and a video player that plays a sequence of videos based on an XML document. Next,

though, we want to show you a new XML-based Flash file format called XFL that is going to have the

codies drooling on their keyboards.

Your turn: time to explore XFL

To this point in the chapter you have seen how XML can be used to manage data in a Flash document.

Now let’s turn our attention to using XML to build and edit a Flash document without using Flash.

Over the past few years Adobe, at least to one of the authors, seemed to be developing a curious

fascination with metadata and XML. Some of these efforts—the XMP engine—seemed to be rather

esoteric and others, such as fixing how Flash worked with XML files, were downright useful. Phrases such

as “interesting” and “curious” sort of disappeared when Adobe released the Flex and AIR technologies.

Along the way, a new language, MXML, appeared and the phrase Flash Platform took on the trappings of

a noun in much the same way that Photoshop became a verb.

If there was one issue that bedeviled developers, it was a way of getting all of the diverse applications

comprising the platform to “play nice” with each other. This obviously didn’t include designers because the

only way of making this happen was to give the developers a way of changing things up or moving Flash

files among the members of a workgroup without losing the integrity of the project.

The solution to that issue was handed to the community with the release of Flash CS4. This release

introduced a new file format called XFL, which took an entire Flash movie broke it into its constituent

elements and essentially “exposed” the structure of a Flash movie to an entire workgroup. The bottom line

was the community was handed a method of working with Flash without working with Flash. One of the

authors would make that statement in front of groups of developers, and inevitably he would see a lot of

blank faces or hear muted mutterings of “Huh?” It shouldn’t come as any great surprise then to say the

format didn’t gain the expected traction. That is all about to change.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

662

What is XFL?

XFL isn’t some sort of new arena football league. The XFL file format is a way to represent a Flash

Professional document as an XML-based, open folder of files. Figure 12-8 shows an example of the XFL

folder structure. You will notice that there is a file called DOMDocument.xml. This file is the key. Inside it

you will see all of the information, presented as XML, for your document including timelines, actions,

motion paths, and so on. When you first open it, the document won’t seem to make much sense. We’ll get

you over that first impression because the code in this document can be edited and saved. When you do

that, your changes will automatically take effect when you launch the file.

Figure 12-8. The XFL folder structure

Designers are also invited to the XFL party. The Library folder contains all the assets—images, audio,

video, graphics and so on—contained in the document. These files can all be edited in Fireworks,

Photoshop, InDesign, After Effects, Soundbooth, or whatever app is required to edit them and then can be

saved and stuck back in the folder, and the changes will appear when the XFL file is opened in Flash.

Before we dig in, let’s clearly understand that even though this is a massive change don’t for a moment

think that what we are going to present is easy. It isn’t. You need to approach this new workflow with a

high degree of organization and planning. Though we are going to show you how to change things in a

Flash document based on this new format, don’t for a minute think we are subliminally saying, “This is

dead simple.” Make one mistake, and you are essentially back to the drawing board. The exercise we are

about to complete is designed more to show where stuff is and how these changes can be made than to

hand you a hunting license. Still, this is pretty darn cool, and we think you will agree with that observation

by the end of the exercise. Let’s get started:

1. Open the XFLexercise.fla file found in the XFL folder in this chapter’s Exercise folder. The

reason for putting the .fla in a separate folder is to let you create an XFL document and not

have to root around for the files created. When the file opens, you will see that there are some

assets on the stage and in the Library. Also, note the layers and the trace statement

contained in the Actions layer.

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

663

2. Select File ➤ Save As to open the Save As dialog box. Open the Format drop-down menu,

and select Flash CS5 Uncompressed Document (*.xfl), as shown in Figure 12-9. The

first two formats are the traditional .fla file format which we have been working with since Flash

first appeared. Double-click an .fla, and Flash launches. The uncompressed document is an

exploded view of the .fla. It will create a number of files and folders to hold the content which a

developer, with serious coding chops, can use to change the Flash document without ever having

to use Flash. The most important file, as you will see in a moment, is the .xfl document. Double-

click it, and Flash will open. Conversely, it can be opened in Dreamweaver CS5 or other code

editor, and the codie gets to play with XML. When the codie saves the document, the designer

simply needs to double-click the .xfl document, and Flash will launch.

Figure 12-9. Creating an .xfl document

3. Minimize Flash, and navigate to the Exercise folder. Open the XFL folder, and you will see that a

new project folder, bearing the name of the .fla, has been placed in the folder as well.

If you create external AS files, don’t place them in this project folder. These files go in

their usual place, alongside the .fla file in the root or top-level folder of the project.

4. Open this new folder, and you will see three folders—bin, LIBRARY and META-INF—as well as

three XML documents and the XFL document.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

664

5. Open the LIBRARY folder. When the folder opens, you will see that all the files found in your Flash

project’s library are contained in this folder. This would also include any audio or video files, if

they were a part of the project. There are a couple of things you need to know about this folder:

 These are the contents of your library. Don’t remove them.

 All of the files are editable providing you don’t change the name, and they are returned to this
folder.

 You can’t add items to this folder. Any objects added to this folder must be loaded into the
Flash library before they will appear.

6. Open the DOMDocument.xml file in Dreamweaver CS5 or a text editor. Take a minute to review

the file. You will discover it is broken into sections that follow the structure of the Flash file. This

file is at the heart of the entire XFL file format. The really neat thing about this document is it can

be edited, and the changes can be saved and will appear in the .xfl document when you open

it. Let’s make some changes.

7. Scroll down the open code document and, as shown in Figure 12-10, locate the ActionScript used

in the file. It has been decided that the trace statement needs to go and to be replaced with a

stop(); action.

Figure 12-10. Changing a frame script

8. Select the code—trace("This is the XFL example.");—and replace it with stop();. Save

the XML document. To see your change, return to Flash, close the open XFL document, and

reopen it to load the changed XML file. Your code now has a stop(); action. What this tells you

is that a developer can make changes to code on the timeline without needing a copy of Flash.

Save the changes, and close the document.

9. Return to the XML file. Locate the color of the box found in the Box layer of the Flash file. It

needs to change to an Olive color (#999900). Locate the section that starts with <DOMLayer name
= "Box" … and change the value of the hexadecimal color in the <SolidColor color … /> tag

to #999900, as shown in Figure 12-11. Save the file.

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

665

Figure 12-11. Changing the color of a drawing object

10. Reopen the XFL document in Flash, and the box now has a green color.

11. Return to the XML document. Let’s get rid of the author’s photo and replace it with another in the

Library.

12. Scroll down to the Photo layer in the XML document. Locate the <DOMBitmapInstance… > line

shown in Figure 12-12, and change the libraryItemName from "Tom.jpg" to

"OliverSeller.jpg". Save the XML file, and relaunch the XFL document. You now have an

olive seller in the image.

Figure 12-12. Swapping an image

Changing the tx and ty values shown in Figure 12-13 is how you change the x and y

properties of an object in the document.

13. Return to the XML document. Let’s wrap this up by changing both the title and the flag.

www.zshareall.com

http://www.zshareall.com

CHAPTER 12

666

14. Locate the DOM reference to the Flag layer in the XML, and change the name from

CanadaFlag.fxg to China.fxg.

15. The two text blocks are easy to locate. They are both TLF instances, meaning the XML document

will be exposing all of their properties. Locate the name layer in the code, and in the properties

found between the <markup> and </markup> tags, as shown in Figure 12-13, change the text

from Tom Green to Olive Seller.

Figure 12-13. Editing text in the DOMDocument.xml file

16. Save the XML file, and relaunch the XFL document. The interface now sports a new flag and

head line.

XFL bonus round

Having discovered how you can make changes to a Flash movie using the DOMDocument.xfl file is neat,

but we just bet you are thinking, “Guys, what if I have to edit an image in the document? How do I put it

back and get it to appear in the XFL file?” Great question. Here’s how:

1. Open the OliveSeller.jpg image found in the XFL ➤ LIBRARY folder in an imaging application

such as Photoshop or Fireworks.

2. “Flop” the folder by flipping it on the horizontal axis. Save the file, and don’t change the name.

3. Reopen the XFL document. The image is facing in the opposite direction.

Here’s an interesting little trick. Leave the XFL document open and make another

change, like flipping it upside down, to the Oliverseller.jpg image. Save the image.

Return to the XFL file and click it. The change is made.

www.zshareall.com

http://www.zshareall.com

XML (DYNAMIC DATA)

667

What you have learned
In this chapter, we gave you the absolute basics of XML use in Flash. On the surface, it may not seem like

much. However, what we have presented in this chapter forms the foundation for complex Flash projects

ranging from video pickers, MP3 players, and portfolio sites to e-commerce applications. In this chapter,

you have discovered the following:

 The relationship between an XML document and Flash CS5

 How to retrieve and filter XML data using E4X syntax

 The creation of an XFL document and how to manipulate its contents.

The most important point you need to take away from this chapter is the sheer flexibility of XML in your

Flash design and development efforts. You can make your movies expand or contract effortlessly by

simply adding to or subtracting from the XML document being used by the movie. This is the true meaning

of dynamic. Toss the new XFL format into the mix and a whole new world of Flash authoring and team

dynamics opens up.

Now that you know how dynamic content is added to Flash, let’s take a look at how you can dynamically

change the “look” of a file using Cascading Style Sheets of CSS. Turn the page so we can get started.

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

669

Chapter 13

CSS

Cascading Style Sheets (CSS) refers to a World Wide Web Consortium (W3C) specification that, in the

W3C’s own words, provides “a simple mechanism for adding style (e.g., fonts, colors, spacing) to Web

documents” (www.w3.org/Style/CSS/). The concept is simple, but as any web developer will tell you,

CSS can be a behemoth when it comes to managing HTML. In other words, CSS is rugged and powerful

and does a great job at making HTML behave. Obviously, this is a good thing. But CSS can also be a bit

hard to work with, especially when you have Classic and TLF text in the same Properties panel.

In the world of HTML, a major issue with CSS is the wide variety of browsers (and versions of browsers) in

use by the general public. Each browser supports CSS to a varying, and often buggy, degree. In Flash,

you have a lot less to worry about, even though the use of CSS requires ActionScript. Why are things

easier in a SWF? The answer is mainly that Flash supports only a very small subset of the full CSS

specification. This means that there is less for you to worry about. As a Flash designer, you’re not worried

about half a dozen browsers but merely a single Flash Player plug-in. As an extra plus, the supported CSS

subset hasn’t really changed since the feature was introduced in Flash MX 2004 (Flash Player 7).

Here’s what we’ll cover in this chapter:

 Understanding the power and limitations of CSS in Flash

 Generating and applying CSS in ActionScript

 Using custom HTML tags

 Taking advantage of inheritance in CSS

 Styling anchor tag hyperlinks

www.zshareall.com

http://www.w3.org/Style/CSS
http://www.zshareall.com

CHAPTER 13

670

 Embedding fonts for CSS

 Loading styles from an external CSS file

The following files are used in this chapter (located in Chapter12/ExerciseFiles_Ch12/Exercise/):

 Styling01.fla

 Styling02.fla

 Styling03.fla

 Styling04.fla

 ClassSelectors.fla

 ElementSelectors.fla

 Hyperlinks.fla

 HyperlinksVaried.fla

 Inheritance.fla

 StylingEmbeddedFonts01.fla

 styles.css

 StylingExternal.fla

The source files are available online from either of the following sites:

 www.FoundationFlashCS4.com

 www.friendsofED.com/download.html?isbn=1430229940

In a nutshell, the power of CSS is that it allows you to separate styling from informational content. In Flash,

we’re essentially talking about text. You’ll wrap text content in HTML tags—that’s one side of the coin—

and you’ll style those HTML tags with CSS—that’s the other side. Flip that coin as you see fit. If you

change your mind about how the text should look—regarding font, color, indentation, spacing, and the

like—you can change the CSS without affecting the text. The reverse is also true. Not only that, but styling

can be applied to numerous text fields at once, and even managed from a convenient external file. As if

that were not enough, this external style sheet can update a movie’s styles without requiring you to

recompile the SWF! Have we got your interest yet?

If you have little or no experience using CSS, then you may find this chapter to be a bit

of a tough “slog” with a lot of terminology and techniques that will appear to be either

mystifying or difficult to comprehend. If this describes you or your reaction to this

chapter, then we suggest you either pick up a copy of Getting StartED with CSS by

David Powers from friends of ED or that you head over to www.w3schools.com/ and

work your way through their excellent CSS tutorials.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.FoundationFlashCS4.com
http://www.friendsofED.com/download.html?isbn=1430229940
http://www.w3schools.com
http://www.zshareall.com

 CSS

671

Styling with CSS
Before we turn you loose, it is important that you understand a couple of things. The first is the way CSS is

handled by the Classic Text and TLF engines is different. You can’t mix them up on the same stage. The

other thing is Flash CS5 seems to have developed an unhealthy fascination with embedded fonts. Until

further notice, ignore the messages in the Output panel.

The bulk of this chapter is going to be a focus on getting text styled. This means we will be using Classic

Text, and the text will be added to the stage using dynamic text boxes with multiline behaviors assigned to

them in the Properties panel.

Though we would dearly love to include how to style TLF text in this chapter, it became

apparent rather early in the planning for this chapter that the technique for

accomplishing this task is beyond the scope of this book. We simply did not have the

space to do it justice, and the ActionScript required to make CSS work with TLF

containers is in the realm of intermediate to advanced ActionScript coding.

Before we start styling text, here are the available style properties:

 color: This property determines the color of text, specified as a hexadecimal value preceded by

the # sign, as in #FFFFFF, rather than the 0xFFFFF you would use in ActionScript.

 display: This property determines how the styled object is displayed. Values include inline

(displayed without a built-in line break), block (includes a built-in line break), and none (not

displayed at all).

 fontFamily: This property allows you to specify fonts for text content—either a single font or

comma-separated collection of fonts listed in order of desirability.

 fontSize: This property is used for specifying font size in pixels. Only number values are

accepted (units such as pt or px are ignored).

 fontStyle: This property optionally displays text content in italics, if the font in use supports it.

Values include normal and italic.

 fontWeight: This property optionally displays text content in bold, if the font in use supports it.

Values include normal and bold.

 kerning: This property, if specified as true, allows embedded fonts to be rendered with kerning,

if the font supports it. Kerning is the removal of a bit of space between letters. It is applied only in

SWF files generated in the Windows version of Flash. Once the SWF is published, the kerning is

visible both in Windows and Mac.

 leading: This property determines the amount of space between lines of text. Negative values,

which are allowed, condense lines. Only number values are accepted (units such as pt or px are

ignored).

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

672

 letterSpacing: Not to be confused with kerning, this property determines the amount of space

distributed evenly between characters. Only number values are accepted (units such as pt or px

are ignored).

 marginLeft and marginRight: These properties add marginal padding by the specified amount

in pixels to the left and right. Only number values are accepted (units such as pt or px are

ignored).

 textAlign: This property aligns text. Values include left, center, right, and justify.

 textDecoration: This property adds or removes underscoring by way of the underline and

none values.

 textIndent: This property indents a text field by the specified amount in pixels. Only number

values are accepted (units such as pt or px are ignored).

Now let’s roll up our sleeves and use some of these properties:

1. Open the Styling01.fla file from the Exercise folder for this chapter. There are a few things

already in place for you. Note the two dynamic text fields, side by side, with instance names

unstyledContent and styledContent. There’s also a bit of ActionScript in frame 1 of the

scripts layer, which does nothing more than build a string of HTML tags and apply that string to

the TextField.htmlText property of the two text fields. The image, banner, and headlines are

found in the TopPage folder.

2. Test the movie to see two identical copies of the Street Food copy shown in Figure 13-1.

Figure 13-1. CSS is about to save you a lot of effort.

www.zshareall.com

http://www.zshareall.com

 CSS

673

When you use CSS in Flash, the styling must be applied to a text field before any text is added to it. If you

apply styling afterward, you’ll get mixed results, or the styling won’t work at all. We’re going to leave the

unstyledContent text field as is in order to let you see how the changes affect what you started with. The

CSS that formats the styled text field will need to appear before the last line of ActionScript—

styledContent.htmlText = str;—because the last line actually provides the HTML text.

3. Put your mouse pointer in front of the last line of code, and press Enter (Windows) or Return

(Mac) three times. This is where the new ActionScript will go. Now, hold that thought.

How is this CSS thing going to work? That’s a good question, and thankfully, the answer isn’t especially

complicated, even though the process takes a few steps. First, you’re going to create an instance of the

StyleSheet class. Next, you’ll decide on a handful of style properties. You’ll repeatedly use the

StyleSheet.setStyle() method to associate those properties with an HTML tag. Finally, you’ll

associate the StyleSheet instance itself with a given text field and add HTML content to that text field.

The crafty thing is that there are a number of ways to handle the setStyle() part. We’re going to step

you through a wordy approach first, because we think it best summarizes, on a conceptual level, what’s

going on. When you’ve seen that, we’ll steer you toward a more compact approach, which will eventually

lead toward an external CSS file, which is the most versatile way to handle styling in Flash.

4. OK, still holding the thought? Good. Put your mouse pointer into the second of the three blank

lines that precede the last line of code. Type the following ActionScript:

var css:StyleSheet = new StyleSheet();
var style:Object = new Object();

style.fontStyle = "italic";
style.color = "#FF0000";
style.leading = -"-2";

css.setStyle("li", style);
styledContent.styleSheet = css;

Let’s review what you’ve done so far. The first line declares a variable, css, which points to an instance of

the StyleSheet class. The StyleSheet class lets you create a StyleSheet object that contains text

formatting rules for font size, color, and other styles.

The second line declares another variable, style, which points to an instance of the generic Object

class—that’s right, this is an Object object. The next three lines set arbitrary properties of this new object:

fontStyle, color, and leading, each of which is set to a string value. The second-to-last line refers

again to the css instance, using that instance to invoke StyleSheet.setStyle() with two parameters: an

HTML tag to style and the object with which to style it. Quite simply, this line says, “Yo, any tags in

the house? If so, you’re about to meet the style object, whose instructions are to render you in italics, in a

red color #FF0000 and at a leading of -2.” Finally, a text field whose instance name is styledContent has

its styleSheet property associated with the css instance.

5. Test the movie so far to see a change in all the content, as shown in Figure 13-2. You can

save and close the movie if you want.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

674

Figure 13-2. CSS styling applied to a series of tags

Pretty nifty! Now, in case you thought that ActionScript was a lot to type, keep in mind that what you’ve

seen is the most verbose of the styling approaches. It’s possible to collapse five of those lines into one

line, which we’ll do in just a moment. First, let’s take a look at how this might have happened without

CSS—because once you see that catastrophe, even this version will seem a welcome relief.

Taking just the first tag’s content, how would you apply italics? That’s easy enough. You’ll remember

from Chapter 6 that you do this with the tag. So far, then, we have one nested pair:

<i>Sausages</i>

What about the coloring? That’s the tag. Combined, that makes this:

<i>Sausages</i>

Almost done! The final style property is leading (the spacing between lines). In the HTML-only realm, that

requires the proprietary Flash tag <textformat>. This brings the combined total of nested tags to the

following example of spaghetti code:

<i><textformat leading="-
2">Sausages</textformat></i>

Multiply that by the nine bullet points in this text block, and this exercise becomes a “feat of endurance”! If

you decide later to change the text color, you’ll need to revisit all nine nested tags and either edit

or remove them. It’s a mess. Definitely, the CSS styling mechanism is the nicer pick—all the more so if we

can reduce the amount of ActionScript code.

To accomplish that reduction, we’re going to rely on a shortcut in creating our Object instance, involving

the use of the curly braces ({}). Our setStyle() line will continue to use "li" as the first parameter, but

www.zshareall.com

http://www.zshareall.com

 CSS

675

the second parameter will be composed of a single “shortcut” object that holds all three styling properties

at once.

The actual ActionScript looks like this:

myCss.setStyle("li", {fontStyle: "italic", color: "#A2A2A2",leading: "-2"});

This brings the full ActionScript styling portion to a mere three lines:

var myCssStyleSheet = new StyleSheet();
myCss.setStyle("li", {fontStyle: "italic", color: "#A2A2A2",leading: "-2"});
styledContent.styleSheet = myCss;

Using this approach, let’s style a few more HTML tags:

1. Open the Styling02.fla file in this chapter’s Exercise folder. This file picks up where we left

off. The same text fields are in place, and some styling has already been applied (see the

scripts layer). What’s there uses the shortened code version we just looked at.

2. Now, you’ll style all the <p> tags. Position your mouse pointer after the setStyle() line, and

press Enter (Windows) or Return (Mac) to make room for the new code. Update your ActionScript

so that it includes the following new code (shown in bold):

var myCss:StyleSheet = new StyleSheet();
myCsssetStyle("li", {fontStyle: "italic", color: "#A2A2A2", leading: "-2"});
myCss.setStyle("p", {textAlign: "justify", leading: "6"});
styledContent.styleSheet = myCSS;

3. Test your movie to see the new formatting—justified and with a taller line height—below the bullet

points at the bottom right (see Figure 13-3).

Figure 13-3. After the first style is in place, additional styles are a snap.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

676

Say, this is encouraging! Let’s keep right on going. There really isn’t enough space between the bullet

points and the text below, so let’s pad the bottom of the tag a bit. We also want the recipe’s title to

stand out more.

4. Enter the scripts layer again, and update the styling ActionScript so that it includes the

following new code (shown in bold):

var myCss:StyleSheet = new StyleSheet();
myCss.setStyle("li", {fontStyle: "italic", color: "#FF0000",leading: -"-2"});
myCss.setStyle("p", {textAlign: "justify", leading: "6"});
myCss.setStyle("ul", {leading: "4"});
myCsssetStyle("b", {fontFamily: "Impact", fontSize: "18",color: "#339966"});
styledContent.styleSheet = myCss;

5. Test the movie to see the new styling—well, part of it.

Whoops! There’s now space after the bullets—the additional 4 pixels of leading we wanted—but the title

(the content) hasn’t changed at all! What’s going on? It is a matter of selectors, which we’ll deal with in the

next section.

6. Feel free to save the file or close it without saving the changes.

We’re going to go off on a sizable tangent here, but don’t worry. It all eventually leads back to the Street

Food. The tangent…you know how to add styles, but what about loading a style sheet that already

contains the styles?

Loading external CSS
If we had to pick our favorite aspect of CSS in Flash, it would undoubtedly be that CSS styling can be

loaded from an external file. The existence of this feature brings the concept of separating style from

content to its logical conclusion.

Given all you’ve learned so far in this chapter, you’ll be happy to find that loading external CSS is a piece

of cake. There’s really only one snare to be aware of: some of the style properties we showed you in the

beginning of the chapter are spelled just a tad differently when they appear in an external file. Single-word

properties, such as color and display, are identical. Multiple-word properties, such as fontFamily and

fontSize, are split into hyphenated parts: font-family, font-size, and so on.

To see how external CSS works, open the StylingExternal.fla file in this chapter’s Exercise folder.

You’ll see a single text file with the instance name styledContent. Click into frame 1 of the scripts

layer, and take a look at the ActionScript. The HTML portion is for a Wasabi Salmon recipe with a token

hyperlink at the bottom. The new stuff is just below it:

var css:StyleSheet = new StyleSheet();
var loader:URLLoader = new URLLoader();
var req:URLRequest = new URLRequest("styles.css")

www.zshareall.com

http://www.zshareall.com

 CSS

677

loader.load(req);
loader.addEventListener(Event.COMPLETE, completeHandler);

function completeHandler(evt:Event):void {
 css.parseCSS(evt.target.data);
 styledContent.styleSheet = css;
 styledContent.htmlText = str;
};

The first line creates our familiar StyleSheet instance. The next two lines are new. A variable, loader, is

declared and set to an instance of the URLLoader class. This differs from the Loader class (covered in

Chapter 14), which loads images or SWFs. What makes URLLoader different is that not only does it load

files, but it also actually reads them, which is essential when the goal is to sift through external CSS. The

third variable, req, points to an instance of the URLRequest class and specifies the location of the actual

CSS document.

The URLLoader.load() method is invoked on the loader instance with req as the parameter. Finally, the

Event.COMPLETE event is handled with a function that performs three straightforward tasks: it parses the

loaded CSS, sets the text field’s styleSheet property to the css instance, and sets its htmlText property

to the prepared HTML string. You already know how the last two work, so let’s pick apart the first line of

this function.

The StyleSheet.parseCSS() method takes a single parameter, which in this case is the expression

evt.target.data. That may look like a mouthful, but it’s nothing more than a compact way of getting at

the CSS styles themselves. The evt.target part refers to the loader instance. How? The evt variable is

received as a parameter to the completeHandler() function and refers to the Event.COMPLETE event

itself. In other words, evt is the event object dispatched by loader when the CSS file loads. The Event

class features a target property, which refers to the object that dispatched the event—namely, loader.

As an instance of the URLLoader class, loader features a data property that points to the CSS data

stored inside the styles.css file.

Open the styles.css file in Dreamweaver CS5 or any simple text editor, such as Notepad on Windows or

TextEdit on a Mac. (Although CSS files serve a special styling purpose, they are really just text files with a

.css file extension.) The contents should be easily recognizable to you:

li {
 font-style: italic; color: #A2A2A2; leading: -2;
}
p {
 text-align: justify; leading: 6;
}
ul {
 leading: 6;
}

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

678

strong {
 font-family: Impact; font-size: 14; color: #339966;
}
a {
 font-family: Courier; font-weight: bold;
}
a:hover {
 color: #FF00FF;
}

Besides the hyphenated style properties and a few minor syntactical differences, these selectors represent

the same styling approach you’ve seen throughout this chapter. The syntax differences to look out for are

as follows:

 In this version, neither property names nor values are wrapped in a quotation mark or use camel

cases, as they are in ActionScript. For example, we use font-style: italic instead of

fontStyle: "italic".

 Properties are separated by semicolons rather than commas, like this:

li { fontStyle: italic; color: #A2A2A2; leading: -2;

instead of this:

css.setStyle("li", { fontStyle: "italic", color: "#A2A2A2",
leading: -"-2" });

By the way, thanks to the semicolon punctuation, you have some leeway in how you arrange the

properties, both in ActionScript and in the CSS file. Put them in a single line or spread them over several

lines—it doesn’t matter. As long as the required parts are present, Flash can figure out what you mean.

So, go ahead and suit your fancy. For example, this line:

li { fontStyle: italic; color: #A2A2A2; leading: -2 }

is functionally the same as this:

li {
 fontStyle: italic;
 color: #A2A2A2;
 leading: -2;
}

And now we’ve arrived at the punch line. Test the movie to generate a SWF file, which should look

something like Figure 13-4. Now close Flash. That’s right, shut down the application. The rest is a matter

between you, a SWF, and a CSS file.

www.zshareall.com

http://www.zshareall.com

 CSS

679

Figure 13-4. CSS styles pulled from an external CSS file

Double-click your newly created StylingExternal.swf file to give it one last look. This is a bit like

making sure the magician has nothing up either sleeve.

Now, open the styles.css document and make a few changes. If you are not sure where to start, update

the p and strong styles as follows:

p {
 margin-left: 100; leading: 12;
}
strong {
 font-family: Impact; font-size: 40; color: #339966;
}

After you make your changes, save the CSS document. Then close StylingExternal.swf, and

double-click it again to launch the SWF. Without republishing the SWF, you’ve updated its formatting (see

Figure 13-5). That’s no small feat!

Hey, did you catch that something is missing? What happened to that hyperlink? The increased leading in

the p selector has pushed it off the stage! In fact, the phrase Broil to taste has also been shoved

aside. No problem. All you need to do is to readjust the leading property or decrease the strong

selector’s font-size property until everything fits. This sort of tweaking is what CSS was made for.

We just love telling “war stories” to support what we are talking about. In this case, David

Stiller, who was one of the coauthors in the CS4 version of this book, had recently

completed a Flash-based training presentation for a U.S. government agency that

featured more than 250 slides. At one point, David needed to change the color of one of

the heading styles to a slightly different orange. He was able to make the change in a

single CSS file. David tells us he is still smiling.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

680

Figure 13-5. Look, ma—style changes without re-creating the SWF!

Block element styling

The authors spent a bit of time studying the tea leaves, and this is what we discovered: officially

documented or not, the tags that support element selectors are all block elements, with the exception of

the anchor tag (<a>). In other words, the rule of thumb is that, if the tag carries with it a built-in line break,

then an element selector will do the trick. The special case is hyperlinks, which we’ll cover in detail later in

the chapter (hyperlinks are a special case in several ways).

For your reference, let’s take a quick look at a “proof is in the pudding” sample file:

1. Open the ElementSelectors.fla file in this chapter’s Exercise folder. You’ll find a text field

with the instance name styledContent. The ActionScript in the scripts layer shouldn’t be any

trouble for you by now. A string of HTML is created, element selectors are defined and then

assigned to a StyleSheet instance, and finally, the HTML is supplied to the text field.

2. Test the movie to see the result in Figure 13-6. The output may not look all that interesting, but it

is, because it demonstrates a few additional “gotchas” while verifying the block element principle.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

 CSS

681

Figure 13-6. Only block elements—and one exception, anchor tags—support element selectors.

3. Click into frame 1 of the scripts layer, and take a look at the ActionScript in the Actions

panel.

Each line of HTML ends in a break tag (
), just to keep things visually neat. Every tag is given an

element selector that alternates its color between #0000FF (blue) and #00FF00 (green). In normal HTML,

most of these lines would display as either blue or green (contains no actual text, so it wouldn’t).

In Flash, this holds true only for the block elements.

The <a> tag is not a block element, so it does not display an additional, built-in line break as some later

tags do. But as the exception to the rule in question, the <a> tag does pick up the blue color (mid-gray, in

Figure 13-6) from its element selector. The <body> and <p> (paragraph) tag contents carry their own

additional line breaks—these are block elements—and both display the expected element selector color

styling. The and tags’ content is combined. These are also block elements and therefore

display a combined pair of extra line breaks, as well as the expected element selector styling.

4. Comment out the body and li element selectors in the ActionScript by preceding those lines with

double slashes (//), as shown in Figure 13-7.

5. Test the movie again.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

682

Figure 13-7. Commenting out the <body> and selectors leads to a line-spacing quirk and the

concept of inheritance.

It should come as no surprise that the <body> tag content is no longer styled. What may raise your

eyebrows is that the extra line break is missing. This is a quirk involving only the <body> tag and will raise

its head again in the “Custom tags” section of this chapter. The other thing to notice is that the /

content has changed color. This is because a distinct color style was applied to each tag (green for

and blue for). Blue won the wrestling match earlier because of a CSS concept called inheritance

(covered in the “Style inheritance” section later in the chapter).

6. As a final experiment, uncomment the body element selector by removing the double slashes

from that line. Instead, comment out the p element selector.

7. Test the movie a final time, and you’ll see that the <p> content is still blue.

Why? Again, this is an example of inheritance, but in a really twisted way. Under normal circumstances,

HTML documents feature most of their content inside a <body> tag. If a style is applied to the body, it will

“trickle down” to tags inside that body if those inner tags happen to support the style properties at hand.

Here in this Flash file, the <p> content is clearly not inside the <body> content, and yet some phantom

inheritance seems to still hold sway. Comment out the body element selector one last time, and the <p>

content finally turns black.

8. Close the file without saving the changes.

Every development platform has its quirks, and now you’ve seen a few of the ones that belong to Flash.

Being aware of these, even if they aren’t burned into your neurons, might just save your hide when

something about CSS styling surprises you.

Now you’ve had some experience with block elements and the anchor tag, with the understanding that

anchor tags still hold a bit of mystery, yet to be unfolded. Meanwhile, what remains of the other supported

HTML tags? What’s the opposite of a block element, and how can one be styled?

www.zshareall.com

http://www.zshareall.com

 CSS

683

Inline element styling

In Flash, if a tag is not a block element, it is an inline element. There is no “in between,” and all that means

is that it doesn’t carry its own line break with it. Examples include the and <i> tags, which apply their

own innate formatting—bold and italic, respectively—without otherwise interrupting the flow of text. As

you’ve seen, inline elements in Flash do not support element selectors. Is there another option, then? Yes,

there is. But it goes only so far.

Not to be confused with the classes discussed in Chapter 4, CSS features something called class

selectors, which differ from element selectors in a significant way. Rather than apply their style to all tags

of a specified type, class selectors look only for tags that have a class attribute whose value is set to the

name of the class in question. We’ll see an example of this in just a moment. In HTML documents, just

about any tag can be given a class attribute, but this isn’t the case in Flash. Actually, nothing stops you

from giving an HTML tag such an attribute in Flash, but Flash applies class selector styling to only a few

tags, and only one of those is an inline element.

Here’s another “proof is in the pudding” exercise, which should make everything clear:

1. Open the ClassSelectors.fla file in this chapter’s Exercise folder. At first glance, this file may

look identical to ElementSelectors.fla, but click into frame 1 of the scripts layer to lay eyes

on a different chunk of code.

You’ll see that every HTML tag now has a class attribute, set either to blue or green, and the number of

selectors has been reduced to two: the selfsame blue and green styles. Now, how can you tell that these

are class selectors and not element selectors? The giveaway, which is easy to miss if you aren’t looking

for it, is the dot (.) in front of the style names, which is highlighted in Figure 13-8.

Figure 13-8. Class selectors are much more selective than element selectors. You can spot them by their

dot prefixes.

Those dots change everything, because at this point, CSS doesn’t care which tag it’s dealing with. It only

cares if that tag has a class attribute set to blue, green, or whatever the style’s name is.

Be careful where you put your dots! They belong only in the setStyle() method and

never in the class attribute of any tag.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

684

2. Test the movie to see the result.

Remember that in the “real world” outside of Flash, every one of these tags would be affected by the

relevant style. In the SWF, only the following tags do anything: <a>, , <p>, and . Unfortunately,

we haven’t found a way to memorize this list as neatly as the other, but if you can remember the block

elements that go with element selectors, you need only swap the <body> tag for the tag and drop

 to know the block and inline elements that go with class selectors. (Yeah, we agree, it’s not

especially intuitive.)

3. For the sake of completeness, comment out the .green class selector, and test the movie to

verify the outcome. The / content turns black, because class selectors don’t apply to

 tags in Flash.

4. Close the movie without saving the changes.

Custom tags

Ready to head back to the street food? When we abandoned it to venture out on our educational tangent,

our styling had been applied, with the exception of the content, and now we know why. The tag is

not a block element, which means it simply doesn’t support element selectors.

Element selectors affect all tags of a given type, and for the sake of illustration, let’s say we want only this

recipe’s title to stand out, rather than all content that happens to be set in bold. An obvious solution, based

on your current knowledge, is to swap the tag for something that supports class selectors. Let’s try it.

1. Open the Styling03.fla file in this chapter’s Exercise folder to see an example of using a

class selector. The key changes in the ActionScript from Styling01.fla are shown in bold in the

following code:

var str:String = "";
str += "<p class='heading'>Savory Wasabi Salmon</p>";
str += "";
...
css.setStyle("ul", {leading: "6"});
css.setStyle(".heading", {fontFamily: "Impact", fontSize: "18",􀀁
color: "#339966"});
styled.styleSheet = css;

This mix-and-match approach is perfectly valid. In fact, it’s a good basic methodology: use element

selectors to sweep through the styling for most tags, and then cover the exceptions with class selectors.

Alternatively, you can use custom tags, which provide a kind of hybrid mechanism. They save you from

having to type class='someStyleName' throughout your HTML content. And the best part is that you can

use familiar, genuine HTML tags from the “real world,” if you like (think along the lines of <h1>, <h2>,

, and so on). Flash happily accepts these as “custom” tags, because, in its skimpy repertoire,

they are.

www.zshareall.com

http://www.zshareall.com

 CSS

685

2. Open the Styling04.fla file to see a custom tag in action. Once again, this file is virtually

identical to the previous one, except for the parts shown in bold:

var str:String = "";
str += "Street Food";
str += "";
…
css.setStyle("ul", {leading:"4"});
css.setStyle("strong", {fontFamily: "Impact", fontSize: "16", color: "#339966"});

styledContent.styleSheet = css;

Note the absence of a dot preceding the strong element selector, which means that this is not a class

selector! If you put 50 tags full of content into your SWF, all 50 occurrences will pick up the style

from this setStyle() method. That said—and we can’t stress this enough—please understand that this is

not a magical, undocumented way to squeeze additional tags out of Flash’s limited HTML support. Flash

has no idea what a tag is, much less that most browsers treat it like a tag. This is nothing more

than a convenient hook for CSS—an excuse to dodge class selectors if you happen not to like them. In

fact, to prove it and to reveal a limitation of the custom tag approach, proceed to step 3.

3. Replace the tag in the bolded ActionScript with the completely made-up <citrus> tag.

There is no such tag in any of the W3C specifications (we looked). Your code will change in only

three places:

var str:String = "";
str += "<citrus>Street Food</citrus>";
str += "";
...css.setStyle("ul", {leading: "6"});
css.setStyle("citrus", {fontFamily: "Impact", fontSize: "18", color: "#339966"});
styled.styleSheet = css;

4. In addition, find the word Fruit in the bulleted list, and wrap it with this new <citrus> tag:

str += "Omelettes";
str += " <citrus>Fruit</citrus> juices";
str += "";

5. Test the movie. You should see the styling shown in Figure 13-9.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

686

Figure 13-9. Whoops, something isn’t right with the fruit juices.

Danger, Will Robinson! What do we learn from the broken Fruit juice line? A valuable lesson, that’s

what. The recipe’s title is fine, but that’s because it stands on its own. The fruit juice line breaks

because custom tags become block elements when styled. In this case, the word juice has even been

pushed past the extra line height given earlier to the tag.

We’ve spent the last several miles mulling over some pretty arcane rules and even hazier exceptions to

them. CSS was supposed to be easier in Flash, right? If your head is spinning, take a break. While you

wait, one of the authors will use a chant from the “L’Eglise CSS.” It goes something like this: “To get the

biggest bang for your buck, use element selectors first, then custom tags for headings and other short or

specific blocks, and finally class selectors for special cases.” (Take our word for, this sounds really great

as a Gregorian chant.)

Style inheritance

In moving from Object instances to the object shortcut characters ({}) earlier in the chapter, we saw one

way to trim CSS into a more compact form. There’s another way to shrink things even further, but it’s more

conceptual than syntactical. The concept is called inheritance, and it basically means that styles applied

“up the creek” tend to eventually flow down to lower waters.

Let’s look at a concrete example. Open the Inheritance.fla file in this chapter’s Exercise folder. You’ll

see a text field with the instance name styledContent. Click into frame 1 of the scripts layer to view

www.zshareall.com

http://www.zshareall.com

 CSS

687

the ActionScript. As with the other samples in this chapter, the code begins by building an HTML string. In

this case, the structure of the HTML tags is important. Stripping out the text content, the structure of the

tag hierarchy looks like this:

<body>
 <p>
 <outer>
 <mid>
 <inner></inner>
 </mid>
 </outer>

Styling is applied to the <body> tag, which sets its font to Courier. The tags nested inside this tag, <p>

through <mid>, gain the same typeface thanks to inheritance. The custom <inner> tag would also inherit

Courier, except that this particular tag bucks the trend by specifying its own font, Arial. This font overrides

the inherited Courier and sets up its own new inheritance. Note that the tag—which surrounds the

word dignissim, whatever that means—lies within the <inner> tag. Because of this position, it displays

in Arial, as its parent does (see Figure 13-10).

Figure 13-10. CSS inheritance in action

This sort of procedure can get fairly sophisticated. For example, the custom <outer> tag adds italics to the

mix.

css.setStyle("outer", {fontStyle: "italic"});

In light of that, and because the flow goes downhill, <mid>, <inner>, and inherit not only the font

of <outer>’s parent but also its italics. Meanwhile, sibling tags (<p>) and parent tags (<body>) do not.

And honestly, that makes good sense.

In the same vein, the custom <mid> tag introduces bold:

css.setStyle("mid", {fontWeight: "bold"});

If unopposed, <inner> and would inherit that bold styling as well, but <inner> purposely

overrides that by setting fontWeight to normal in its own element selector:

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

688

css.setStyle("inner", {fontFamily: "Arial", fontWeight: "normal"});

In turn, this causes to inherit the override, because it too ignores the bold. Note, however, that

 does inherit the italics, which were not overridden by a parent tag. The interesting thing is that the

 content inherits styling applied to its parents, even though that styling is provided by element

selectors. Why is this interesting? Remember that is an inline element, and inline elements, as a

rule, can’t be styled with element selectors. Oh, the tangled web Flash weaves!

Use this inheritance phenomenon to your advantage. It saves you keystrokes. You don’t need to specify

font families for whole groups of related tags. In addition, inheritance gives you the opportunity to make

sweeping changes from relatively few locations. As you’ve seen from the quirky exceptions, though, you’ll

want to experiment carefully before committing yourself to a particular styling scheme. But do make sure

you experiment, because there’s more to Flash CSS than first meets the eye.

Styling hyperlinks

Anchor tags are fun to style because of something called pseudo-classes. In CSS-speak, a pseudo-class

corresponds to various possible states of an HTML element and is indicated by a colon (:) prefix. In Flash,

the only supported pseudo-classes are associated with the anchor tag (<a>) and correspond to the

following states:

 :link (an anchor tag that specifically contains an href attribute)

 :hover (triggered by a mouse rollover)

 :active (triggered by a mouse click)

The long and short of this is that you have the tools you need to create different anchor tag styles that

update as the mouse moves and clicks your hyperlinks. Note that Flash does not support the :visited

pseudo-class, which in normal CSS indicates that a hyperlink has already been clicked.

Think of pseudo-classes as a second tier of styles, not separated by hierarchy, as shown in the “Style

inheritance” section, but instead separated by time or events.

Open the Hyperlinks.fla file in this chapter’s Exercise folder to see an example in action. The

ActionScript begins, as always, by establishing an HTML string:

var str:String = "";
str += "";
str += "Hyperlink 1";
str += "Hyperlink 2";
str += "
Hyperlink 3";
str += "";

These anchor tags happen to be nested within list items, but they don’t need to be. The important part is

that the anchor tags have href attributes actively in use. In these next three lines, the element selectors

www.zshareall.com

http://www.apress.com
http://www.friendsofed.com
http://www.zshareall.com

 CSS

689

provide a style for all anchor tags in any state—that’s the first bolded line—followed by distinct styles for

the :hover and :active pseudo-classes.

var css:StyleSheet = new StyleSheet();

css.setStyle("li", {leading: "12"});
css.setStyle("a", {fontFamily: "Courier"});
css.setStyle("a:hover", {fontStyle: "italic"});
css.setStyle("a:active", -{text-decoration: "underline",color: "#FF0000"});
styledContent.styleSheet = css;

Test this movie to verify that hovering over hyperlinks puts them temporarily in italics, and that clicking

omits the italics but additionally displays an underline and new color. The italic style isn’t inherited by

:active, because :active is not a child of :hover; they have a sibling relationship. The Courier

typeface, however, appears for all states, because even the pseudo-classes are anchor tags.

What if you would like more than one style for your hyperlinks? The solution is to use a class selector.

Open the HyperlinksVaried.fla file in this chapter’s Exercise folder for an example. First, here’s the

new HTML (shown in bold):

var str:String = "";
str += "";
str += "Hyperlink 1";
str += "Hyperlink 2";
str += "
Hyperlink 3";
str += "";
str += "";
str += "
Hyperlink 4";
str += "
Hyperlink 5";
str += "
Hyperlink 6";
str += "";

Unfortunately, it isn’t possible to create unique pseudo-classes for anchor tags with class attributes, but

the following new class selector at least separates the new batch of hyperlinks in their default state (see

Figure 13-11):

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {leading: "12"});
css.setStyle("a", {fontFamily: "Courier"});
css.setStyle("a:hover", {fontStyle: "italic"});
css.setStyle("a:active", {textDecoration: "underline",
color: "#FF0000"});
css.setStyle(".oddball", {color: "#00FF00"});
styledContent.styleSheet = css;

www.zshareall.com

http://www.apress.com
http://www.friendsofed.com
http://www.apress.com
http://www.friendsofed.com
http://www.zshareall.com

CHAPTER 13

690

Figure 13-11. The last three hyperlinks are in a different color (gray here; green in real life).

Close the open files, and let’s now look at embedding fonts.

Embedded fonts

Before we take what we’ve learned and nudge it all toward an external CSS file, let’s make a quick stop as

we buy a sausage on a stick to talk about embedded fonts. CSS in Flash requires HTML, which in turn

requires a dynamic text field if you are using Classic Text. As you learned in Chapter 6, only static text

fields embed font outlines by default, which explains why Flash has been chattering about embedding

fonts in the Output panel. This means that unless you purposely embed your fonts—and the choice is

yours—text in CSS-enhanced SWFs tends to have a jagged look.

Font symbols were introduced in Chapter 6, but there’s a new twist in how they’re used with CSS. To

recap, the font-embedding process is as follows:

 Add a font symbol to the library and associate it with the desired font on your system.

 Enable the font symbol’s linkage by exporting the symbol for ActionScript.

 Use the Font Embedding dialog, which is accessed through the Properties panel.

The new part—because Flash CSS usage requires ActionScript—is that you must refer to the font’s actual

name in your setStyle() method. The tricky part is how to reference the font’s actual name, because

neither its symbol name (in the library) nor its linkage class name necessarily provides any clues.

Naturally, you can find out the font’s actual name by consulting the Font Symbol Properties dialog

box, but why rope yourself into something hard-coded? If you choose to associate your font symbol with

another font, you’ll need to change the font’s name in your code, unless you use the Font.fontName

property instead. Here’s how:

1. Open the StylingEmbeddedFonts01.fla file in this chapter’s Exercise folder. Test the movie,

and you’ll see jagged fonts. Let’s change that.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

 CSS

691

2. Click into frame 1 of the scripts layer, and note the following pertinent lines of code:

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {fontStyle: "italic", color: "#FF0000", leading: "-2"});
css.setStyle("p", {textAlign : "justify", leading:"6"});
css.setStyle("ul", {leading:"4"});
css.setStyle("strong", {fontFamily: "Impact", fontSize: "16", color: "#339966"});
styledContent.styleSheet = css;
styledContent.htmlText = str;

3. Look at the strong element selector, and you’ll see that the fontFamily property is set to

Impact, which is represented in the Library by a font symbol named Impact. Right-click

(Windows) or Control+click (Mac) the Impact font symbol, and select Properties to open the

Font Embedding dialog box.

4. In the Font Embedding dialog box, verify that the actual font selected is Impact. (If you don’t

have Impact on your system, choose some other suitable headline typeface.) Also verify that the

font symbol is exported for ActionScript by clicking the ActionScript tab and that its linkage

class name is Impact, as shown in Figure 13-12. Then click OK to close the dialog box.

Figure 13-12. The font symbol’s linkage class name is Impact.

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

692

Referring to the actual font name—Impact (or your replacement)—will do, but you don’t want to be tied to

that changeable value. Instead, you’re going to create an instance of this particular font—an instance of

the custom Impact class—and reference that the Font.fontName property of that instance. You’ll also set

the TextField.embedFonts property of the styledContent instance to true.

5. Update the ActionScript as follows (new code in bold):

var embeddedFont:Impact = new Impact ();

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {fontStyle: "italic", color: "#A2A2A2",
leading: -"-2"});
css.setStyle("p", {textAlign: "justify", leading: "6"});
css.setStyle("ul", {leading: "6"});
css.setStyle("strong", {fontFamily: embeddedFont.fontName,
fontSize: "18", color: "#339966"});

styledContent.embedFonts = true;
styledContent.styleSheet = css;
styledContent.htmlText = str;

6. Test your movie, and the text magically appears.

Oddly, only the element is showing! But hey...at least the lettering is smooth, as you can see

from the inset. Only the element is showing because this text field is being asked to display

more than one font: Impact and Arial (the text field’s Property inspector settings specify Arial). Both

fonts need to be embedded.

7. Using the technique described in Chapter 6, add an Arial font symbol to your library, and name

the symbol whatever you like. Make sure to export it for ActionScript. To prove that neither the

symbol name nor the linkage class name makes any difference, name your linkage class

something absurd, like HornyToads. You don’t need to create a HornyToads instance in this

case, because nothing in the ActionScript refers to that font by name (again, it’s the text field itself

that’s set to Arial in the Properties inspector).

8. Compare your work with StylingEmbeddedFonts02.fla in the Complete folder, whose font

symbol is named HornyToads in both the Library and the linkage class.

9. Test your movie to confirm that all of the text content shows, and without jaggies. But there’s still

one problem. Can you spot it? Those elements are supposed to be in italics!

10. To get the italics to show, you need to add a second Arial font symbol, this time with Italic

selected in the Style drop-down list. Repeat step 7, making sure to specify the italic variant of

Arial, and name your symbol (and class) something like HornyToadsItalic. The

StylingEmbeddedFonts02.fla file in this chapter’s Complete folder demonstrates this for you.

11. Test your movie, and you’ll finally see everything, as shown in Figure 13-13, as it should be: all

typefaces accounted for and smooth, including the italic variant.

www.zshareall.com

http://www.zshareall.com

 CSS

693

Figure 13-13. All the text is accounted for, and none of it suffers from the jaggies.

Selectors vs. the Properties panel

It’s imperative that you understand how important the Properties panel settings are in the previous

examples. The only reason you need to instantiate the custom Impact class—as opposed to both that and

HornyToads (Arial)—is that Arial was already selected as the text field’s font in the Properties panel.

Take a look at StylingEmbeddedFonts03.fla in this chapter’s Complete folder for a working example of

how to reference more than one font in the ActionScript. You’ll see that the text field’s Properties panel

settings have been changed to Times New Roman. That means the Arial typeface (HornyToads), along

with its italic variant (HornyToadsItalic) are present in the SWF but are not actually referenced anywhere.

Here’s the operative ActionScript to ensure that they do get referenced (new code in bold):

var embeddedImpact:ImpactNormal = new ImpactNormal();
var embeddedArial:HornyToads = new HornyToads();

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {fontFamily: embeddedArial.fontName,
fontStyle: "italic", color: "#A2A2A2", leading: -"-2"});
css.setStyle("p", {fontFamily: embeddedArial.fontName,
textAlign: "justify", leading: "6"});
css.setStyle("ul", {leading: "6"});
css.setStyle("strong", {fontFamily: embeddedImpact.fontName,
fontSize: "18", color: "#339966"});

styledContent.embedFonts = true;
styledContent.styleSheet = css;
styledContent.htmlText = str;

www.zshareall.com

http://www.zshareall.com

CHAPTER 13

694

In this version, the variable that holds the Impact instance has been renamed to embeddedImpact, just to

differentiate it from the second scripted font reference, HornyToads (the embeddedArial variable). This

solution makes use of CSS inheritance, because it specifies the embeddedArial instance only where it’s

necessary. Because the anchor tags (<a>) are nested inside the <p> tags, the p element selector takes

care of both. The li element selector is needed because the tags don’t appear inside a tag styled for

the embedded font. Note that, although some selectors call for a fontStyle of italic, Flash is smart

enough to understand, without a third font variable, that HornyToadsItalic is the italic variant of the

HornyToads font.

What you have learned
In this chapter, you discovered that the CSS techniques widely employed in the HTML universe are just as

applicable to your Flash efforts. As you moved through the chapter, you learned the following:

 How to apply CSS styling through ActionScript

 The difference between an element selector and a class selector

 That you can create your own custom tags

 How to use the concept of inheritance to your advantage

 How to reference embedded fonts in your code and the fact that the Properties panel may

help you avoid it

 How to use an external CSS style sheet in Flash

If there is one major theme running through this chapter, it is this: your CSS skills put a powerful tool in

your arsenal. Speaking of powerful tools, let’s build some stuff and give your new Flash skills a bit of a

workout.

www.zshareall.com

http://www.zshareall.com

695

Chapter 14

Building Stuff

Up to this point in the book, you have created quite a few projects using images, text, audio, video, and

other media. We bet you’re feeling pretty good about what you’ve accomplished (you should!), and, like

many who have reached your skill level, you are wondering, “How does all of this hang together?”

In this chapter, we will bring together the various skills and knowledge you have developed and use them

to create some rather interesting projects. We are going to start slowly and show you how to build a

preloader, and then we’ll move through a slide show, MP3 player, and full-bore “Whack-A-Bunny” game

designed for use on an Android device and as an AIR app. Some of these are quite complicated projects,

but if you have reached this point in the book, you are ready to develop some Flash “chops” and explore

what you can do with your newfound skills.

Here’s what we’ll cover in this chapter:

 Understanding how Flash movies are streamed to a web page

 Using the Bandwidth Profiler to turbo-charge movies

 Optimizing Flash movies

 Converting a Flash movie to a QuickTime video

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

696

 Choosing web formats

 Publishing a SWF for web playback

 Dealing with remote content

 Using the new AIR for Android features

The following files are used in this chapter (located in Chapter14/ExerciseFiles_Ch14/Exercise/):

 preloader1.fla

 preloader2.fla

 798_01.jpg–798_08.jpg

 slideshow.xml

 TinBangs.fla

 WhiteLies(Timekiller).mp3

 YoungLions.mp3

 YourSkyIsFalling.mp3

 Playlist.xml

 Whackabunny.fla

 72X72Icon.png

 arfmoochikncheez.ttf

 Uni0563.ttf

 Build More Stuff

The source files are available at www.friendsofED.com/download.html?isbn=1430229940.

Before you start building some stuff, we must warn you that many of the projects don’t include the

extensive step-by-step instructions used throughout this book. This is not done to confuse you. It is done

because many of the instructions involve much of what we have covered to this point in the book. Also, the

time has arrived for you to start challenging yourself and seeing how the various bits and pieces of this

book can combine to create some pretty cool stuff.

That last item—a folder named Build More Stuff—contains a bunch of projects that didn’t make the cut for

this chapter. They either were used in previous editions of this book or were things we thought you would

find interesting but space requirements precluded us from fully documenting them in this chapter. What we

have done is to provide you with heavily commented source code files. Feel free to study them, take them

apart, dissect them, and adapt them for your personal use.

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://www.zshareall.com

BUILDING STUFF

697

Loading content
Flash has a potentially bad habit that drives people crazy. In cases where everything in a movie is packed

into the first few frames—and especially in single-frame movies—the SWF can take an awfully long time to

display. Why? Because Flash Player loads content one frame at a time, and when a SWF’s first frame is

heavy, the rest of the movie suffers. It’s even more interesting in cases where Export for

ActionScript is selected for Library assets, because those items are included in the movie’s first

frame, in a behind-the-scenes way, even if you don’t place them there yourself (Flash does it for you

automatically). This should explain to you why, when you hit certain websites, you’re slugged with an

interminable wait, involving fingers drumming on the mouse or your desk and audible sighs as you wait for

the movie to start.

One useful solution is to remove your heaviest assets—large images, audio, and video files—and use

ActionScript to load them at runtime. This way, the rest of your content—the lighter stuff, including text and

vector artwork—displays almost immediately, while the heavy stuff streams into the SWF from your server.

Just keep in mind that even the light stuff may need a few seconds to load. But at least your audience will

be looking at something, such as a preloader, and even the mere perception of at least something

happening works wonders.

Are we there yet?

This first example is probably one of the most common preloaders in existence: the user is told how much

of the SWF has loaded. In this example, a ribbon twirls while the numbers increase to show us loading

progress. Let’s get started:

1. To see how all of this works, open the preloader1.fla file in the Exercise/Preloader folder

for this chapter. You’ll see there’s a single movie clip and a text box on the stage; this movie

clip—loaderAnim—is the only one in the Library. The graphic symbol—gradientHalf—s

the ribbon in the movie clip, and we have included a Font symbol for those of you who don’t

have the Impact font installed on your computers. The last symbol—IMG_0098.jpg—is a

photograph of a dog. This is the content that will put the preloader to work.

2. Select frame 2 on the main timeline, and you will see the image of a rather large dog. The word

large is important because, if you double-click the image in the Library to open the Bitmap
Properties dialog box shown in Figure 14-1, you will see the image has a rather large file size,

not to mention that its physical dimensions—1600 by 1200 pixels—are far larger than the stage.

Used as a starting point, this is a great example because it gets you to shift your thinking of the image in

frame two from “Wow, that is a huge dog” to “Uh-oh, this content is going to be a problem.” This image is

going to take a lot of time to load. But don’t think it’s just images; that image could be anything from a

video to an audio file to even another SWF, so it is not the dog that is the problem; it is the content.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

698

Figure 14-1. If it’s big, it needs time to load.

3. Open the gradientHalf graphic symbol in the Symbol Editor. This symbol was constructed

by simply using the Pen tool to draw half of the shape and to fill it with a gradient. It was copied

and “flipped” to make the ribbon. This object was then converted to the loaderAnim movie clip.

4. Open the loaderAnim movie clip in the Symbol Editor. The “twirl” was constructed by adding

the keyframes and, using the Transform panel, rotated by 90 degrees, as shown in Figure 14-2,

between the first two keyframes. The rotation amount was increase by 45 degrees between the

keyframes at frames 11 and 15, which means the symbol rotates thorough 180 degrees over a

span of 15 frames. Classic tweens were used because we were tweening a graphic symbol.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

699

Figure 14-2. The preloader animation is created by using the Transform panel and a series of Classic

tweens.

5. Click the Scene 1 link to return to the main timeline, and place the playhead at frame 1. Click

once on the text block, and give it the Instance name of percentText in the Properties

panel.

6. Select the first frame of the Actions layer, open the Actions panel, and add the following

code:

import flash.events.Event;

stop();

addEventListener(Event.ENTER_FRAME, preloading);

function preloading(evt:Event)
{
 var bytestotal:int = stage.loaderInfo.bytesTotal;
 var bytesloaded:int = stage.loaderInfo.bytesLoaded;

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

700

 var percent:int = Math.round(bytesloaded*100/bytestotal);

 percentText.text = percent + "%";

 if (bytesloaded >= bytestotal)
 {
 gotoAndStop(2);
 removeEventListener(Event.ENTER_FRAME, preloading);
 }
}

The code starts off by loading in the Event class and stopping the playhead on frame 1. By stopping the

playhead, you are going to give Flash time to keep an eye on how that image in frame 2 is loading and to

let the user know what is going on. That process starts with the EventListener in line 3.

The function named preloading is where the “magic” happens.

When content loads it is not the image, sound or video that loads, it is the data in that content that loads.

Though we traditionally use the kilobyte as the measurement, Flash gets even more granular and uses the

bytes in the content as its base. This explains the three variables: bytestotal, bytesloaded, and

percent (note that we have used a lowercase l for bytesloaded because the camel case version

(bytesLoaded) is a Flash keyword). Flash knows the value of the first one—you saw it in the Bitmap

Properties dialog box—and, as the movies play, it keeps track of the bytes loading into Flash Player.

The percent variable takes those two numbers, divides them, strips off the decimals, and, in the fourth

line, makes that number the value of the text in the text box.

The if () statement is there to tell Flash how to stop calculating and what to do when it has finished with

the calculation. The parameter—bytesloaded>=bytestotal—is a little programming trick that tells Flash

to do something when the bytesloaded value equals or exceeds the bytestotal value. We know the

bytesloaded value can’t exceed the bytestotal value, but adding the > (greater than) symbol makes

sure this is the case.

The rest of the code tells Flash to hop over to frame 2, stay put, and forget about the EventListener.

7. Test the movie.

You will most likely get a brief glimpse of the preloader, and then the image appears. Surely, that image

didn’t load that fast? In fact, it did, but what you may not know is the reason for it loading so fast is

because you are testing the movie on your computer. Here’s how to get a more accurate look at this

project.

8. With the SWF playing, select View ➤ Simulate Download, as shown in Figure 14-3. This

choice allows you to simulate performance when content is delivered through a modem. You

should now see the numbers start to change.

We are going to do a deep dive into Simulate Download in the next chapter. For

now, just work along with us.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

701

Figure 14-3. Use Simulate Download to check out performance through a modem.

Somebody stole my preloader

In Chapter 11 we showed you how to use the ProgressBar component. It is a useful component but

contains very little “eye candy.” This project shows you how to “roll your own” progress bar but add a bit

more jazz to the preloading process by replacing the bar with the animation of a thief fleeing from the

scene of the crime. Here’s how:

1. Open the preloader2.fla file.

How this preloader works is rather simple. As the overly large cow image in frame 2 loads into the

SWF, the thief runs from one side of the screen to the other. This preloader uses the width of the

Flash stage as the width of the bar, and, as the content loads, the thief’s horizontal position on

the stage matched the percentage of the content that has loaded.

The drawing of the thief was created in Adobe Illustrator, and Illustrator’s layers were used for the

various running positions. These positions were imported into Flash as movie clips, and if you

open the runnerAnimation movie clip in the Library, as shown in Figure 14-4, you can see how

the animation was created. The animation is in its own layer on the main timeline and has the

instance name of thief.

 The streetscape was created using the Pen tool in Flash. What you can gather from this is that

combining the tools and applications available to you is always an option.

Though this is a rather interesting way of creating a preloader, always keep in mind that it, too,

must be small for it to load fast. This means keeping everything as simple as possible.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

702

The authors would like to thank Pascal Baumann for creating this exercise for use in the

book. Pascal is a self-employed creative director from Zurich, Switzerland, currently

living in Bangkok, Thailand. His work can be seen at www.pascalbaumann.com.

Figure 14-4. A simple animation can be used as an engaging preloader.

2. Click once in frame 1 of the Actions layer, and enter the following code:

import flash.events.Event;

stop();

addEventListener(Event.ENTER_FRAME, myloading);

function myloading(evt:Event)
{
 var bytestotal:int = stage.loaderInfo.bytesTotal;
 var bytesloaded:int = stage.loaderInfo.bytesLoaded;
 var percent:int = Math.round(bytesloaded*100/bytestotal);

 thief.x = stage.stageWidth / 100 * percent;

 if (bytesloaded >= bytestotal)
 {
 gotoAndStop(2);
 removeEventListener(Event.ENTER_FRAME, myloading);
 }
}

www.zshareall.com

http://www.pascalbaumann.com
http://www.zshareall.com

BUILDING STUFF

703

The myloading function is remarkably similar to the previous example. The major difference here

is the movement of the thief across the stage

The thief instance’s x property is determined by the width of the stage. Its position at any one

time is simply set by multiplying the result of the percent variable by 100 and dividing the width

of the stage by that number. Once that is determined, the thief instance is sent to that position on

the x-axis.

3. Test the movie, and select Simulate Download while the SWF is playing. The thief, as shown

in Figure 14-5, runs across the stage, and when he moves off the right side of the stage, the cow

image appears.

Figure 14-5. Preloading is almost complete.

Building a slide show with components and XML
The popularity of websites like Flickr and Photobucket prove that people like to share photos. Of course,

this was true even before the Internet. But modern technology makes it easier than ever to whip out that

tumbling, unfolding wallet and proudly show off all the kids, aunts, uncles, cousin Ed, and Finnegan, not

only to friends but to every human on the planet. At the rate most people take pictures, photo collections

just keep growing. So, if you were to make a photo slide show in Flash, you would want to be sure it was

easy to update. With components and XML, that goal is closer than you may think.

To explore the concept, we’ll start in an interesting location: the Quanjude Roast Duck Restaurant in

Beijing, China. During the course of writing this book, one of the authors was in Beijing. One night, he was

enjoying dinner in the company of a couple of Adobe engineers, John Zhang and Zhong Zhou. Naturally,

one of the dishes was duck and, because of the restaurant’s history, there was a particular way in which

the duck was served and to be consumed. The author was struggling, and Zhong Zhou called the waitress

over to demonstrate the proper (and complex!) procedure. It involved a wafer-thin wrap, duck meat,

sauces, scallions, and a couple of other treats, which were to be added in a particular order. It took a

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

704

couple of tries, but the grimacing author finally nailed it. When he thanked Zhong Zhu for the lesson,

Zhong said, “It’s really simple if you first master the process.”

Mastering the creation of a Flash slide show is a lot like preparing that duck dish: it is all about process.

We are going to show you two ways of creating a slide show, but the process is essentially the same for

both. In fact, you’ll be using some of the same process for the MP3 and video players later in the chapter.

A tour of the Beijing art district

To start, we’re going to walk you through a self-contained, ”hardwired” movie that displays a small

collection of external JPEGs and their captions. The number of JPEGs and the order in which they appear

are “baked in” to the SWF, which means the movie must be edited and republished to accommodate new

images. This slide show features ComboBox and Button components to let people choose which JPEGs

they want to see, and it even uses the UILoader and ProgressBar components to load the images, so

this will be something of a cumulative exercise.

Once the test model is complete, we’ll free the photo-specific data from its dungeon and move it to an XML

file, where it can leap free in the fields like a shorn sheep or paddle merrily around a pond like a duck.

Here we go!

1. Start a new Flash document, and save it as Slideshow.fla in this chapter’s

Exercise/Slideshow folder. Set the movie’s dimensions to 320 480. Set the background

color to whatever you like (we chose #336699).

2. Create the following five layers: scripts, progress bar, loader, caption, and nav. Lock

the scripts layer to avoid accidentally placing content in this layer.

3. Open the Components panel (Window ➤ Components or click the Components button on the

toolbar), and drag an instance of the ProgressBar component to the progress bar layer.

Use the Properties panel to ensure its width is 150 and to set the height to 22, X position to

85, and Y position to 200. Give it the instance name pb.

4. Drag an instance of the UILoader component to the loader layer. Set its width to 300, height

to 400, X position to 10, and Y position to 10. Give it the instance name loader.

5. Captions will be displayed with a text field. Use the Text tool to create a TLF Text

Selectable text container in the caption layer. Set its width to 300, height to 28, X position to

10, and Y position to 416. Give this text field the instance name caption. Make the font _sans,

18pt, and white so that it shows over the blue background. We will leave the decision to embed

the font up to you.

6. Drag an instance of the ComboBox component to the nav layer. Set its width to 220, X position to

10, and Y position to 450. Give it the instance name images.

7. Drag an instance of the Button component to the nav layer. Set its width to 70, X position 240,

and Y position to 450. Give it the instance name next.

8. In the Component Parameters area of the Properties panel, set the button’s Label

parameter to Next. At this point, you have something like the scaffolding shown in Figure 14-6.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

705

Figure 14-6. The parts are in place; time for the ActionScript.

Now it’s time to bring these parts to life. For the most part, it’s a matter of handling events for the

components and populating the combo box.

9. Click into frame 1 of the scripts layer, and open the Actions panel. Here’s the first chunk of

code:

import fl.data.DataProvider;

var imageData:Array = new Array(
 {label:"798 Art District Photo 1", data:"798_01.jpg",
caption:"Lazy day on the street."},

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

706

 {label:"798 Art District Photo 2", data:"798_02.jpg",
caption:"Wall art."},

 {label:"798 Art District Photo 3", data:"798_03.jpg",
caption:"Angry and cute."},

 {label:"798 Art District Photo 4", data:"798_04.jpg",
caption:"The modern and the ancient!"},

 {label:"798 Art District Photo 5", data:"798_05.jpg",
caption:"Not sure what to make of this."},

 {label:"798 Art District Photo 6", data:"798_06.jpg",
caption:"The power of the artist?"},

 {label:"798 Art District Photo 7", data:"798_07.jpg",
caption:"Fashion shoot at a steam engine."},

 {label:"798 Art District Photo 8", data:"798_08.jpg",
caption:"A street in the district."}

);

The first line imports the DataProvider class, which is needed later when it’s time to populate the combo

box. After that, an arbitrarily named variable, imageData, is set to an instance of the Array class. Arrays

are lists of whatever you put in them. You can use the Array.push() method on an instance to add

elements to that instance, but you can also pass in the whole collection at once, which we’ve done here.

This array has eight items, separated by commas, and each item is an instance of the generic Object

class with three properties: caption, label, and data.

What, no new Object() statement? How are these objects being created? That’s what the curly braces

({}) are for. It’s a shortcut, and we’re taking it. You’ll remember from Chapter 11 that ComboBox instances

can be supplied with label and data information, so that explains what those properties are in the array.

The caption property is a custom addition.

10. Press Enter (Windows) or Return (Mac) a couple times, and type in the following:

var currentImage:int = 0;
var req:URLRequest = new URLRequest();

function changePicture(pict:int):void {
 pb.visible = true;
 caption.text = imageData[pict].caption;
 req.url = imageData[pict].data;
 loader.load(req);
}
changePicture(0);

The first line declares an integer variable, currentImage, and sets it to 0. This number will keep track of

which image is being viewed. Next, a req variable holds an instance of the URLRequest class, which will

be used to request the current image file. The next several lines declare a custom function,

changePicture(), which accepts a single parameter, pict. This function does the following three things:

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

707

 Makes the ProgressBar instance visible (yes, it’s already visible at this point, but because

later code turns off its visibility when an image finishes loading, it needs to be set back).

 Makes the text field display the current caption. The incoming pict parameter determines which

element to retrieve from the imageData array (imageData[pict]), and that element’s

caption property is retrieved. When the value of pict happens to be 0, the expression

effectively says imageData[0], which means, “Pull the first entry from the imageData list,

please.” Why start at zero? It’s just one of those things; arrays start counting from zero rather

than one.

 Makes the Loader instance load the current image. Here, again, the imageData array is

consulted, but this time from the relevant item’s data property, which is assigned to the

URLRequest.url property of the req variable. In turn, req is fed to the loader instance by

way of the Loader.load() method.

Immediately after its declaration, the changePicture() function is called, with 0 as its parameter. You’re

displaying the first image and its caption.

Now we just need to hook up the components.

11. Press Enter (Windows) or Return (Mac) a couple times, and type in the following:

pb.source = loader;

pb.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(evt:Event):void {
 pb.visible = false;
};

The first line associates the ProgressBar instance with the Loader instance. Thanks to the convenience

of components, as the Loader component loads images, the progress bar will “automagically” know how

to display load progress. The completeHandler() function makes the progress bar invisible when loading

is complete.

12. Press Enter (Windows) or Return (Mac) a couple times, and type in the following:

images.dataProvider = new DataProvider(imageData);

images.addEventListener(Event.CHANGE, changeHandler);
function changeHandler(evt:Event):void {
 currentImage = images.selectedIndex;
 changePicture(currentImage);
};

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

708

The first line populates the combo box by setting its ComboBox.dataProvider property to a new

DataProvider instance (this is why we need the import statement at the top). All the DataProvider

instance needs is an array whose elements have label and data properties, which is exactly what we

have in imageData. The caption properties are extra, but they don’t hurt anything. That first line shoves

the whole imageData array’s content into the combo box in one swoop.

Next, the Event.CHANGE event is handled for the combo box. The handler function calls the custom

changePicture() function and sets the currentImage variable to a number determined by the combo

box’s current selection. (The selectedIndex property doesn’t care what data is in the selection; it only

reports the index number of the current selection, and that’s all the currentImage variable needs.) This

variable is then used as the parameter to the changePicture() function, which updates the current

photo.

13. Press Enter (Windows) or Return (Mac) a couple times, and type in the following:

next.addEventListener(MouseEvent.CLICK, clickHandler);
function clickHandler(evt:MouseEvent):void {
 currentImage++;
 if (currentImage == imageData.length) {
 currentImage = 0;
 }
 images.selectedIndex = currentImage;
 changePicture(currentImage);
};

Here, the MouseEvent.CLICK event is handled for the button. The handler function does the following:

 Increments the currentImage variable by one.

 Checks to see whether currentImage shares the same value as the expression

imageData.length (the number of items in the imageData array). If so, it means the user has

clicked often enough to progress through all the images, so currentImage is set back to 0.

 Sets the combo box’s current selection to currentImage, to keep the combo box in sync with

button clicks.

 Calls the custom changePicture() function and passes it currentImage as its parameter.

14. Test the movie. You’ll be treated to a mini-tour of the 798 Art District in Beijing, China. Click the

Next button to flip through the pictures in sequence, as shown in Figure 14-7, or use the combo

box to skip around. If you like, try simulating download to see the progress bar at work and

compare your work with the Slideshow.fla file in the Complete folder.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

709

Figure 14-7. A few quick components and a bit of ActionScript, and you’re off!

Extending the tour

As it turns out, wandering through the 798 Art District of Beijing makes for a decent metaphor for this

exercise, because after all of this careful examination of the art in the galleries, we’re about to uncover a

treasure in a gallery just a few more paces up the street.

Save your file to keep everything safe. Now select File ➤ Save As, and save a copy as

SlideshowXML.fla into the same folder. Click back into frame 1 of the scripts layer to make a few

changes. Here’s the first chunk of code, which replaces the Array, with revisions shown in bold.

import fl.data.DataProvider;

var xmlDoc:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();
var xmlReq:URLRequest = new URLRequest("slideshow.xml");
xmlLoader.load(xmlReq);

xmlLoader.addEventListener(Event.COMPLETE,
xmlCompleteHandler);
function xmlCompleteHandler (evt:Event):void {
 xmlDoc = XML(evt.target.data);
 images.dataProvider = new DataProvider(xmlDoc);
 changePicture(0);
};

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

710

The imageData array is gone completely. In its place stands the familiar XML loading formula. The only

differences here are the variable names. The URLLoader instance, for example, has been changed to

xmlLoader, because loader is already in use as the instance name for the UILoader component. In the

same way, the URLRequest instance is named xmlReq, because req is used later in the code, and the

XML’s completeHandler() function is named xmlCompleteHandler().

This time, we’re loading the file slideshow.xml, and that’s where the former imageData content now

resides. If you open the XML file, you will see not much has changed. It is practically the same as the

previous array, except that this time, it’s in a separate XML document instead of being hardwired into the

ActionScript.

Let’s take another look at the Event.COMPLETE event handler for the xmlLoader instance. The function

runs as follows:

function xmlCompleteHandler(evt:Event):void {
 xmlDoc = XML(evt.target.data);
 images.dataProvider = new DataProvider(xmlDoc);
 changePicture(0);
};

Notice that the DataProvider handling has been moved here from its former position next to the combo

box Event.CHANGE handler. Why? Because under the circumstances, the combo box can’t be populated

until the XML has loaded. Next, the changePicture() call has also been moved here from its earlier

position. Why? Same reason: until the XML loads, the changePicture() has no reference for what image

to summon.

Two more paces!

At or near line 21, you’ll find the changeFunction() declaration. You’ll need to tweak two lines (changes

in bold):

function changePicture(pict:int):void {
 pb.visible = true;
 caption.text = xmlDoc.slide[pict].@caption;
 req.url = xmlDoc.slide[pict].@data;
 loader.load(req);
};

Instead of pulling from the old imageData array, the text field and UILoader component now draw their

information from the xml instance, using E4X syntax to specify the relevant <slide> element attributes

found in the XML file. Here, the function’s incoming pict parameter serves the same purpose as it did

before: it specifies which <slide> element to consult.

Don’t forget to delete what used to be the last line in this chunk: that is,

changePicture(0);, which is now called inside the xmlCompleteHandler() function.

It’s easy to miss!

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

mailto:pict].@caption
mailto:pict].@data
http://www.zshareall.com

BUILDING STUFF

711

Here are the last touch-ups. There’s a reward in sight! First, delete the following data provider line (which

has been moved to the xmlCompleteHandler() function):

images.dataProvider = new DataProvider(imageData);

Finally, revise one reference in the button’s event handler (new code in bold):

function clickHandler(evt:MouseEvent):void {
 currentImage++;
 if (currentImage == xmlDoc.slide.length()) {
 currentImage = 0;
 }
 images.selectedIndex = currentImage;
 changePicture(currentImage);
};

Since imageData is no more, that line depends on the number of <slide> elements, instead.

Test the movie and watch the show again. If you think you missed a step, compare your work to the

SlideshowXML.fla work in this chapter’s Complete folder.

Now that the movie has become XML-ified, you can have some fun editing the slideshow.xml file and

running the SWF to see the changes. For example, delete the first three <slide> elements and test the

movie again. Like magic, only the three remaining slides and captions display. Change the wording of one

of the captions, and then run the SWF again. Change the order of the order of the <slide> elements or

even add your own images into the show. With every edit or change you make, the SWF takes these

changes effortlessly in stride.

Building an MP3 player with XML
When people get around to working with audio in Flash, one of the more common requests is, “Can I make

my own MP3 player?” After reading Chapter 5, you already know the answer is yes.

Thanks again to Benjamin Taylor,, Bryan Dunlay, Philip Darling, and Robbie Butcher, of

Tin Bangs (www.tinbangs.com) for the generous use of their music.

There is going to be a lot going on here, so we suggest you set aside sufficient time to carefully follow

along. You’re about to be introduced to several new and fundamental concepts that will require your

attention. Among them are the following:

 Creating buttons that go the previous or the next audio track

 Creating a seek slider that allows you to move through an audio selection

 Creating a volume slider that allows the user to adjust the audio volume

 Displaying an audio track’s ID3 information

www.zshareall.com

http://www.tinbangs.com
http://www.zshareall.com

CHAPTER 14

712

The key to this exercise is understanding technique. Along the way, you will discover everything presented

here builds upon what you have learned in the book. In the previous exercise, for example, the XML

version of the slide show had a Next button. Here you’ll have that too, along with the addition of a Prev

button. And, again, the external files will be loaded from XML.

This exercise is designed to follow a fairly standard workflow, which is to assemble your assets first and

then “wire them up” using ActionScript. This time, instead of components, you’ll be creating some of your

own controls.

Setting up the external playlist

The first order of business is to move the MP3 data to an XML file.

1. Open the TinBangs.fla file found in the Exercise/MP3Player folder for this chapter. This file is

functionally identical to the one in the Complete folder for Chapter 5. The only difference is that

the code comments have been made more obvious, like this:

//
// Obvious code comment
//

Why? This project is going to have a lot of ActionScript, and these striking “mile markers” help organize

things visually. Why so many slashes? ActionScript ignores them after the first two in the line, so the rest

are part of the comment.

The first task is to swap out the Array instance, songList, for an external XML document, just as you did

for the Beijing slide show. Doing this will reacquaint you with the existing ActionScript in place.

2. Click info frame 1 of the scripts layer, open the Actions panel, and then locate the songList

variable declaration on line 13, which looks like this:

var songList:Array = new Array(
 {label:"Select a song", data:""},
 {label:"White Lies (Timekiller)", data:"WhiteLies(Timekiller).mp3"},
 {label:"Young Lions", data:"YoungLions.mp3"},
 {label:"Your Sky is Falling", data:"YourSkyIsFalling.mp3"}
);

Delete those lines of code, and replace them with the following:

var songList:XML = new XML();
var loader:URLLoader = new URLLoader();
var xmlReq:URLRequest = new URLRequest("playlist.xml");
loader.load(xmlReq);

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

713

loader.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(evt:Event):void {
 songList = XML(evt.target.data);
 songsCB.dataProvider = new DataProvider(songList);
};

There’s nothing new here. The XML instance is named songList in this case to minimize the

impact on the rest of the code, which already refers to the song data by that name. A

URLRequest instance already exists as req, so the new one here is named xmlReq. The

requested file is now playlist.xml, whose contents are found in the XML file located in the

Exercise folder. The Event.COMPLETE handler sets songList to the loaded XML document’s

data and then passes that to the ComboBox.dataProvider property of the songsCB combo box.

That last line inside the completeHandler() function—the one that refers to the data provider—

originally appeared among the lines of code that configured the ComboBox instance, just before

the line that reads addChild(songsCB);. You’ll still see it there (should be at or near line 35 at

this point), so delete it. (You only need to set the combo box’s data provider once, and that needs

to happen inside the completeHandler() function, after the XML has loaded.)

3. Test the movie so far. The ComboBox component created on line 30 of the code is added, and

you can choose a song.

It’s time to add the new stuff. But first, the authors would like to make a community service announcement.

Polishing up the symbols

We interrupt this program to introduce you to a fact of life that happens with collaborative Flash work. The

controller bar—with its VCR buttons and slider control—was created in Adobe Illustrator and then imported

into Flash. For the sake of demonstration, let’s assume the designer didn’t know how the controls would

ultimately be used. If you don’t think this will happen in your own Flash journeys, get ready to think again!

In fact, count on it.

As a matter of good habit, you’ll want to rename your Library assets to better suit their actual use in this

project. In addition, to improve the user’s interactive experience, you’ll also want to use the drawing tools

to give these VCR buttons—which are actually movie clips—a bigger clickable surface area. This is

especially important for the Pause button, because without the fix, the mouse could easily slip between

the two vertical bars of the pause icon.

Renaming Library assets

Renaming Library assets is the sort of work that seems like housekeeping. And it is. But don’t

underestimate its value! When deadlines loom and a manager is breathing down your neck, it helps to

know your Library territory like the back of your hand. Take VolumeSlider, for example. In this MP3

player, that symbol is actually going to indicate how much of the audio has played. By dragging that slider,

you’ll be able to seek to various parts of the song. So, let’s give it, and the other assets, better names.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

714

1. Open the Library panel for the TinBangs.fla file. Locate the Library’s AudioPlayer.ai

Assets folder, and you’ll see a number of subfolders that ultimately contain the movie clips used

for the controls in the Player layer of the Timeline panel. These include a handful of movie

clips and subfolders whose names don’t presently suit the purposes of this MP3 player:

FastForward, Layer 7, VolumeSlider, Rewind, and VolumeBar.

2. Double-click the FastForward folder name, as shown in Figure 14-8, and rename it to Next. Do

the same with the FastForward movie clip. This is, after all, a button that skips to the next song

in the playlist, not a fast-forward button.

Figure 14-8. Appropriately naming Library assets helps when you resume work after a break.

3. Rename the VolumeSlider symbol to SeekKnob. Do the same with its containing folder,

Layer 7.

4. Rename the Rewind symbol and its folder to Prev.

5. Complete your cleanup by renaming the VolumeBar symbol and its folder to SeekBar.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

715

Improving the controls

The previous steps helped you as a designer/developer. Now it’s time to help the user.

1. Double-click the Play symbol to enter its timeline. Drag the playhead to frame 2, and you’ll see

two vertical bars that represent “pause,” as shown in Figure 14-9.

Figure 14-9. Be sure to keep your mouse-related assets mouse-friendly.

Granted, this symbol has been zoomed in quite a bit in the figure, but even at actual size, it’s easy to see

how the mouse can slip between the two bars, or accidentally miss the symbol altogether by slipping too

far left or right. If this were a button symbol, the solution would be elementary: head to the Hit frame, and

give the button a nice, sizable hit area. With movie clips, which don’t have a Hit frame, you need to get

creative. In this case, the solution happens in a layer named hit area.

2. Click frame 1 of the hit area layer, and you’ll see a pixelated rectangle appear behind the

“play” arrow icon, as shown in Figure 14-10.

This rectangle is a simple shape, drawn with the Rectangle tool. The reason you can’t see it—until the

shape is selected—is because the shape’s fill color is set to 0% Alpha. From a visual standpoint, it’s

imperceptible, but when the user hovers a mouse over this symbol, even the invisible shape provides a

larger clickable surface area.

Notice that the rectangle spans frames 1 and 2, so that it appears behind both the play and pause icons.

This makes the hit area useful, regardless where this symbol’s playhead appears.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

716

Figure 14-10. A low-alpha shape provides additional “surface area” for the mouse.

It is little things like this—giving a shape an opacity value of 0—that will separate you

from the rest of the pack. This little trick takes maybe two to three minutes to

accomplish. Someone who is unfamiliar with this will easily spend an hour trying to make

the symbol ”idiot-proof.” This is a classic case of letting the software do the work instead

of you overthinking it. In fact, the next step shows you how to do it yourself.

The other VCR controls, and the SeekKnob symbol, need the same treatment. You can draw these

shapes if you like, or you can let Flash do the work for you. Let’s look at both ways.

3. Double-click the Prev symbol to enter its timeline. Rename the Layer 1 layer to arrows, and

then create a new layer named hit area beneath the first. In the hit area layer, use the

Rectangle tool to draw a 20 20 pixel square with no stroke and a fill color of #FFFFFF

(white) set to 0% Alpha. Position the square so that it evenly fills the area behind the “prev”

double arrows (we used an X position of -2 and a Y position of 2).

4. Right-click (Windows) or Control+click (Mac) frame 1 of the hit area layer, and select Copy

Frames from the context menu. Now double-click the Next symbol to enter its timeline. Rename

Layer 1 to arrows, and then create a new layer beneath the first (no need to name it). Right-

click (Windows) or Control+click (Mac) frame 1 of the new layer and select Paste Frames from

the context menu. This accomplishes two things: it pastes the shape with the 0% Alpha and also

renames the layer to hit area for you. Pretty slick! Reposition the shape so that it evenly fills

the area behind the “next” double arrows.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

717

5. Using whichever approach you prefer, position a similar shape beneath the hollow rectangle in

the SeekKnob symbol. In our case, we renamed that symbol’s Layer 1 layer to knob and then

pasted the same shape into a new layer.

OK, so why two ways of doing the same thing? We are fond of telling anyone who will listen that there are

usually 6,000 ways of doing anything in this business. What’s the right way? Who cares? The only time

someone cares is when it doesn’t work.

As it turns out, the Illustrator designer forgot two widgets: a volume slider, which lets the user adjust

volume, and a loading indicator, which tells the user an MP3 file is still loading. As often as not, you might

need to create such assets yourself, but to speed things along, we’ve provided what you need in separate

file named controls.fla. By using a technique we introduced in Chapter 3, you can quickly share the

widgets from that FLA with your current working FLA.

6. Select File ➤ Import ➤ Open External Library, and browse to the controls.fla file in

the Exercise/MP3Player folder for this chapter. Click the Scene 1 link in TinBangs.fla to get

back to the main timeline.

7. With the Player layer selected, drag the LoadingDisplay symbol from the newly opened

controls.fla Library to the right side of the stage, as shown in Figure 14-11 (we used X:

462, Y: 305). Check the TinBang.fla‘s own Library, and you’ll see the movie clip there as

well. As easy as that, you now have a loading indicator.

Figure 14-11. It’s easy to drag in assets from another FLA’s Library.

8. In the TinBangs.fla Library, double-click the LoadingDisplay movie clip to open it in the

Symbol Editor. Scrub the timeline, and you’ll see that the symbol is nothing more than a

series of dots that seem to spin.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

718

9. To make room for the volume slider, select the SeekBar symbol in the Player layer (the long

red rectangle) and use the Properties panel to change its width to 138.

10. With the Player layer selected, drag the VolumeSlider symbol from the controls.fla

Library to the spot you just opened up—to the right of the other controls and just beneath the

loading indicator.

When you drag the VolumeSlider symbol, an interesting thing happens in the TinBangs.fla Library:

not only does VolumeSlider appear, but VolumeBar and VolumeKnob come along for the ride, as

shown in Figure 14-12. This is nothing to be alarmed about. These other symbols show up because

they’re nested inside VolumeSlider, so they piggyback their way in.

Figure 14-12. Dragging in a nested asset carries with it the asset’s children.

11. Drag the volume icon graphic symbol from the controls.fla Library to the stage, just to

the left of the VolumeSlider symbol. This is nothing more than an icon that helps indicate the

purpose of the slider next to it.

12. Double-click VolumeSlider in the TinBangs.fla Library to open it in the Symbol Editor.

This symbol is a bit more complicated than the circle of dots from the previous shared asset, but you’ve

already been introduced to all the concepts. As Figure 14-13 shows, you’ll find three layers: knob, mask,

and bar. The knob layer contains a rectangular symbol, VolumeKnob, whose shape is composed of a 0%

Alpha fill. This is effectively an invisible button, like the hit area shape in step 2, except that the “button” is

a movie clip. The mask layer contains five slanted columns, and the bar layer simply contains a red

rectangle (this is the VolumeBar symbol). If you like, temporarily lock the mask and bar layers, and you’ll

see the masking in action. When this symbol is wired up, the user will be able to drag the invisible

VolumeKnob symbol left and right. The VolumeBar symbol, partially hidden by the mask, will simply

match the position of VolumeKnob, and the result will be an illusion: it will appear to the user that dragging

left and right changes a red fill shared by the five slanted columns.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

719

Figure 14-13. A low-alpha shape inside the rectangular movie clip provides “surface area” for the mouse.

13. Click the Scene 1 link to return to the main timeline. Use the Text tool to draw a Selectable

TLF text field in the Player layer, just to the left of the LoadingDisplay symbol. Configure the

text field with whatever settings you like, but make sure the text field is dynamic and bears a light

color, such as white.

With these assets in place, you’re nearly ready to rock ’n’ roll. Let’s just make sure all the programmable

assets have instance names, and then organize the timeline layers.

14. Open the VolumeSlider movie clip in the Library. Carefully select the VolumeBar and

VolumeKnob symbols on the stage to verify that they’ve already been given instance names:

volumeBar and volumeKnob, respectively.

15. Return to the main timeline and, moving left to right, select each button in turn and verify they

have the following instance names: btnPrev, btnPlay, and btnNext.

16. Continuing toward the right, select the SeekKnob symbol, and give it the instance name

seekKnob. Give the SeekBar symbol the instance name seekBar. For VolumeSlider, make

it volumeSlider. Moving up, give LoadingDisplay the instance name loadingDisplay.

Finally, moving left again, give the text field the instance name songData.

17. Select the Player layer by clicking its name. Now select Modify ➤ Timeline ➤ Distribute

to Layers. Just like that—boom, you get a bunch of new timeline layers, named after the

instance names of the symbols they contain.

18. The Player layer is still there, but it’s now empty—so delete it. Rename the Bar layer to

player background and the interface layer to background image (see Figure 14-14).

Now everything is tidy and much easier to locate.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

720

Figure 14-14. With everything neatly organized, you’re well prepared for a smooth ride.

Wiring up the MP3 player controls

Now it’s time to add the ActionScript. Fortunately, you have a leg up, because the Play/Pause button is

already programmed. In order to proceed, we’re going to tidy up the existing ActionScript, just as we did

with the Library and timeline assets. We’ll use the obvious code comments to help plot out our travel

route.

Click into the scripts layer and review what’s currently in place. This includes the revision you made

earlier in this section, where songList became an XML instance (it had previously been an Array

instance). Compare your work carefully. Nothing has changed since you last touched this code, but see if

you can recognize what’s going on. We’ll meet you on the other side.

import fl.controls.ComboBox;
import fl.data.DataProvider;

//
// Variables
//

var song:Sound;
var channel:SoundChannel;
var req:URLRequest;
var pos:Number;

var songList:XML = new XML();
var loader:URLLoader = new URLLoader();
var xmlReq:URLRequest = new URLRequest("playlist.xml");
loader.load(xmlReq);

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

721

loader.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(evt:Event):void {
 songList = XML(evt.target.data);
 songsCB.dataProvider = new DataProvider(songList);
};

//
// ComboBox
//

// prep
var songsCB:ComboBox = new ComboBox();
songsCB.dropdownWidth = 200;
songsCB.width = 200;
songsCB.height = 24;
songsCB.x = 26;
songsCB.y = 68;
songsCB.dataProvider = new DataProvider(songList);
addChild(songsCB);

// events
songsCB.addEventListener(Event.CHANGE, changeHandler);

function changeHandler(evt:Event):void {
 if (songsCB.selectedItem.data != "") {
 req = new URLRequest(songsCB.selectedItem.data);
 if (channel != null) {
 channel.stop();
 }
 song = new Sound(req);
 channel = song.play();
 btnPlay.gotoAndStop("pause");
 }};

//
// Buttons
//

// prep
btnPlay.stop();
btnPlay.buttonMode = true;

// events
btnPlay.addEventListener(MouseEvent.CLICK, clickHandler);

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

722

function clickHandler(evt:MouseEvent):void {
 if (channel != null) {
 if (btnPlay.currentLabel == "play") {
 channel = song.play(pos);
 btnPlay.gotoAndStop("pause");
 } else {
 pos = channel.position;
 channel.stop();
 btnPlay.gotoAndStop("play");
 }
 }
};

It’s worth noting that some of this code overlaps. (Don’t worry if you didn’t see it! That’s a lot of

ActionScript to pore through.) In the ComboBox block, for example, inside the changeHandler() function,

notice that these two lines:

channel = song.play();
btnPlay.gotoAndStop("pause");

match these two lines in the Buttons block’s clickHandler() function (relevant code in bold):

if (btnPlay.currentLabel == "play") {
 channel = song.play(pos);
 btnPlay.gotoAndStop("pause");
} else {

In simple projects, you don’t need to lose any sleep over the occasional overlap. But it’s definitely

something you want to keep in mind. We’ve looked at some optimization already in this chapter (the

preloader exercise), and there’s more of that coming in Chapter 15. The concept of optimization applies as

much to the structure of your ActionScript as it does to your assets. As we wire up the controls, you’ll find

that numerous event handlers are going to load, pause, or play a song, so it makes good sense to write

custom functions to perform those actions. Then those functions can be reused by your various event

handlers. Doing this makes your ActionScript easier to read and, ultimately, there’s less of it to type. The

result is code that is easier to deal with. We’ll now make the revisions to get rid of the overlap.

Add the following new variables to the code inside your Variables block near the top (new code in bold):

//
// Variables
//

var song:Sound;
var channel:SoundChannel;
var xform:SoundTransform;
var req:URLRequest;
var pos:Number;
var currentSong:int;
var rect:Rectangle;

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

723

Like the existing variables, the three new ones are declared but not yet set to anything. The xform variable

will be a SoundTransform instance for controlling audio volume. currentSong is just like the

currentImage variable in the Beijing slide show (here, it’s used to keep track of the currently playing

song). rect will be a Rectangle instance, which is used later to control the draggable distance of the seek

and volume slider knobs.

Skip down to the ComboBox block. Within the changeHandler() function, change what you see so that it

looks like this (revision in bold):

function changeHandler(evt:Event):void {
 if (songsCB.selectedItem.data != "") {
 currentSong = songsCB.selectedIndex;
 loadSong(songsCB.selectedItem.data);
 }
};

This trims up the function quite a bit. Instead of dealing with the loading code here—URLRequest,

checking if the channel instance is null, and so on—those lines have been moved to a set of new

functions you’re about to write. These new functions will fit between the ComboBox block and the Buttons

block. Copy one of those code block commented headings and paste it after the changeHandler()

function. Change its caption to Song Functions, like this:

//
// Song Functions
//

After this commented heading, type the following new function:

function loadSong(file:String):void {
 req = new URLRequest(file);
 pauseSong();
 song = new Sound(req);
 song.addEventListener(Event.OPEN, soundOpenHandler);
 song.addEventListener(Event.COMPLETE, soundCompleteHandler);
 song.addEventListener(Event.ID3, soundID3Handler);
 playSong();
};

This is an example of double-dipping, as far as code optimization is concerned. You might even call it

“passing the buck.” Just as we passed along the loading code earlier, we’re passing along some of the

ActionScript here again, this time to two additional custom functions: pauseSong() and playSong(). It’s

all in the name of keeping the ActionScript lean.

Notice that the loadSong() function accepts a string parameter, which will be referenced by the file

variable by code inside the function. In the previous code, the value of this parameter was supplied by the

expression songsCB.selectedItem.data, which retrieved the MP3’s filename from the ComboBox

component’s current selection. In later code—namely, the Prev and Next button event handlers—you’ll

see this same value supplied in other ways.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

724

The req variable, declared early on in the Variables block, is finally set to a new instance of the

URLRequest class, which allows the MP3 file to be requested. If a song is currently playing, it’s stopped by

virtue of the pauseSong() function (you’ll see how in the next block of code).

The song variable is set to a new Sound instance, and because the req variable is fed right into the

expression new Sound(), we bypass the need for the Sound.load() method. With the new Sound

instance in place, it’s ready for three event listeners: one when the MP3 is loaded (Event.OPEN), one

when loading is complete (Event.COMPLETE), and one when the MP3 file’s ID3 tags are encountered

(Event.ID3). The event handler functions are intuitively named, and you’ll see how they’re used shortly.

Finally, the custom playSong() function rolls the music—which makes this a good idea to write those

functions.

Let’s continue adding code. Press Enter (Windows) or Return (Mac) a couple times, and then type the

following new ActionScript:

function playSong(pos:Number = 0):void {
 channel = song.play(pos);
 btnPlay.gotoAndStop("pause");
 seekKnob.addEventListener(Event.ENTER_FRAME, seekKnobUpdate);
};
function pauseSong():void {
 seekKnob.removeEventListener(Event.ENTER_FRAME, seekKnobUpdate);
 if (channel != null) {
 channel.stop();
 }
 btnPlay.gotoAndStop("play");
};

Most of this should seem familiar, but there’s some new stuff, too. The playSong() function accepts a

parameter, just like loadSong() does, but here, the parameter is already set to a value (pos:Number =
0)—so what’s going on? New to ActionScript 3.0, this feature lets you provide default values for your

parameters. What’s it good for? Well, when referenced from the loadSong() function, playSong() isn’t

provided with a value; therefore, a default value of 0 is assumed. This will cause the song to play from the

beginning when pos is passed into the first line inside this function: channel = song.play(pos);. As

you’ll see later, the Pause/Play button does pass in a value, because it lets you stop the music and

resume from where you left off. In that case, the pos parameter will be supplied with a value, and the

default 0 will be overruled.

So, when a song is played, it’s assigned to the channel instance, and the btnPlay movie clip is sent to

the pause label of its timeline. The other thing that needs to happen—and this is a glimpse ahead—is that

the SeekKnob symbol needs to start moving along its track to indicate how much of the song has played.

This is managed by way of an Event.ENTER_FRAME event, which triggers a seekKnobUpdate() function

you’ll write later in the exercise.

Once you understand the playSong() function, the pauseSong() function isn’t hard to follow. It doesn’t

need a parameter. All it does is unhook the seekKnobUpdate() event handler, which halts the traveling of

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

725

the SeekKnob symbol; determine whether the channel instance is null and, if not, stop its playback; and

send btnPlay‘s timeline to the play label.

Earlier, we wired up three Sound-related event listeners. It’s time to write the handler functions for two of

those. Press Enter (Windows) or Return (Mac) a couple times, and type the following new ActionScript:

// events
function soundOpenHandler(evt:Event):void {
 loadingDisplay.visible = true;
 loadingDisplay.play();
};
function soundCompleteHandler(evt:Event):void {
 loadingDisplay.stop();
 loadingDisplay.visible = false;
};

These functions are straightforward. After a quick // events comment, the soundOpenHandler()

function simply sets the visibility of the LoadingDisplay symbol to true (this is the spinning dots

symbol, imported from the shared Library). To actually get the dots to spin, it invokes the

MovieClip.play() method on the loadingDisplay instance name. This event handler function

responds to the Event.OPEN event, which occurs whenever an MP3 file is loaded.

The soundCompleteHandler() function responds to the Event.COMPLETE event, which means a

requested MP3 file has fully downloaded. As you can see, this handler stops the spinning dots and once

again turns off the visibility of that movie clip.

Where’s the Event.ID3 handler? It could certainly have been written here. Really, it’s just a matter of

organizational preference, and there’s no arguing taste. To us, it makes sense to build out the rest of the

code, which is composed entirely of event handlers, in the order in which the buttons and controls appear

on the stage. We’ll start with the buttons, move rightward to the sliders, then move up to the dots, and then

move left again to the text field. It’s the text field that does the two-step with the Event.ID3 event handler,

so we’ll meet it again at the end.

Ready for a quick intermission? Test the movie where it stands, and you’ll see three error messages in the

Compiler Errors panel. Those errors are because of three references to two event handler functions

that don’t exist yet. One of those is the Event.ID3 handler we just mentioned, located inside the

loadSong() function. The other is the seekKnobUpdate() reference located in the playSong() and

pauseSong() functions.

Find these addEventListener() and removeEventListener() references in the functions just

mentioned, and comment them out, like this:

//song.addEventListener(Event.ID3, soundID3Handler);
//seekKnob.addEventListener(Event.ENTER_FRAME, seekKnobUpdate);
//seekKnob.removeEventListener(Event.ENTER_FRAME, seekKnobUpdate);

Test the movie again. The errors disappear.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

726

If you like, compare your work with TinBangsMilestone.fla in the Complete/MP3Player folder for this

chapter. When you’re ready to move on, you’ll be wiring up the buttons.

But before you proceed, make sure to uncomment those three lines again!

Handling the button events

Remember that the Play/Pause button has already been programmed, which speeds things up a bit.

Because we have the new playSong() and pauseSong() functions, you will need to make a few changes

to what’s there. Fortunately, this shortens the existing ActionScript, which is all part of the secondary plot

for this exercise: code optimization. Let’s do it.

In case you’re not already there, click into frame 1 of the scripts layer again, and open the Actions

panel. Find the Buttons code block and update what you see to the following new lines (new ActionScript

in bold):

//
// Buttons
//

// prep
btnPlay.stop();
btnPlay.buttonMode = true;
btnPrev.buttonMode = true;
btnNext.buttonMode = true;

// events
btnPlay.addEventListener(MouseEvent.CLICK, playHandler);
btnPrev.addEventListener(MouseEvent.CLICK, prevHandler);
btnNext.addEventListener(MouseEvent.CLICK, nextHandler);

There’s nothing difficult here. The Prev and Next buttons need their MovieClip.buttonMode properties

set to true, simply because—like Pause/Play—they’re movie clips that are masquerading as buttons.

Following suit, they get assigned to their respective event handlers. Because there are now three click-

related event handlers, the function originally assigned to the btnPlay instance has been renamed

playHandler() (it was formerly clickHandler()).

Speaking of clickHandler(), you need to update it so that it reflects the following new code, making sure

to rename it as shown (revisions in bold):

function playHandler (evt:MouseEvent):void {
 if (channel != null) {
 if (btnPlay.currentLabel == "play") {
 playSong(pos);
 } else {
 pos = channel.position;
 pauseSong();
 } }};

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

727

Here’s where the custom functions begin to earn their keep. The behavior of the playhandler() function

is intact, but thanks to the playSong() and pauseSong() functions, the actual lines of code have been

reduced.

Notice, as before, that on one side of the else clause, the pos variable is set to the SoundChannel.
position property of the channel instance. On the other side of that else clause, pos is passed into the

playSong() function as a parameter. When you look at the playSong() function definition in the previous

section, you’ll see that the variable between the function’s parentheses also happens to be called pos.

That’s a coincidence, and nothing more. Whether or not they’re named the same, a value that represents

the song’s position is conveyed, and that’s all that matters.

In real-world situations, you’ll often find that project requirements change. In fact, it’s

rare when they don’t! When this happens, you’ll find yourself better equipped to respond

to revisions when you’re dealing with reusable functions. If the concept embodied by the

playSong() function happens to change, you need to edit only one function in a single

place, rather than needing to use a hunt-and-peck approach to touch up numerous

blocks of code.

The Prev and Next buttons are taken care of with one function apiece. Add the following two event

handlers beneath the playHandler() function:

function prevHandler(evt:MouseEvent):void {
 currentSong--;
 if (currentSong < 1) {
 currentSong = songList.song.length() - 1;
 }
]songsCB.selectedIndex = currentSong;
 loadSong(songList.song[currentSong].@data);
};
function nextHandler(evt:MouseEvent):void {
 currentSong++;
 if (currentSong > songList.song.length() - 1) {
 currentSong = 1;
 }
 songsCB.selectedIndex = currentSong;
 loadSong(songList.song[currentSong].@data);
};

These should be reminiscent of the Next button in the Beijing slide show. Here, these two functions are

metaphorically mirror images of each other. In prevHandler(), the value of the currentSong variable is

decreased by 1 (currentSong--). If currentSong is less than 1—which it will be, eventually—then the

variable is set to one less than the total number of <song> elements in the XML document

(songList.song.length() - 1). Why one less than the total? Because arrays start with 0, rather than 1.

Why aren’t we checking whether currentSong is less than 0, then? Because the first entry in the XML,

www.zshareall.com

mailto:currentSong].@data
mailto:currentSong].@data
http://www.zshareall.com

CHAPTER 14

728

and therefore the ComboBox component, is the “dead” entry without data—the one that says Select a

song.

Once currentSong is updated, the selected index of the ComboBox component is configured to reflect

that change, and the custom loadSong() function is instructed to load the new current selection. The

parameter’s expression happens to be based on the XML content, using a bit of E4X syntax—

songList.song[currentSong].@data—but it could have just as easily be taken from the ComboBox

component.

In contrast, the nextHandler() function increments the value of currentSong and then sets it back to 1 if

it goes beyond one less than the total number of <song> nodes in the XML—in other words, the reverse.

After that, the ComboBox component is updated, and once again, the loadSong() function is instructed to

load the current selection.

Wait a minute! The last two lines of these functions overlap! Shouldn’t they be folded

into yet another function—maybe updateSong()? You could certainly do that.

Optimization is as much an art as a science, and we encourage you to find your

personal line in the sand.

Programming the sliders

You’re about to enter into the thickest part of the ActionScript for this project, so you may want to pull out

your machete. Actually, it’s not so bad, once you strike past the first bit of foliage. The mosquitoes are

pretty big, true, but that makes it all the easier to swat them with the blade.

Joking aside, the ActionScript for the sliders isn’t going to make your head explode. To understand it better, it

helps to take a closer look at the way the slider-related symbols are laid out. Their registration points, in

particular, are designed to make the math as easy as possible, so let’s take a gander. Figure 14-15 shows

these registration points.

Figure 14-15. The symbols’ registration points are carefully chosen to make the code easier.

There are two parts to this slider: the SeekKnob symbol and the SeekBar symbol. When the knob is

positioned on the bar’s left edge, as shown in Figure 14-15, notice that the registration points of each

symbol (the two pluses along each symbol’s upper edges) are aligned.

Both of these symbols are positioned 260 pixels from the left side of the stage. If SeekKnob’s registration

point was also in its own upper-left corner, it would have to be offset by several pixels to look as if it were

www.zshareall.com

mailto:currentSong%5D.@data%E2%80%94butitcouldhavejustaseasilybetakenfromtheComboBoxcomponent.Incontrast
mailto:currentSong%5D.@data%E2%80%94butitcouldhavejustaseasilybetakenfromtheComboBoxcomponent.Incontrast
mailto:currentSong%5D.@data%E2%80%94butitcouldhavejustaseasilybetakenfromtheComboBoxcomponent.Incontrast
http://www.zshareall.com

BUILDING STUFF

729

hugging the left edge of SeekBar. As it is, however, the numbers are easy. To coordinate its movements

with SeekBar, all SeekKnob has to do is know SeekBar‘s horizontal position (seekBar.x) and take into

consideration SeekBar’s width (seekBar.width).

To position the knob along the bar’s left edge, all you need to do set its MovieClip.x property to the bar’s

MovieClip.x property. To slide it halfway across, set the knob’s x property to the x property of the bar,

plus half of the bar’s width. To shove it all the way over, set its x property to bar’s, plus the full width of the

bar. Keep this principle in mind as we work through the seek slider ActionScript.

To begin, copy another one of the commented code block headers and paste it below the last bit of

ActionScript (nextHandler(), from the Buttons section). Change the header’s caption to Seek slider,

and then type in the following ActionScript, so that your code looks like this:

//
// Seek slider
//

// prep
seekKnob.buttonMode = true;

// events
seekKnob.addEventListener(MouseEvent.MOUSE_DOWN, seekStartDrag);

Like the Prev, Play/Pause, and Next movie clip “buttons,” the seekKnob instance needs to have its

buttonMode property set to true. When the user clicks it, you want the user to be able to start dragging

that knob, so the MouseEvent.MOUSE_DOWN event is associated with a custom function you’re about to

write, called seekStartDrag(). That function is triggered when the user clicks the mouse (MOUSE_DOWN)

on the seekKnob instance. Type the following new ActionScript:

function seekStartDrag(evt:MouseEvent):void {
 if (song != null) {
 pauseSong();
 rect = new Rectangle(seekBar.x, seekKnob.y, seekBar.width, 0);
 seekKnob.startDrag(true, rect);
 stage.addEventListener(MouseEvent.MOUSE_UP, seekStopDrag);
 }
};

If the song instance isn’t null— for example, it’s null before a song is chosen from the combo box—then

pause the song, in case it’s playing. Next, define a Rectangle instance (stored in the rect variable),

which will be used to constrain dragging to the desired location.

Rectangle instances are specified at a particular location (x and y) and at a particular width and height. In

this case, we want the knob to be draggable only from the left side of the bar (seekBar.x, the first

parameter) to the right side (seekBar.width, the third parameter). Its vertical position is fine where it is

(seekKnob.y, the second parameter) and shouldn’t vary from that, which means we set the rectangle to a

height of 0 (the fourth parameter).

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

730

The MovieClip.startDrag() method, invoked on seekKnob, is fed two parameters: true, which snaps

dragging to the symbol’s registration point, and rect, which confines dragging to the dimensions just

described.

Finally, a MouseEvent.MOUSE_UP event handler is associated with the stage, configured to trigger a

custom seekStopDrag() function. Why is this association made with the stage, rather than with

seekKnob? Because the user might just drag the mouse off the knob before releasing the mouse

(MOUSE_UP). If the event handler were associated with seekKnob, then seekStopDrag() wouldn’t be

triggered. But when it’s assigned to the stage, that pretty much means the mouse can be lifted anywhere,

and the dragging routine will stop.

Here’s the seekStopDrag() function. Type the following new ActionScript:

function seekStopDrag(evt:MouseEvent):void {
 seekKnob.stopDrag();
 playSong(song.length * (seekKnob.x - seekBar.x) / seekBar.width);
 stage.removeEventListener(MouseEvent.MOUSE_UP, seekStopDrag);
};

The first thing this function does is invoke MovieClip.stopDrag() on the seekKnob instance. That part

is easy. The challenge comes in telling the song where to begin playing again, because it all depends on

where the knob, as shown in Figure 14-16, is currently positioned along the bar.

Figure 14-16. The variables used in the calculation to relate the position of the knob with a time in the

song.

To illustrate, let’s imagine the user dragged the knob right to the middle, and let’s pretend the song is

exactly 60 seconds long. Let’s use those figures and run the math.

Here’s the actual expression:

song.length * (seekKnob.x - seekBar.x) / seekBar.width

Using the numbers we just agreed on, that equates to this:

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

731

60 seconds (knob's position—bar's position) / bar's width
60 * (329—260) / 138

60 multiplied by the difference between 329 and 260 (namely, 69) is 4,140. Divided by 138, the final

number is 30 seconds, which is exactly what’s expected when the knob is dropped halfway across.

The final total of the arithmetic equation is fed into the playSong() function, which starts the song from

whatever value, in seconds, is provided.

The last thing this function does is to tell the stage to stop listening for the MOUSE_UP event, because the

event obviously just occurred (since this function handles it).

In the playSong() function definition, seekKnob is associated with an Event.ENTER_FRAME event, which

tells the knob to continuously update its position according to how much of the song has played. Here’s

that function. Type the following new ActionScript:

function seekKnobUpdate(evt:Event):void {
 var pos:Number = seekBar.width * channel.position / song.length;
 if (!isNaN(pos)) {
 seekKnob.x = seekBar.x + pos;
 } else {
 seekKnob.x = seekBar.x;
 }
};

Here’s that pos variable again (a third one!). This one is unrelated to the other two, except in name. To the

authors, pos just seems like an appropriate name for a variable for noting the position of something. In this

case, pos is declared within the scope of this function and set to an expression that effectively does the

opposite of the expression shown earlier. Let’s run the numbers again, assuming that, at this very moment,

our hypothetical -60-second song has played halfway through. Here’s the actual expression:

seekBar.width * channel.position / song.length,

It equates to this:

bar's width song's position / song's length
138 * 30 / 60

138 multiplied by 30 is 4,140 (sounds familiar, doesn’t it?). 4,140 divided by 60 is 69. Hold that thought.

There may be times when neither channel nor song has a property value that yields a valid number when

run through the math. To safeguard against that, an if statement uses the isNaN() function (is Not a

Number) to prod the value of pos (which is hypothetically 69). If pos is a valid number—that is, if

!isNaN(pos) evaluates to true—then it is added to the current MovieClip.x value of seekBar, the sum

of which is bestowed upon seekKnob. Because seekBar’s position is 260, that (added to 69) puts

seekKnob at 329, which is exactly halfway across the bar.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

732

The exclamation point (!) in front of the isNaN() function inverts whatever that function

says, in the same way that the inequality operator (!=) means “is not equal to.” If you

want to find out if a value is not a valid number, check it against isNaN(). On the other

hand, if you want to find out if a value is a valid number, check it against !isNaN().

The flip side of that if statement—meaning, pos is an unusable number—simply sets the knob’s position

to the position of the bar, which resets the knob to its original hug-the-left-side location.

As the song plays through, this seekKnobUpdate() function is triggered every time the timeline enters a

frame, in other words, continuously. This causes the knob to indicate progress until the function is

instructed to stop. Go ahead, test the SWF and give it a whirl.

The mechanics of the volume slider work in pretty much the same way. A similar knob symbol is instructed

to drag within a constrained area. The difference is that the knob’s position in relation to its bar is used to

adjust the volume of the currently playing song. In addition, a separate symbol is instructed to follow the

knob, whose movement either hides or reveals that symbol behind a mask. Let’s add the code.

Continuing below the previous ActionScript, give yourself another code comment heading, this time

captioned as Volume slider. Type in these additional new lines:

//
// Volume slider
//

// prep
volumeSlider.volumeKnob.buttonMode = true;

// events
volumeSlider.volumeKnob.addEventListener(MouseEvent.MOUSE_DOWN,
volumeStartDrag);

The volumeKnob instance is nested inside volumeSlider, and that’s because those movie clips are

nested. Other than that, there is nothing remarkable about this addition. Let’s keep rolling.

Enter the following new ActionScript, which defines the volumeStartDrag() function just referenced:

function volumeStartDrag(evt:MouseEvent):void {
 rect = new Rectangle(8, volumeSlider.volumeKnob.y,
volumeSlider.volumeBar.width - 8, 0);
 volumeSlider.volumeKnob.startDrag(true, rect);
 volumeSlider.volumeKnob.addEventListener(MouseEvent.MOUSE_MOVE,
volumeAdjust);
 stage.addEventListener(MouseEvent.MOUSE_UP, volumeStopDrag);
};

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

733

As with the other slider, rect is set to a new Rectangle instance when the knob is clicked and fed

appropriate values. In this case, the values are purposefully tweaked to move the knob in from the left

edge just a bit. Why? Because if the volume knob were dragged all the way to the left, it would completely

obscure the red movie clip rectangle behind the slanted five-column mask. Letting it go almost all the way

to the left—8 pixels shy, in this case—looks good visually.

Where did the 8 come from? Even though it is an arbitrary figure, sometimes these

numbers just appear, and you learn to live with them (but they still make you feel a bit

weird because they don’t quite adhere to the normal programmatic logic).

The startDrag() method is invoked on volumeKnob, and again the stage is associated with a

MouseEvent.MOUSE_UP event to stop the dragging. This time, though, an additional event (MOUSE_MOVE) is

associated with a custom function named volumeAdjust(). Let’s look at both of those.

Enter the following new ActionScript:

function volumeStopDrag(evt:MouseEvent):void {
 volumeSlider.volumeKnob.stopDrag();
 stage.removeEventListener(MouseEvent.MOUSE_UP, volumeStopDrag);
 volumeSlider.volumeKnob.removeEventListener(MouseEvent.MOUSE_MOVE,
volumeAdjust);
};
function volumeAdjust(evt:MouseEvent):void {
 volumeSlider.volumeBar.x = volumeSlider.volumeKnob.x;
 if (channel != null) {
 xform = channel.soundTransform;
 xform.volume = (volumeSlider.volumeKnob.x - 8) /
(volumeSlider.volumeBar.width - 8);
 channel.soundTransform = xform;
 }
};

The volumeStopDrag() function is old hat by now. It stops the dragging and stops the MOUSE_MOVE

handler. Let’s break down the volumeAdjust() function.

First off, it sets the position of volumeBar to the position of volumeKnob. That hides and reveals the red

rectangle behind its mask in concert with the knob’s position. After that, assuming channel is not null,

the xform variable—declared early on—is set to the SoundChannel.soundTransform property of the

channel instance. This gives xform a SoundTransform.volume property, whose value is set in terms of

volumeKnob’s position (accounting for that 8-pixel shy span) in relation to the width of volumeBar.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

734

The VolumeBar symbol happens to be 50 pixels wide, so let’s run the numbers assuming the knob has

been dragged halfway across the valid range. (Normally, halfway across would be 25, but we’re adding

half of that 8-pixel buffer, so half is 29 here.) Here’s the actual expression:

(volumeSlider.volumeKnob.x - 8) / (volumeSlider.volumeBar.width – 8)

It equates to this:

knob's position - 8, divided by bar's width - 8
29 - 8 / 50 - 8
29 minus 8 is 21. 50 minus 8 is 42. 21 divided by 42 is 0.5, or 50%.

xform’s volume property is set to 0.5, and then the final line reassigns xform to the channel.soundTransform

property, which cuts the volume in half. Remember that this function is triggered every time the mouse moves,

as it drags the knob.

Almost in the clear!

Finishing up the controls

The rest of the controls require barely a flick of the tail. All we need to do is hide the LoadingDisplay

symbol (the spinning dots) by default and handle the Event.ID3 event. Let’s do it.

Add another block of code that looks like this:

//
// Loading display
//

loadingDisplay.stop();
loadingDisplay.visible = false;

This stops and hides the spinning dots. Now, enter your final block of code, and make it look like this:

//
// Song Data
//

function soundID3Handler(evt:Event):void {
 songData.text = song.id3.artist + ": " + song.id3.songName + "
(" + song.id3.year + ")";
};

This function is triggered whenever an MP3’s ID3 tags are encountered. Tag information is retrieved from

the Sound.id3 property of the song instance—here, song.id3.artist, .songName, and .year—and

concatenated into a string fed to the songData text field’s text property.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

735

ID3 tags have nothing to do with ActionScript 3.0 per se. The concept is part of the MP3

file format, and it just happens to be supported by ActionScript. On their own, ID3 tag

names aren’t especially easy to read. The tag intended for the artist’s name, for example,

is TPE1; the publication year is TYER, and so on. ActionScript provides friendly names for

the most popular tags—comment, album, genre, songName, artist, track, and year—

but the others are available by their less intuitive tag names. To see the full list, look up the

Sound class in the ActionScript 3.0 Language and Components Reference, and then skim

down the Properties heading until you come to id3. Click that listing.

Test your MP3 player to give it a spin. Kick the tires a bit.

Evaluating and improving the MP3 player

Even with the best of planning, you might be surprised to find that some aspects of a project, including its

faults, don’t make themselves apparent until the work is done—or at least, until a first draft is done. (Some

projects never do seem to end! Hey, at least it’s a paycheck.) In Chapter 15, we discuss the idea of

planning an FLA beforehand—the authors do believe in the practice, with a passion—but sometimes you

can’t tell how a car is going to handle until you actually wrap your fingers around the steering wheel and

slam your boot on the gas pedal.

In this case, you may have noticed that every time a new song plays, the volume jumps back up to 100

percent, no matter where you drag the volume slider. Worse, when this happens, the volume is audibly at

full, even though the slider might be positioned all the way to the left. That’s a bug, and we’re going to fix it.

In addition, you might want the player to cycle through the whole playlist, rather than simply stop after a

song ends. You might also want the first song to start playing automatically. All of these options are

possible, and thanks to the thoughtful arrangement of our existing ActionScript, they’re easy to implement.

Let’s tie up this MP3 player with a bow. First, let’s address the volume bug. Locate the volumeAdjust()

function, just above the Loading display block, and give its evt parameter a default value of null—like

this (revision in bold):

function volumeAdjust(evt:MouseEvent = null):void {

What does this do? Without the addition, this function requires a MouseEvent parameter, which pretty

much means it must be triggered in response to an event, which passes in the MouseEvent automatically.

By giving the evt parameter a null value by default, you’re making the parameter optional. This means

the volumeAdjust() function can be triggered from anywhere, as an event handler or not.

Locate the playSong() function and update it to look like this (revision in bold):

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

736

function playSong(pos:Number = 0):void {
 channel = song.play(pos);
 volumeAdjust();
 btnPlay.gotoAndStop("pause");
 seekKnob.addEventListener(Event.ENTER_FRAME, seekKnobUpdate);
};

Just like that, the bug is fixed! The playSong() function actually sets the newly loaded song in motion, to

speak, and associates the song instance with the channel instance. With channel updated, the xform

variable, referenced inside volumeAdjust(), has what it needs to check the current position of the volume

slider and adjust the volume accordingly.

Since we’re in the playSong() function anyway, it’s the perfect time to add a new event listener that will

allow the player loop through its playlist. Update the playSong() function again to look like this (revision in

bold):

function playSong(pos:Number = 0):void {
 channel = song.play(pos);
 channel.addEventListener(Event.SOUND_COMPLETE, nextHandler);
 volumeAdjust();
 btnPlay.gotoAndStop("pause");
 seekKnob.addEventListener(Event.ENTER_FRAME, seekKnobUpdate);
};

Once the channel variable is updated, it’s associated with the already-written nextHandler() function in

response to the Event.SOUND_COMPLETE event, which is dispatched when the sound channel of a

currently playing sound reaches the end of the file.

Remember that the nextHandler() function is also associated with the MouseEvent.CLICK event, which

is triggered when someone clicks the Next button. The MouseEvent class inherits some of its functionality

from the Event class, and in this case, it’s safe to strongly type the evt parameter inside the

nextHandler() function as Event. This is because, at rock bottom, both Event and MouseEvent

instances are ultimately instances of Event.

Locate the nextHandler() function and change it to look like this (revision in bold):

function nextHandler(evt:Event):void {

Finally, to make this MP3 player begin in ”auto-play” mode, locate the completeHandler() function, just

above the ComboBox block, and add the new lines shown in bold:

function completeHandler(evt:Event):void {
 songList = XML(evt.target.data);
 songsCB.dataProvider = new DataProvider(songList);
 loadSong(songList.song[1].@data);
 songsCB.selectedIndex = 1;
};

www.zshareall.com

mailto:1].@data
http://www.zshareall.com

BUILDING STUFF

737

When the XML playlist fully loads, completeHandler() is triggered. It populates the ComboBox

component. In addition to that, it now invokes the loadSong() function and feeds it the filename from the

first <song> element that actually refers to an MP3 file (remember that the very first <song> element—

songList.song[0]—doesn’t contain file data). After that, the function updates the ComboBox component

to its first song entry (the one after the filler Select a song entry), by setting its selectedIndex

property to 1.

Test your movie again and, while you’re tapping your feet, give yourself a pat on the back.

Going mobile
A year or so ago one of the authors, in response to a question around developing Flash projects for mobile

devices, woke up the audience when he commented, “Not me. I’d rather drive chop sticks into my

eyeballs.” He didn’t make this comment to be funny but to express to the audience that mobile is a

frustrating and bewildering space fraught with competing operating systems, varying Flash Players

requiring different versions of ActionScript with some playing video and others not, devices with varying

screen sizes…we think you get the picture.

Just to make things even more interesting, Apple, in April 2010, dropped an atomic bomb on developers.

They essentially told them they have to use Apple-approved development tools to create applications for

the iPhone. Though widely regarded as a slap against Adobe and Flash, it became pretty clear that that if

you wanted to play in Apple’s sandbox, you had to use their toys. This was a rather interesting

development because the “nobody cares how you did it they just care that you did it” approach to

developing applications for the iPhone was no longer in play. This naturally had a rather major impact on

us because the iPhone compiler—a choice in the New Document list—went out the window along with

our plans for this chapter.

Over the weeks following this uproar the mobile community started looking for a new sandbox, which let

them use their toys. As such there developed a loose consensus that the Google mobile OS, Android,

might just be the place to go. Just to make sure that everyone knew that the Android sandbox was open

for business Google announced, in May 2010, an updated version of the OS—code name Froyo—and

Adobe, minutes later on that very same stage, made it crystal clear that Flash Player 10.1 was rock steady

and ready to go to work with Froyo and practically every other smartphone on the planet (…elephant in the

room excepted).

In this final section of the chapter, we are going to develop a small game—Whack-A-Bunny—that will be

developed for play back on a Google Nexus One Android device, which is the test device used by Google

and chipset manufacturer Qualcomm. To start, we need to take a stroll over to Device Central.

A quick tour of Device Central

Device Central has been around for while. Its purpose is to let you choose a variety of devices from a

variety of manufacturers and test your project in an environment that emulates how a user would actually

use the device and your application. When you install any of the Adobe Collections—we use the Master

Collection—Device Central is installed with all of the other applications in the bundle. Let’s go check it out:

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

738

1. Launch Device Central. When it launches, you will see the Start page shown in Figure 14-17.

Figure 14-17. The Device Central Start page

As you can see, the page is quite similar to the Flash CS5 Start page in that it is divided into distinct

sections:

 Open for Testing: Any files that you have tested in Device Central will be listed here, or you

can click the Browse button to navigate to the file to be tested.

 Device Profiles: Click the Browse Devices button, and you will be taken to a list of every

device resident in Device Central. There are quite a few of them, but don’t let the list intimidate

you. You get to choose which devices will be used. The listing lets you pick them.

 Create New Mobile: This area is new to Device Central CS5 and contains a listing of the

applications that have a direct ‘hook” into Device Central. Click an application, and Device Central

doesn’t launch the application; it opens the New Document panel in Device Central. When you

are there, you can choose the player version, ActionScript version, and content type. From there,

you choose your test player and click the Create button to launch the application chosen. We’ll

show you how in a couple of minutes.

2. Click the Browse Devices button to open a list of devices.

3. Scroll down the list and, as shown in Figure 14-18, locate the Google Nexus One device. The

categories are self-explanatory. The device, if it has an image of the device, is an actual template

of the device. The odd icon in the Location area—a globe over a handset—tells you the device

is found on your hard drive. Just the globe indicates an online version will be used. You are also

told the version of Flash Player that is used on the device, the screen size, and the Creator

category that indicates who created the Device Profile, which, in this case, is Adobe.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

739

Figure 14-18. Device Central contains an extensive list of Flash-enabled devices.

4. Double click the device to open the full device profile shown in Figure 14-19.

Figure 14-19. The device profile is quite extensive.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

740

5. At the top of the left side of the screen is a panel named Test Devices. Click it to make it

active. This panel is where you store devices targeting by your project.

6. Click the + sign at the bottom of the panel, and select Add New Group from the drop-down

menu. A folder will appear in the panel. Double-click the folder name and change the name, as

shown in Figure 14-20, to My Devices. Drag the Google Nexus One device from the device

Library into your new folder.

Figure 14-20. You can build a personal collection of test devices.

Now that we have a device in our folder, let’s walk through the workflow used to move from Device Central

to Flash where the application is created and back to Device Central where the application will be tried out

in the device. We aren’t going to do anything complicated here.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

741

7. Click the Create button in the upper-right corner of Device Central. The New Document panel,

shown in Figure 14-21, will open. Click the device in the New Document panel, and the options

move from being grayed out to live.

Figure 14-21. You get to choose how the Flash document will be configured to the device.

8. Click the Create button in the bottom-right corner of the New Document panel. This will launch

Flash, and when it opens, the stage will match the screen dimension of the device.

9. Select the Text tool, and enter your name. We used TLF text Read Only as the format and

set the text to 36-point Arial.

10. With the text container selected on the stage, open the Motion Presets panel, and apply the

spiral-3D preset to your name. Save the file to your Exercise folder.

Follow these steps to see the animation play on your device:

11. Select Control ➤ Test Movie ➤ in Device Central. The SWF will be exported, and when

the export finishes, as shown in Figure 14-22, Device Central opens, and your name is spinning

on the screen of the Google Nexus One. If you look up in the upper-right corner of the window,

you will see Emulate Flash has been selected. The panels on the right side of the device

provide you with a number of options and configurations for the chosen device, and the buttons

along the bottom allow you to play the SWF in the device, recode the movie in the device, take

screen shots, and so on.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

742

Figure 14-22. You can test your work in the device chosen.

12. Close Device Central, and return to Flash. You will notice the Output panel has also given you a

bit of information as to the status of the test.

13. Save the document and close it.

What you have just experienced is the bare-bones workflow between Device Central and Flash. This is

about as far as we are going to go on this subject because mobile is a huge, emerging area that will grow

to not only encompass smartphones but tablets and other Flash-enabled screen displays. We simply don’t

have the space to do a deep dive into the subject and the number of variables—screens, Flash Players,

multitouch, and so on—are such that they are well out of the scope of this book. Even so, with this bar-

bones workflow, you can do some amazing stuff. Let’s give it a test drive and create a “Whack-A-Bunny”

game for our Google Nexus One device.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

743

“Wiring up” the game

This game is your standard “Whack-A-Mole” game, only in this case the mole is a bunny. The object of the

game is to whack the bunnies popping out of the holes in the ground. The game will consist of two frames

on the Flash timeline, and the code you will write will get the game started and then allow the user to play

the game. The “end game” will be getting the game to work on the Google Nexus One device in Device

Central. Let’s get started.

1. Open the whackabunny.fla file in your Exercise folder. When the file opens, you will notice, as

shown in Figure 14-23, we have included all of the game’s assets in the Library.

Figure 14-23. All you need to do is to add the code.

2. Open the rabbitAnim movie clip in the Library’s BunnyGraphics folder. You can see how

the rabbit pops in and out of its hole—a mask is used—and the scripts in the Actions layer

simply control the playhead during the animation. Click the Scene 1 link to return to the main

timeline.

3. The game title, found in the StartScreen layer, simply has the title of the game grow out of a

point on the horizon. To see how the title animation was created, open the title movie clip

found in the Library’s Intro folder. If you scrub the movie clip’s timeline, you will see the title

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

744

is, as shown in Figure 14-24, nothing more than a tweened scale and alpha animation using a

Classic Tween. Click the Scene1 link to return to the main timeline.

Figure 14-24. The Title sequence is a simple Classic Tween with an alpha fade.

The words START, WHACK, A, and BUNNY are used only once and use only 16 characters of the font. If you

are using a custom font and don’t want the user to access it, feel free to select each of the words, and

using Modify ➤ Break Apart, you can “change” the text from a font to artwork. Just remember, this

makes the text noneditable, so make sure everything is spelled correctly before doing the conversion.

4. Click the word Start on the stage. If you check the Properties panel, you will see we have

given this movie clip the instance name startBtn. The user will have to click this button to start

the game. Let’s wire it up.

5. Click into frame 1 of the Actions layer, open the ActionScript panel, and enter the following

code:

import flash.events.MouseEvent;

stop();

startBtn.addEventListener(MouseEvent.CLICK, startGame);

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

745

function startGame(evt:MouseEvent):void
{
 nextFrame();
};

All this code does is to hold the playhead on frame 1 until the user clicks the Start button. When he or

she does, the nextFrame() method is used to advance the movie to frame 2.

6. Select frame 2 of the Actions layer, open the ActionScript panel, and enter the following

variables:

var max:Number = 8;
var min:Number = 1;
var randNum:Number;
var timer:Timer;
var score:int;

There is going to be a lot going on in this game, and this is the place to anticipate and name values that

will change on a regular basis. The first variable—max—is the maximum number of rabbits in the game,

and the min variable determines the minimum number of rabbits. The randNum variable will be used to

ensure there will always be between one and eight rabbits on the screen at any one time. The timer will

be used to determine how often the number of rabbits on the screen will change, and the score variable

will be used to change the number value in the scoreTxt text box on the stage.

7. Press the Enter (Windows) or Return (Mac) key twice, and add the following:

init();

function init():void
{
 //Mouse.hide();

 //start timer with a callback of randomBunnyDisplay
 timer = new Timer(2500);
 timer.addEventListener(TimerEvent.TIMER, randomBunnyDisplay);
 timer.start();

addEventListener(MouseEvent.CLICK, checkHammer);
};

The init() function is where the “magic” happens. That first line, all by itself, is useless. It is the next line,

where the init function is defined, that gets things going.

You may be wondering why the Mouse.hide() method is “commented out.” It’s because where the game

will be played. To “whack” a bunny, you need to click it. If the game is being played on a computer, you will

need to click a bunny, and to do this, you will need to see the mouse pointer. If this game is moving to the

Nexus One device, there is no mouse pointer. The user will tap on a bunny with his or her finger. Seeing

as how our first test of the game will be on your computer, the method is disabled.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

746

We start by determining that every 2.5 seconds—new Timer(2500)—something is going to happen. The

next line determines that “something” is a function named randomBunnyDisplay. Having established that,

the next line starts the clock running.

The final two lines listen for what happens when the playhead comes back into frame 2 and what happens

when the mouse is clicked—figure out where the hammer should go, which is the next function you will

need to add.

8. Press the Enter (Windows) or Return (Mac) key twice, and add the following function to control

the movement of the hammer:

function checkHammer(evt:MouseEvent):void {
 for (var i:int = 1; i < 8; ++i){
 var mc:MovieClip = MovieClip(getChildByName("bunny" + i));
 if(mc.hitTestPoint(mouseX, mouseY, true))
 {
 // mallet.x = mouseX - 40;
 //mallet.y = mouseY - 40;

 mallet.gotoAndPlay(2);
 mc.bunny.gotoAndPlay(81);
 mc.gotoAndPlay(80);
 score++;
 }
 }
};

The function starts by creating a number between one and eight and iterates the chosen number up to that

maximum value. That number is then used to put the bunny movie clip on the stage and give it an instance

name that is a combination of the word bunny and the number from the previous line. If you look on the

stage in frame 2, you will see there are eight white dots, which are instances of the rabbitAnim movie

clip in the Library. Each one of these has an instance name of the word bunny and a number. You can

gather from this, the code line is how up to eight copies of the rabbitAnim movie clip get put into position

on the stage.

Now that we know where the bunnies are, we have to get the mallet to their locations when the mouse is

clicked or the screen is tapped. This is where the hitTestPoint() method comes into play. It makes sure

that the point being clicked (mouseX and mouseY) intersects the bunny object on the screen, which is the

True parameter.

The next two lines, which are commented, will only be used in the mobile version of the game and are

there to ensure the mallet stays within the screen boundaries.

The final four lines are, in many respects, the “action” lines. If the cursor is on the bunny, thanks to the

hitTestPoint() method, the hammer slams down because of the animation that starts in frame 2 of the

mallet movie clip found in the GameGraphics folder. To show the user they have indeed “whacked a

bunny,” the bunny closes its eyes and stars appear over its head. This entire animation sequence kicks off

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

747

in frame 81 of the BunnyCharacter movie clip found in the BunnyGraphics folder. Finally, the bunny

goes back down its hole (frame 80 of the rabbitAnim movie clip), and the score increases.

You may have noticed there is nothing in this function telling the mallet where to move and how to change

the score. Let’s clean that up with the next function we’ll name update.

9. Press the Enter (Windows) or Return (Mac) key twice, and enter the following code:

function update(evt:Event):void{
 mallet.x = this.mouseX - 40;
 mallet.y = this.mouseY - 40;
 scoreTxt.text = String(score);
 checkScore();
};

Other than the checkScore() function, which we will get to in a minute, there is nothing new here. What

you do need to know is that the mallet.x and mallet.y properties need to be commented out if the

game is destined to appear on a device.

Having dealt with the mallet movement and the changing score, it is time to turn our attention to populating

the stage with randomly located bunnies.

10. Press the Enter (Windows) or Return (Mac) key twice, and add the following function to the code:

function randomBunnyDisplay(evt:TimerEvent):void {
 randNum = Math.floor(min + (Math.random() * (max - min)));
 MovieClip(getChildByName("bunny" + Math.floor(randNum))).gotoAndPlay(2);
};

This function determines which of the eight bunnies are on the stage at any given time. It starts by giving

the randNum variable a number between 1 and 8 and tacks that number onto the instance name. For

example, if the random number chosen is the number 2, the instance name is bunny2. With this

information, Flash pulls the rabbitAnim movie clip and puts it on the stage where the bunny2 instance is

located. The gotoAndPlay(2) method keeps the playhead looping in frame 2, meaning the movie clips

will constantly appear in a different location on the stage.

We only need to do one more thing. Use the checkScore() function from step 9 to introduce a bit of game

play into the project.

11. Press the Enter (Windows) or Return (Mac) key a couple of times, and let’s finish the coding task.

Enter this final function:

function checkScore():void {
 switch (score)
 {
case 15:
 timer.delay = 2000;
 levelTxt.text = "02";
 break;

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

748

 case 30:
 timer.delay = 1500;
 levelTxt.text = "03";
 break;

 case 40:
 timer.delay = 800;
 levelTxt.text = "04";
 break;
 }
};

The “game play” is located in the case statements. It won’t take a user long to figure out that something

happens every 2.5 seconds and the game becomes a bit tedious. The case statements check the score,

and if it is at the number accompanying the case statement, things speed up because the timer.delay

property reduces by a half-second. Also, when the timer reduces, the number in the levelTxt instance

changes to let the user know they have advanced in the game.

12. Save and test the movie. As you can see in Figure 14-25, you can whack bunnies popping out of

their holes.

Figure 14-25. Go ahead…whack a bunny.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

749

Testing the game in Device Central

Now that we know the game works, let’s give it a whirl on that Google Nexus One device we tried earlier.

To start, though, we need to make a couple of changes to the code and then try it.

1. Close the SWF, and open the code.

2. Locate the Mouse.hide() line, around line 19, and remove the comment. Remember, the device

is touch screen.

3. Locate the checkHammer function, and remove the comments for the mallet.x and mallet.y

properties.

4. Finally, in the update function, comment out the mallet.x and mallet.y properties.

5. Select Control ➤ Test Movie ➤ in Device Central. Device Central will launch, and, as

you can see in Figure 14-26, the game appears on the display. Of course, it looks all wrong

because the game is laid out to play in landscape and not portrait mode. Let’s fix that right now.

Figure 14-26. The game appears in the device but something is obviously very wrong.

6. On the right side of the Device Central interface are a number of tabs. Click the Display tab to

bring it into focus. This panel is a godsend. Adjust the Backlight slider, and you can see the

effect of the user turning down the brightness of the device. The timeout setting lets you put the

device into timeout mode using a duration you set. The Reflections drop-down is really neat.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

750

Select Indoor from the drop-down, and you get a look at what the game screen will look like if it

is played indoors and a window was behind the user. Check out the other two settings—Outdoor

and Sunshine. When you finish, reset the Reflection setting to None.

7. In the Screen Mode area, select Landscape 90º or Landscape -90º. Select Full

Screen, and, as shown in Figure 14-27, the device revolves, and the game looks as it should. At

this point, click the Start button, and begin whacking bunnies.

Figure 14-27. Change the Screen Mode setting to give yourself the proper device orientation.

Package the game as an Android AIR app

As we pointed out at the start of this section, the Android OS for mobile devices is poised to have a huge

impact on the world of devices and tablets. This exercise is going to take you right out on to the bleeding

edge of the technology—at least it was a bleeding edge when we were writing this—and show you how

easy it is to turn a game destined for web delivery to a device to one that sits on the user’s Android device

or tablet and, for all intents and purposes, is a stand-alone application.

The technology that makes this possible is Adobe AIR—Adobe Integrated Runtime. Just so we all

understand each other, creating pro-level AIR apps is well out of the scope of this book and involves some

very highly developed code and design skills. What makes these things so cool is that they are browser

independent. All they need is a connection to the Web—3G, WiFi, Ethernet—and they are good to go.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

751

1. To get yourself started, you will need to install the AIR for Android extension. To get it, point your

browser to http://labs.adobe.com/technologies/air2/android/, and click the Sign Up

link. Adobe Labs is a site where public betas of new technologies are available for you to “kick the

tires.” Alternatively, go to www.adobe.com and search for AIR for Android.

2. Create an account, and you will be taken to the AIR for Android Developer Prerelease

page. Click the Download Software link on the left side of the page to be taken to the

downloads area.

3. Click the Download AIR for Android Extension for Flash CS5 link, and the page

shown in Figure 14-28 will open. Download both the extension and the documentation.

Figure 14-28. The AIR for Android Extension is available on the Adobe labs site.

4. When the file finishes downloading, double-click the .zxp file. This will open the Adobe

Extension Manager CS5, and the extension will be automatically installed into Flash. When

the process finishes, quit the Extension Manager.

5. Create a new folder in your Exercise folder, and name it AirForAndroid.

6. Open your whackabunny.fla file, rename it whackabunnyAndroid.fla, and save it to the folder

you just created.

7. Open the WhackABunny folder in your Exercise folder, and move the file named 72x72Icon.png

to the AirForAndroid folder.

www.zshareall.com

http://labs.adobe.com/technologies/air2/android
http://www.adobe.com
http://www.zshareall.com

CHAPTER 14

752

These last three steps aren’t necessary. We added them to give you a clear idea of exactly what files get

created and are needed when creating the application.

From Flash to AIR to Android

With the extension installed, follow these steps to create the AIR package:

1. Select File ➤ AIR Android Settings to open the Application & Installer

Settings dialog box shown in Figure 14-29. As you may have guessed, the extension adds a

new menu item to Flash.

There is another method of getting to the Android settings. Select File ➤ Publish

Settings and click the Flash tab. Select AIR Android from the Player drop- down.

Figure 14-29. The AIR Android settings panel

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

753

This is not as intimidating as it looks, you really only need to make a couple of changes.

2. Change the Output filename to whackabunnyAndroid.air.

3. Select Landscape from the Aspect ratio drop-down, and select Full Screen. You saw

why this needs to be done when you tested the game in Device Central.

4. Click the Deployment tab to open the deployment settings shown in Figure 14-30. This step is

necessary to allow the creation of the AIR app, itself. All you will need to do here is to create the

AIR certificate and assign a password to the certificate.

Figure 14-30. You need to use an existing AIR certificate or create one to enable AIR deployment to an

Android device.

5. Click the Create button to open the certificate settings shown in Figure 14-31.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

754

This is not a spooky as it looks, but you need to complete all of the fields. Use these settings:

 Publisher name: Add your name.

 Organization unit: Self.

 Organization name: Use your company name.

 Country: Select your country code from the drop-down. Tom is in Canada, which explains the

CA.

 Password: Enter an easily remembered password.

 Confirm password: Reenter the password.

 Type: Leave this at the 1024-RSA default value.

 Save as: Click the browse button, and navigate to the AirForAndroid folder created earlier.

6. Click OK to accept the settings and return to the Deployment panel.

Figure 14-31. The information required to create the AIR certificate

7. Enter the password you created. You will also notice a path to the certificate has been added to

the panel.

8. Click the Icons tab to open the Icons pane shown in Figure 14-32.This lets you choose the icon

used to launch the AIR application on the user’s device.

9. Select icon 72 x 72 and click the Browse button. Navigate to the AirForAndroid folder and

choose the 72x72Icon.png file. Click Open, and a preview of the icon will appear in the pane.

www.zshareall.com

http://www.zshareall.com

BUILDING STUFF

755

Figure 14-32. Choose the icon used to launch the application on the user’s device.

Click the Publish button. The SWF will be created along with an HTML file (these are from the Publish

Settings dialog box) and the whackabunnyAndroid.air file shown in Figure 14-33.

Figure 14-33. You get these files when you create the AIR application.

www.zshareall.com

http://www.zshareall.com

CHAPTER 14

756

If you are working with Flash Builder and plan to get this game onto an Android device,

you will need to create an APK file. A very good and, we might add, intuitive packager is

Package Assistant Pro from Serge Jespers at www.webkitchen.be/package-
assistant-pro/.

Finally, don’t bother double-clicking the AIR installer package thinking that you can put the app on your

computer. This application is strictly aimed at Android devices and won’t open on anything but an Android

device.

Build more stuff

Writing a new edition of a book is a rather exciting prospect because there is always a ton of new stuff that

should be covered. Unfortunately, that also means some really neat stuff from the previous editions or

ideas that cropped up during the planning process gets discarded. Physical copies of a book have a finite

space requirement, and difficult decisions need to be made.

With this edition of the book, we decided to make a bit of a change. In the Exercise folder is another

subfolder named Building More Stuff, which contains a few more ideas that are available to you on an

“as is, where is” basis. What we mean by that phrase is the code is fully exposed, and you are going to

have to figure out how to mold the project to your needs.

One of the authors, Tom Green, also writes tutorials for a number of online tutorial sites and, included in

the folder, is a list of links to some of his more popular tutorials.

Enjoy!

What you have learned
Rather than list what we covered in this chapter, we think it is more important to take a broader view of that

statement. Step back for a moment and think about what you knew when you first laid this book on your

desk and flamed up Flash CS5. The answer, we suspect, is “Not a lot.”

Now think about your working through this chapter. The odds are pretty good you were able to follow

along, and we are willing to bet there were a couple of points where you may have asked us to “move

along a little quicker.” This says to us that we have done our job, and that you may just know a lot more

than you are aware of. Congratulations.

We were also a little sneaky with this chapter. If you follow the flow from the start to the end, you will see it

actually follows the structure of this book: each exercise is designed to add to your knowledge base by

building upon what you learned in the preceding exercise and, as we kept pointing out, in preceding chapters.

Finally, this chapter expanded on practically every concept presented in this book. If you have completed

the exercises, then you have quite a bit of practical experience using Flash CS5.

Now that you’ve learned the ropes and have practiced numerous techniques, let’s concentrate on the end

game of the Flash design and development process: publishing your file.

www.zshareall.com

http://www.webkitchen.be/package-assistant-pro
http://www.webkitchen.be/package-assistant-pro
http://www.webkitchen.be/package-assistant-pro
http://www.zshareall.com

757

Chapter 15

Optimizing and Publishing Flash Movies

When it comes to Flash on the Web, a common user experience is sitting around waiting for the movie to

start. From your perspective, as the artist who designed the site, this may seem odd. After all, when you

tested the movie in the authoring environment, it was seriously fast and played flawlessly. What

happened? To be succinct, the Web happened. Your movie may indeed be cool, but you made a

fundamental mistake: you fell in love with the technology, not the user. In this chapter, we’ll talk about how

to improve the user experience.

Here’s what we’ll cover in this chapter:

 Understanding how Flash movies are streamed to a web page

 Using the Bandwidth Profiler to turbo-charge movies

 Optimizing Flash movies

 Converting a Flash movie to a QuickTime video

 Choosing web formats

 Publishing a SWF for web playback

 Dealing with remote content

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

758

The following files are used in this chapter (located in Chapter15/ExerciseFiles_Ch15/Exercise/):

 YawningParrot.fla

 BandwidthTest_01.fla

 BandwidthTest_02.fla

 Trillium.fla

 TrilliumSmall.fla

 BeefcakeDistributed2.fla

 ParrotFW.gif

 GardenFinal.fla

 TinBangs.fla

The source files are available at www.friendsofED.com/download.html?isbn=1430229940.

Flash’s love-hate Internet relationship
Back in the early days of Flash, when we really didn’t know better, Flash designers would prepare these

really “cool” intros to the site, which played while the rest of the site loaded. The problem was they were

large; in many cases, the intro seemed to take almost as long to load as the site. The solution was the

infamous Skip Intro button, as shown in Figure 15-1. The intro would start playing, and after a couple

of seconds, the Skip Intro button would appear. The user would click it, only to discover the site hadn’t

quite loaded. Users were left to sit there, drumming their fingers on their desk. So, users began to see the

button not as a Skip Intro option but as a “skip site” warning. This resulted in Flash gaining a rather

nasty reputation for bloat, which it still has not shaken entirely.

Of course, the Flash community does have quite a sense of humor. One of the more

popular Flash sites of the time was named “Skip Intro.” You can watch it via

Archive.org’s Wayback Machine at http://web.archive.org/web/20011214005850/
http://www.skipintro.nl/skipintro/skipintro98.htm. When you launch the

site, make sure to click the phrase “Play Ball” (hip for “Enter this site”) to start the never-

ending Flash intro. Of course, some Flash people will take their sense of humor to

outrageous levels. One of the best was a site that really was nothing more than one

massive intro is www.zombo.com.

To deal with the bloat issue, it is critical that you understand the underlying technology behind your Flash

movie. This means we need to revisit what the Web really is so you can become familiar with many of the

terms commonly used in the Flash design and developer community.

www.zshareall.com

http://www.friendsofED.com/download.html?isbn=1430229940
http://web.archive.org/web/20011214005850
http://www.skipintro.nl/skipintro/skipintro98.htm
http://www.zombo.com
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

759

Figure 15-1. Welcome to “Skip Intro” hell.

This “Internet” thing

The Internet’s roots go back to the U.S. Department of Defense’s need to create a bulletproof means of

maintaining communications among computers. This involved such things as file transfers, messaging,

and so on. At the time, computers were a virtual Tower of Babel, which meant different computer types

and operating systems rarely, if ever, could talk to each other. As well, in battle conditions, the needed

system would have to carry on even if a piece of it was knocked out, and it had to be accessible to

everything from portable computers to the big, honking mainframes in “clean rooms” around the world.

The solution was an enabling technology called the Internet Protocol suite, though we know it by a far

sexier name: TCP/IP. This is how data moves from your computer to our computers, or from your web

server to our computers, and, as you may have guessed, the slash indicates that it comes in two parts:

 IP (Internet Protocol): How data gets from here to there by using an address called the IP

address. This address is a unique number used to identify any computer currently on the

Internet. This protocol creates little bundles of information, called packets, which can then be

shot out through the Internet to your computer. Obviously, the route is not a straight line. The

packets pass through special computers called routers, and their job is to point those packets to

your computer. Depending on the distance traveled, there could be any number of routers, which

check your packets and send them either directly to your computer or to the next router along the

line.

 TCP (Transmission Control Protocol): The technology that verifies all the data packets got to

your computer. The IP portion of the trip couldn’t care less if packet 10 arrives at your computer

before packet 1, or even that it got there at all. This is where TCP comes in. Its job is to ensure

that all of the packets get to where they are supposed to go.

Once all of this got the kinks worked out, the U.S. military had quite the communications system on its

hands.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

760

Enter the World Wide Web

Although straight data transmission was interesting, once the cool factor wore off, people started

wondering how it would be possible to use this communication network to access files containing images,

audio, and video. The solution was the World Wide Web—a network of networks, which is commonly seen

as web pages and hyperlinks.

A web page is a simple text file, which uses HTML—a formatting language of tags and text—to define how

a page should look and behave. This is important, because your Flash movies should always be found in

an HTML wrapper.

The concept of hyperlinks and hypertext was around long before the Internet. The

gentleman who managed the atomic bomb project for the United States during World

War II, Vannevar Bush, wrote an article for the Atlantic Monthly in July 1945 that

proposed a system of linking all information with all other information. The article was

entitled “As We May Think,” and you can still read it at www.theatlantic.com/
doc/194507/bush.

An HTML page may be nothing more than a text file, but it can contain links to other assets, such as CSS

files, JPEGs, GIFs, and your Flash movies. These links take the form of a Uniform Resource Locator

(URL) and specify the location of the assets requested by the HTML document. When Firefox, Internet

Explorer, or any other graphical browser translates the page, those addresses are used to load the

external assets and display them on your computer screen. Thus, the Web is really composed of two

parts: browsers that request files and servers that store files and make them available when a browser

asks for them.

As you can see, the infrastructure that moves your SWF files from a server to thousands of browsers is

already in place. Where your pain and heartache arise is from something called bandwidth.

Bandwidth

In the early days of Flash, around 1999, one of the authors read an article written by a New York Flash

designer, Hillman Curtis, and one phrase leaped out of the article and has been glued to the front of his

cerebral cortex ever since. What’s that phrase? “Keep an eye on the pipe.”

The “pipe” is bandwidth. Bandwidth is a measure of how much data will move along a given path at a

given time or how much information can be downloaded through a modem and how fast. One of the

authors, when speaking on this topic at conferences or in class, uses a rather amusing analogy that will

help you understand this topic. Imagine trying to push the amount of data contained in your favorite TV

show through a modem. When that modem is connected to a telephone line, the effort is no different from

“trying to push a watermelon through a worm.”

Bandwidth is measured in bits per second (bps), usually in the thousands (Kbps) or millions (Mbps). A bit

is either a one or a zero, so ultimately bandwidth is a measure of how many ones and zeros can be fed

through a modem each second. The higher the number, the greater the bandwidth, and the faster things

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.theatlantic.com
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

761

get from here to there. But bandwidth is not constant. It requires more bandwidth to move a video from

here to there than it does to transfer a page of text. The issue is not “here to there.” The issue is the

modem’s capacity to manage the data. This is the “pipe.” Users with 56Kbps dial-up modems have a pipe

that has the diameter of a garden hose. Users with cable modems have a pipe that has the diameter of a

fire hose. Connect the tiny garden hose to the fire hydrant in front of your house, and you will get a graphic

demonstration of data flow and the pipe when you turn on the hydrant.

As we pointed out earlier, the data packets sent to your computer get there eventually, and the route is

never a straight line. Over time, TCP/IP ensures that the transmission rate averages to a more or less

constant rate, but this is technology we’re dealing with here. It is the prudent Flash designer who

approaches technology with a dose of pragmatism and does not assume a constant flow. This has

implications for your design efforts, and we will get into those implications shortly.

You need to regard the pipe and data transmission in much the same manner you regard your local

highway. It may have six lanes for traffic and a posted speed limit of 60 mph (or 100 kph), but all of that

becomes irrelevant during rush hour. Traffic moves at the pace of the slowest car. It is no different with the

Internet. Servers can become overloaded.

A powerful example of this in recent history is the infamous event known as 9/11. On that day, the Internet

essentially ground to a halt as it seemed like every computer on the planet was attempting to get the latest

information on the tragedy. A more recent example is the day Michael Jackson died. The chart in Figure

15-2 from Google Trends shows Google Search traffic on that day. The sharp spike between 1 and 6 p.m.

follows the news from the first reports around 1 p.m. and the reaction to the formal announcement a

couple of hours later.

Figure 15-2. Google Search traffic when the world discovered Michael Jackson had died.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

762

What people overlooked on both days was that a server is only a computer, and it can only reply to a finite

number of requests at a set rate. If the browser can’t get the information, it will assume the assets are not

there. As a consequence, the requested page either will not be displayed or will be displayed with

information missing. It got so bad for CNN and the BBC on 9/11 that they were forced to post a message

that essentially told people “come back later.” Even the people lucky enough to make a connection

experienced pauses in the download and frequent disconnects, which are the hallmarks of an overloaded

server.

What you need to take away from these two stories is that the time it takes to download and play your

Flash movie is totally dependent on the contents of your Flash movie and traffic flow on the Internet. This

means you need to concentrate not only on what is in your movie but also on who wants to access it. This

is where you fall in love with the user and not the technology.

So, who are these folks we call users?

The Flash community is an oddball collection of people, ranging from those who ride skateboards for

entertainment to the classic nerd working in a corporate cubicle farm. This disparity, which actually is the

strength of the Flash community, has resulted in a bit of a split between those who use supercharged

pixel-spitting behemoths to develop their content and take a “Sucks to be you” attitude if you can’t revel in

their work and those who are corporate types and operate within strict standards set by their IT

department. This standard is usually in the form of the following commandment:

Thou shalt develop to a Flash Player 8 standard, and may whatever god you
worship have mercy upon your miserable soul if you step outside this stricture.

So, what do you really need to know before putting your work out there? Here are some general

guidelines:

 Small means fast. Studies show you have 15 seconds to hook the user. If nothing is happening or

is appealing to your users, they’re gone. Small SWFs mean fast download. The days of

introductory eye candy for your Flash movies are over. If the content they see within that 15-

second window is not relevant to the site or the experience, users leave.

 If a bleeding-edge Flash site isn’t viewable on a two-year-old computer with a standard operating

system and hardware, it’s time to go back to the drawing board.

 For a commercial site, you may have to go back three years. Corporations are relatively slow to

upgrade hardware because of the significant cost to do so. Old hardware means slower

computers.

 If your target audience is urban and in a developed country, assume they have, at minimum, a

cable connection.

 If your audience is the world, develop to the lowest common denominator, which is a dial-up

modem.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

763

Now that we have provided some background, let’s look at how your Flash file actually gets from here to

there.

Streaming
As you have discovered by this point in the book, simply tossing a bunch of audio, images, and video into

your movie is not a good thing. They take an inordinate amount of time to download. In fact, toss all of that

content into frame 1, and you can kiss your 15-second window of opportunity good-bye.

In the previous chapter, we looked at ways to prevent bulking up frame 1—by preloading the SWF itself

and by externalizing assets and loading them at runtime. In this chapter, you’ll learn how to optimize the

rest of your timeline to help balance out and redistribute the load of a SWF’s assets. Your goal will be to

facilitate Flash Player’s natural tendency to stream.

Please understand that streaming doesn’t make things faster. What it does is give you the opportunity to

intelligently organize the timeline so the movie starts playing in very short order. Used wisely, streaming

can ensure that everything in the Flash movie is downloaded before it is needed. The result is a Flash

movie that seems to start playing almost immediately and moves “as smooth as the hair on a frog’s back.”

So, what happens when a web page requests your movie? Two things are sent to the browser:

 The movie’s timeline, including ActionScript and the stuff that is not in the Library, such as text

and shapes that haven’t been converted to symbols

 The Library, including audio, video, images, and symbols

When your Flash movie is shot through the Internet to the user’s browser, the movie is received in frame-

by-frame order. If the movie is split into scenes (a relatively rare practice today), the scenes will be sent in

the order they appear in the Scenes panel, which is effectively in sequential order of the main timeline.

The Library is also sent, but the Library items are not received in the order they appear in the

Library panel. They are received in the sequence in which they appear on the timeline. To reinforce

what we have just said, let’s take a look at a typical file.

Open the YawningParrot.fla file in the Exercise folder for this chapter. As shown in Figure 15-3, the

timeline is linear, but there are a lot of layers. Your first reaction might be, “Man, that is going to take a

while to load.” But that’s not really the case.

Open the Library panel. You’ll notice there is a lot less content in the panel than in the timeline layers—

only 13 assets versus 22 layers. This is because the symbols in the Library are reused and repurposed.

The “finger feathers,” for example, all use the same feather asset. All six claws use the same toe

symbol; they’re just arranged differently (horizontal flips and tints, all performed on the stage). As we have

said repeatedly throughout this book, Flash lives in a world of small, and using one symbol instead of six

reduces the final size of the SWF. If you create advertising banners, for example, your “Small World” might

just have a size of 30KB for the SWF. In that case, reusing content is critical.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

764

Figure 15-3. Streaming plays a movie in frame order and loads Library content in the order in which it

appears on the timeline.

When this particular movie loads, because of how the parrot is constructed, all of its parts are loaded in

frame 1 and composed of all the objects in the Library. These Library objects are purposely designed

to be lightweight. They’re vector shapes with few anchor points, which means they equate to a relatively

small file size. As a result, little bandwidth is required to load them and get the movie playing.

To make sense of how this movie streams, consider adding an imaginary extra playhead to the timeline

When the movie starts. Both playheads are in frame 1, but only one of them starts moving. That’s the

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

765

imaginary one. Let’s call it the streamhead (just a made-up name), which advances ahead of the actual

playhead. The streamhead’s position on the timeline indicates how much of the movie has been

downloaded. In contrast, the playhead indicates which frame is currently displayed on the stage. It should

make sense that the playhead can never get ahead of the streamhead. That would be like writing a check

for more money than you have in your account.

Now let’s assume that you toss in a movie clip, containing a three-second FLV file embedded in the

symbol’s timeline, and this movie clip is added to frame 10. The odds are really good that the streamhead

will stay put on frame 10 for a few seconds, while that frame’s movie clip (complete with its video) loads.

The playhead will catch up pretty quickly, especially with a default 24 fps frame rate. Until the embedded

FLV loads, the playhead has no choice but to stay put. Essentially, the whole movie stops dead at frame

10, until the streamhead restarts its journey along the timeline.

To avoid this nastiness, you’ll want to use a strategy called a streaming buffer. This could be in the form

of a preloader or any other technique that keeps the playhead in place (in an interesting way) or smoothes

out its path in order to let the streamhead do its job and load content.

In case you’re having difficulty visualizing two heads on the timeline, Flash has a tool that lets you see how

these two heads work and how the pipe can affect the delivery of your Flash movie to the browser. What is

this tool? It’s called the Bandwidth Profiler.

The Bandwidth Profiler
In many respects, the Bandwidth Profiler is similar to what you see in Device Central when you test a

mobile movie. In Device Central, the movie opens in a mock device that emulates the performance of your

movie in the chosen device. Likewise, the Bandwidth Profiler emulates how your movie will behave when it

downloads from a remote server. Though the Bandwidth Profiler is an extremely useful tool, keep in mind

that it is nothing more than an emulator. It won’t mimic the real-life ebb and flow of network traffic, and it

assumes a constant transfer rate into the browser. That noted, the Bandwidth Profiler can give you a good

idea of where streaming bottlenecks are likely to occur. This can be an invaluable aid in relieving the “data

jam” and solving a problem before it becomes a major one.

Simulating a download

Let’s see how the Bandwidth Profiler works:

1. Open the BandwidthTest_01.fla file in the Chapter 15 Exercise folder. You will see that we

have placed an audio file on the timeline, embedded an FLV into a movie clip, and placed the

movie clip in frame 1. Scrub over to frame 2, and you will see that we have added some text to

the stage. If you open the Library, you will see the text is actually a graphic symbol. Just by

looking at the timeline, you can see that the movie clip with the FLV and the audio file will be the

first pieces of content to load, and then the text will load.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

766

2. Test the movie. When the SWF opens, select View ➤ Bandwidth Profiler from the SWF’s

File menu. A graph appears above the movie, as shown in Figure 15-4.

Figure 15-4. The Bandwidth Profiler

There are two main parts to the profiler. The first part is made up of three headings: Movie, Settings,

and State. The second part is a frame-by-frame representation of the data downloading into each frame.

Notice the spike in frame 1. This is understandable, because the audio file and the FLV need to load in this

frame. The trouble is that this spike happens right at the beginning of the movie.

Under the Settings heading on the left, take a look at the Bandwidth entry: 4800 B/s (400 B/fr).

Now look at the bottommost line on the right side. That red line is the bandwidth limit and represents the

maximum throughput the selected modem emulation can handle. Notice that it matches the Bandwidth

value on the left. Bars under the line are handled quickly. Bars that rise above the line indicate potential

bottlenecks. The sooner you can stuff under that red line, the faster the movie will load and play.

3. Select View ➤ Download Settings. The drop-down menu you see allows you to choose from

among various modem speeds, as shown in Figure 15-5.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

767

Figure 15-5. You can change the emulated modem speed.

4. Select the DSL (32.6 KB/s) choice from the drop-down menu, and scroll back to the start of

the movie. You will notice the bandwidth limit has increased from 400 bytes to 2.78KB, and the

markings on the graph have changed to reflect your selection.

You are most likely looking at that spike in the first frame and thinking, “Yeah, so? What’s the deal?”

Rather than having us explain it, we are going to let you experience it.

5. Change back to the 56Kbps modem choice, and this time select View ➤ Simulate Download.

Let us guess. You sat around for about 20 seconds waiting for the movie to start? What you have just

experienced is the other, and most important, half of the Bandwidth Profiler. You just sat through what a

person with a 56Kbps modem will experience—under ideal circumstances. Let’s take a minute and talk

about this.

When you selected Simulate Download, you essentially re-created how the movie will load into a

56Kbps modem. The other thing that happened is the profiler developed a green bar at the top of the

graph, as shown in Figure 15-6, which held steady until the movie started to play.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

768

Figure 15-6. You can experience the user’s issue with the movie’s first frame by simulating the download.

The green bar is important. It’s the imaginary streamhead we mentioned earlier. You are seeing what

happens when the playhead catches up to the streamhead. If you wait long enough, the streamhead will

suddenly rocket off to the right, and the playhead will follow behind, sticking to a rate no faster than the

frame rate specified in the FLA (which happens to be 12 fps for this file). You can scrub that playhead, by

the way. Drag it around as you would in the Timeline panel to view content on any of the frames.

On the left side of the Bandwidth Profiler, under the Movie heading, you’ll see a value called Preload,

which in this example is 537 fr or 44.8 s. When you started emulating the movie, the Settings area

became active (to see this, you may need to increase the size of the Bandwidth Profiler window by

dragging the bottom edge down). The Preload value tells you it will take about 45 seconds to load in all

of the content in the first frame.

Change the Download Settings to DSL, and select Simulate Download.

You should find that you still had a short delay, but there was a marked decrease in how long you had to

wait. The Preload setting should show you 76 fr (6.3 s). That’s dramatically less than the almost

45 seconds you had to wait using a 56Kbps modem.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

769

If you want to emulate a modem not represented in the list, choose Customize, which opens the Custom

Download Settings dialog box, as shown in Figure 15-7. You can edit any of the existing entries, three

of which are set aside for custom values. To return to the original values at any time, click the Reset

button.

Figure 15-7. The Custom Download Settings dialog box lets you tailor your emulated modems.

As you can see, the Bandwidth Profiler is a rather powerful tool that you need to master. With it, you can

tailor your movie to the bandwidth constraints of your user and ensure that you meet that 15-second

window of opportunity that will open to you.

Pinpointing problem content

With the Download Settings option, not only do you get to see how bandwidth will affect your movie,

but you also get to actually experience it, which isn’t always fun. At this point, you may be thinking, “Shoot,

I can cut back the preload value by using ActionScript to play the sound!” Doing that means the sound can

be removed from the SWF altogether. Let’s see if it works.

Open the BandwidthTest_02.fla file in this chapter’s Exercise folder. Open the Library, and you will

see the sound file is absent. Open the code in frame 3 of the Actions layer, and you will see we have

added the ActionScript necessary to load to the sound from an external MP3.

Test the movie, and select Simulate Download. The graph has significantly changed, as shown in

Figure 15-8. The overall size of the SWF has gone from 210KB—see the Size value in the Movie

heading—down to 96KB, Yet the spike in frame 1 hasn’t changed much at all, and the same nearly

20-second delay is still there. What gives?

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

770

Figure 15-8. Use the Bandwidth Profiler to identify the content causing the delay.

Part of the answer is that the audio, previously attached to the timeline, had its Sync property set to

Stream. Remember that the Stream setting keeps the audio from having to load all at once, as it does

with, say, the Event setting. Because the audio’s file size was spread out, only 1/300 of its weight

appeared in frame 1 (because the timeline is roughly 300 frames long). This tells you the issue really isn’t

the sound in this case but rather the FLV embedded into the movie clip.

You have just discovered another use for the Bandwidth Profiler. Not only can it show you where the

problem is, but it can even be used to isolate the content causing the delay.

How would we fix this? First off, bear in mind there will always be a spike in frame 1 of

any movie you create. The goal is to get that spike to do the limbo—to get it as close to

the red line as possible, if not below it. For this example, one approach would be to

reduce the time of the curtain’s effect from its current 46 frames seconds to 23 frames in

the background movie clip. Do this, and the preload time drops to 1.2 seconds.

Another approach would be to use a percentage-based preloader like the one

demonstrated in Chapter 14.

Can I get that in writing?

The Bandwidth Profiler’s right graph gives you a quick bird’s-eye view of your worst bandwidth offenders. If

you want to dial in to the exact numbers, drag the playhead to any of your graph spikes and keep an eye

on the State heading on the left side. The Frame value of that heading tells you which frame you’re on

and exactly how many bytes that frame contains.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

771

If you really want to crunch the numbers, Flash will even create a log file for you. Head over to File ➤

Publish Settings ➤ Flash and select the Generate size report check box. When you next test

your movie, look in the Output panel. You’ll see a detailed analysis of the timeline, with columns for

Frame #, Frame Bytes (per-frame bytes), Total Bytes (cumulative total), and more, including

itemized byte weights at the bottom for fonts, shapes, and symbols. This report is also saved as a simple

text file in the same folder as the FLA. In the case of BandwidthTest_02.fla, the report’s name is

BandwidthTest_02 Report.txt.

There is a new feature of Flash CS5 that is also an invaluable aid to tracking problematic content. At the

bottom of the Properties panel is an area named SWF History. Every time you test the movie, this

area will list the size of the SWF and the data and time that it was tested. If there is a large spike in the

SWF, there will be an alert icon beside the entry.

Now that you know what the spikes mean, your goals are to minimize them when you can and to distribute

their weight when possible. The next section tells you how.

Optimizing and fine-tuning your Flash movies
As you saw in the previous example, a simple thing like reducing the number of frames in an FLV can

have a dramatic impact on how the movie loads. In this section, we’ll outline a few tips, tricks, and

techniques you can use to make your Flash movies leaner, meaner, and faster.

Surprisingly, the first mistake most people make often happens before a single pixel is lit up. That mistake

is to not plan the movie.

Planning your project

That old adage “Plan your work and work your plan” is especially true when working with Flash. You can’t

make it up as you go along. You need to take the time before you start to think about what the user sees,

and in what order, before you starting firing content into the Library and then onto the stage. For

example, a video site that lets the user choose from a number of videos would probably involve the

following:

 Preloader

 Intro screen

 Main movie screen where the videos are chosen and viewed

 A set of links to other video sites you may have created

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

772

This means when users arrive at the site, they would usually proceed as follows:

1. See the preloader for a few seconds and then be taken to the Intro frame.

2. From there, choose to read the information and then move to the video picker screen by clicking

a button. The video frame would load.

3. Click a series of buttons to view the videos associated with the buttons.

4. Choose to return to the Intro screen or go to a frame that contains a series of interactive links.

That is a simple example. Think about the process David Hogue and his team went through when planning

the financial application presented in the “Fireworks + Flash: Rapid Prototyping for Rich Internet

Applications” section. Now that you have an idea of what will happen, you might even want to put together

a small flowchart that shows the purpose of each frame in the movie, as shown in Figure 15-9. Having one

of these charts handy allows you to see how the user will move around the movie and provides a broad

view of the content of each frame.

Figure 15-9. Map out your plan.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

773

In fact, if you have arrived at Flash CS5 through the Adobe Web Premium Bundle, you have an ideal tool for

this process at your disposal. Fireworks CS5 has been repositioned as a rapid prototyping tool. If you open

that application and select Window ➤ Common Library, you will see bunch of folders that contain symbols

for a variety of rapid prototyping tasks. The Web & Application symbols, shown in Figure 15-10, are ideal

for planning a Flash or HTML project.

Figure 15-10. Use Fireworks CS5 as a planning aid.

By writing out what each frame does, you are ordering the content on the timeline. By “falling in love with

the user” and streaming the content into the movie in that order, your site will meet the needs of your

users. If you haphazardly place the content on the timeline, you have no way of ensuring it will load in any

meaningful manner. The result is a site that must download in its entirety before the user can interact with

it smoothly. If that happens, your users will leave…in a hurry.

Though many sites go the haphazard route, it is not considered a best practice within the Flash design

community. Instead, you’ll want to be mindful of balance.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

774

FIREWORKS + FLASH: RAPID PROTOTYPING FOR RICH INTERNET APPLICATIONS

By David M. Hogue

Crafting effective and engaging customer experiences is an iterative process. Concepts are refined,
designs are created, and prototypes are tested. The information gathered from observing and speaking
with actual customers and site visitors guides improvements made in each iteration. However, time to
market is critical in the competitive world of web applications, and new ideas need to be tested, refined,
and launched on a regular basis in order to keep customers engaged and to meet their needs.

Continuous design and development cycles require efficient processes and the ability to create designs
and prototypes quickly. At Fluid, we use Adobe Fireworks, Flash, and Dreamweaver to move from
concept to design to prototype and to rapidly update prototypes based on observations, feedback, and
test results.

Begin the design process with Adobe Fireworks to capture ideas and concepts in sketches and
wireframes.

When the core features have been defined, create higher fidelity storyboards in Adobe Fireworks to
represent the steps and states of complex interactions.

Use the project team to test the flow through the application with simple click-throughs generated by
Adobe Fireworks. After the application flow has been reviewed and improved, refine the appearance of
the wireframes and storyboards using Adobe Fireworks to create the assets necessary to build a
prototype with Adobe Flash and Dreamweaver.

Build a prototype web page and an application frame with Adobe Dreamweaver, and use Adobe Flash to
assemble the graphics into screens and to add the functionality of the application (e.g., editable data
grids, interactive charts, and form fields.) Transitions (e.g., fade and slide) and some effects (e.g., glow
and shape changes) are added programmatically in Adobe Flash.

Prototypes often use locally simulated data and are not actually connected to a server-based data
source. During testing the design team observes the flow and performance of the application. Although
design and interaction improvements are made in the iterations after testing, sometimes opportunities or
needs arise during a testing session to modify a prototype. For example, ambiguous labels can be
clarified, subtle visual effects can be modified, and buttons can be moved, added, or deleted. The
original graphics can be quickly edited in Adobe Fireworks and re-imported into Adobe Flash, and some
functionality and behavior can be quickly modified in Adobe Flash. It is possible to modify a prototype
during a testing session and have an updated prototype exported and available by the time the next test
participant arrives for their session.

Figure 15-11 shows a financial application prototyped in Fireworks and assembled in Flash.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

775

Figure 15-11. Financial application prototyped in Fireworks and assembled in Flash

David M. Hogue, PhD

Dave is the Director of Information Design & Usability at Fluid (www.fluid.com), a digital design and
development firm in San Francisco specializing in e-commerce websites and RIAs. He uses his training
in applied psychology and cognitive science to study how people learn and work in the digital world and
develops workflow models and user interfaces that meet their needs and expectations effectively and
efficiently. Dave has worked on projects for a diverse range of clients including Wells Fargo, Charles
Schwab, Warner Bros., The North Face, Reebok, and Timberland. He also teaches information and
interaction design classes in the Multimedia Studies Program at San Francisco State University and is a
co-manager of Fire On The Bay (www.fireonthebay.org), an Adobe Users Group for Fireworks.

www.zshareall.com

http://www.fluid.com
http://www.fireonthebay.org
http://www.zshareall.com

CHAPTER 15

776

Distributing the weight

It isn’t always possible to eliminate your bandwidth spikes, even when planning ahead, but you can usually

spread out the assets that cause them. If you’ve ever witnessed the sport known as curling—something

like shuffleboard but on ice (celebrated in Canada)—then you’ve seen how the team members clear the

way. They run ahead of the traveling stone as it glides across the curling sheet, feverishly sweeping the

ice a few feet ahead, minimizing irregularities in the path. That’s sort of what you can do with the main

timeline.

Usually, it means making a few test runs with the Bandwidth Profiler to see where your culprits are. You

might, for example, have a dozen symbols make their first appearance in frame 300, suddenly giving that

frame a spike. Meanwhile, the previous 100 frames might be very lean in terms of bytes per frame. To

diminish streamhead blockage on frame 300, you could place copies of those dozen symbols in earlier

frames, just off the stage (on the pasteboard). Simply drag out another instance of each symbol as

needed.

For example, let’s say you’re aiming for 56Kbps modems. That means your bandwidth limit, as indicated

by the Bandwidth Profiler’s red horizontal line, is set to 200 bytes per frame. You essentially have a budget

of 200 bytes to spend per frame. To minimize the spike in frame 300, you could drag a couple 100-byte

symbols from the Library and place them on frame 200. Drag a handful of 30-byte symbols to frame

220, another 180-byte symbol to frame 240, and so on. Make sure to position these symbols off the stage

or use the Properties panel to set their Alpha property to 0%. Arranged like this, each symbol makes its

presence known before it is actually seen. By the time the streamhead hits frame 300, each of those

symbols has already loaded, and the streamhead breezes right on by—the ice is smooth—clearing the

path for the playhead.

How can you tell how much each symbol weighs? Unfortunately, the Library panel doesn’t tell you,

outside of the Bitmap Properties dialog box for imported graphics files. You’ll need to do your best to

distribute weight based on common sense and some trial and error with the Bandwidth Profiler. The extent

to which you rearrange things depends on deadlines, budget, and your own personal predilection for anal-

retentiveness. Just be aware of this strategy, because it really can make a difference.

Many Flash artists get their start creating banner ads. Depending on where they will appear, the average

SWF size is somewhere between 30KB and 50KB. Add in the fact they have to play as soon as they hit

the browser, weight distribution becomes a key skill to learn.

Sometimes your assets aren’t so easy to redistribute. Consider an imported image. In cases like that, you’ll

need to get creative. To see what we mean, open the Trillium.fla file from the Exercise folder for this

chapter. Test the movie and take a look at the Bandwidth Profiler. As Figure 15-12 shows, there’s a

massive spike at frame 50, right where the trillium photo appears. Any content after that frame will be

delayed until that 2200KB has loaded. A possible solution is a preloader, displaying percent loaded of the

SWF itself or percent loaded of the image as an external JPEG.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

777

Figure 15-12. There’s a bandwidth bottleneck in frame 50.

If you look at the stage your first reaction is, “But …but… the image and the stage are really small. They

are both 500 by 300!” To which we reply, “Oh really?” If you select the image in the Library and open its

Properties panel, you will discover the image is actually 3872 pixels wide by 2592 high and weighs in at

a hefty 2.2MB. The image you are looking at has been scaled, and the stage has been scaled to the

dimensions of the scaled image. That spike is solely because of the image in the Library and should tell

you that images really should be scaled to the dimensions needed before they hit the Flash Library.

Open the TrilliumSmall.fla to see what happens when images are scaled outside of Flash. If you test

the movie, you will see that not only has the spike disappeared but it has actually sunk below the red line

(Figure 15-13). This happens because, if you open the image’s properties in the Library, you will see

that it has sunk in size to just a hair above 60KB when Flash applies JPEG compression.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

778

Figure 15-13. Sometimes the best solution is the most obvious.

Optimizing elements in the movie

Every chapter in this book has directly or indirectly made it clear that Flash loves “small.” After your

experiences with the Bandwidth Profiler, we think you now understand why we are so adamant on this

point. Small files mean fast loads. A fast load means short wait time. A short wait time means happy users.

In various chapters, we have shown you several methods of keeping things small when it comes to

images, sounds, fonts, and video. What about vectors?

We know Flash and vectors are bosom buddies. The thing about vectors is that they can be both small

and large at the same time. Huh? Every time Flash encounters a vector point, it must load it into memory

in order to draw the shape. If you create a vector with a large number of vector points, you may have a

small file on your hands, but you have also increased the demand on memory to redraw the image, as you

encountered with the American flag exercise in Chapter 9. The result is the inevitable spike in the

Bandwidth Profiler. Here’s one way of addressing this issue:

1. Create a new Flash document. Add three more keyframes to layer 1 in the Timeline panel. You

now have four keyframes on the timeline.

2. Select the Pencil tool, and in frame 1, draw a curvy shape, like the one in Figure 15-14.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

779

Figure 15-14. We start by drawing a shape containing a lot of vector points.

3. Copy your shape to the clipboard. Select each of the remaining three key frames in layer 1, and

select Edit ➤ Paste in Place.

4. Select the shape in frame 2, and select Modify ➤ Shape ➤ Advanced Smooth. The new

Advanced Smooth dialog box, shown in Figure 15-15, opens, and not a lot seems to happen.

Make sure the Preview check box is selected, set the Smoothing strength to 100, and

scrub across the Smooth angle below hot text. Note the changes to the object when you

change the value to one greater than 90 degrees.

Figure 15-15. The new Advanced Smooth dialog box

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

780

5. Select the shape in frame 3, and select Modify ➤ Shape ➤ Advanced Straighten to open

the Advanced Straighten dialog box. Scrub across the Straighten strength hot text,

and the curves will start to come to attention as you increase the value.

6. Select the shape in frame 4, and select Modify ➤ Shape ➤ Optimize. This time, you are

presented with the Optimize Curves dialog box.

Select Show totals message and Preview. Move the slider all the way to the top, and click

OK. The dialog box will close and be replaced by an alert box, telling you how many curves were

found, how many were optimized, and the size of the reduction as a result of the optimization

(see Figure 15-16).

Figure 15-16. Using shape optimization

7. Test the movie. The graph shows you the file size of the content in each frame and the effect that

modifying the shape has in each frame. As you can see in Figure 15-17, the results are quite

dramatic.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

781

Figure 15-17. Smoothing, straightening, and optimizing curves can have a profound effect on download

times.

You are most likely looking at the graph and thinking, “Wow, I am going to start optimizing all of my vector

shapes!” Not so fast. Each of the three methods presented did a good thing and a bad thing. They did

indeed reduce the bandwidth load. However, they also introduced distortions into the image. If you are

happy with the distortions, fine. If you aren’t, then you might want to consider doing the optimization

manually, by selecting the shape with the Subselection tool and manipulating the shape and the points.

So, why was there such a drop in the graph between the object in frame 1 and its counterpart in frame 4?

Remember that vector nodes require bandwidth. You removed a few of them using the Optimize

Curves dialog box, which accounts for the drop in required bandwidth.

If you import vector artwork from outside sources, such as Illustrator files, you may find shape optimization

quite challenging. Obviously, it depends on the intricacy of the artwork, but industrial-strength tools like

Illustrator CS5 naturally have more complex features than the drawing tools provided by Flash. When

Flash imports vectors from other tools, it does its best to “translate” those anchor points into the “language”

it uses internally.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

782

This can lead to some rather interesting missteps between Illustrator CS5 and Flash CS5. You can see

this in Figure 15-18. The image on the left is the image, on the Illustrator CS5 page, as it was drawn in

Illustrator CS5 using the Extrude filter and a couple of effects to create the splatter. The whole thing is

vectors. The image on the right is the same image on the Flash stage. The top version is the result of

importing the AI file into Flash. The bottom version is one saved in Illustrator as an FXG image. The

difference is, when the FXG file was created, Illustrator rasterized the extrusion, which sort of defeats the

purpose. Your “take away” from this is that all vectors are not equal, and, in certain instances, something

could become “lost in translation.”

Figure 15-18. Just because Illustrator CS5 draws vectors, don’t get lulled into complacency.

Just be mindful of the pipe. If elaborate vector artwork seems to weigh more than you would expect,

consider exporting it from the original application as a bitmap or FXG file and compare file sizes. If you

don’t have the original application, import the artwork into Flash, situate it on the timeline of a temporary

stand-in FLA, and then use File ➤ Export ➤ Export Image to select a suitable raster format.

Aren’t vectors supposed to be smaller? Generally speaking, yes. But every rule has its exception, and it

goes both ways. Giulia Balladore (www.juniatwork.com), a self-taught artist featured on

www.FlashGoddess.com, produces jaw-droppingly beautiful artwork directly in Flash. Her vector drawings

rival the sort of detail that normally requires a camera and meticulous studio lighting. And yet, because she

works in Flash and optimizes her vectors, images like “Sole” (see Figure 15-19) can be resized in the

browser without ever getting pixelated. And the depicted SWF weighs a minuscule 23KB!

www.zshareall.com

http://www.juniatwork.com
http://www.FlashGoddess.com
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

783

Figure 15-19. Yes, this image was drawn entirely with Flash’s drawing tools, by Giulia Balladore

(www.juniatwork.com/).

Publishing and web formats
Tattoo this to the inside of your left eyelid: The SWF isn’t a web document.

Nothing drives us crazier than someone telling us, “Dudes, check out my Flash site,” only to have that

individual double-click a SWF on his computer’s desktop. Flash SWFs should appear on the Web only if

they are embedded into an HTML page. Why? Because you can use the HTML to control aspects of the

SWF—scaling, context menu items, and more—that you can’t do without the HTML wrapper. Thus, a

“Flash site,” to be precise, is composed of an HTML page that points to the SWF, along with any media—

audio, video, images, text—that the SWF may need from external sources.

Creating the SWF is a bit more complicated than selecting File ➤ Publish Preview and merrily

clicking away in the Publish panel. As we pointed out in the previous chapter, you need a solid

grounding in what’s under the hood before you create the car.

Again, as we have been saying since the first page of this book: keep it small! This is the reason for

Flash’s broad acceptance on the Web and where an understanding of the publishing process is invaluable.

Up to this point, we have essentially created a bunch of FLA files and asked you to test them. The time

has arrived to get off the test track and put the vehicle on the street.

When you publish your movie, Flash compresses the file, removes the redundant information in the FLA,

and what you are left with—especially if you’ve been taking this chapter to heart—is one sleek, mean web

presentation. The default output file format—yes, there is more than one—is the SWF. The SWF is

wrapped in HTML through the use of <object> and/or <embed> tags, plus extra information about how the

browser should play the SWF.

www.zshareall.com

http://www.juniatwork.com
http://www.zshareall.com

CHAPTER 15

784

Yes, you can link directly to a SWF without that bothersome HTML. Just be aware that

the SWF will expand to the full size of the browser window, meaning all of the content on

the stage will also enlarge. In many respects, linking directly to the SWF is rookie error

number one.

Before we move into actually publishing a movie, let’s look at some of the more common file types used on

the Web, listed here:

 Flash (.swf)

 HTML (.htm or .html)

 Images (.gif, .jpg, and .png)

 QuickTime (.mov)

Flash

Before there was Flash, there was Director. Though used primarily for interactive CDs, DVDs, and kiosks,

it was at one time the main instrument employed to get animations to play on the Web. The technology

developed by Macromedia to accomplish this was named Shockwave, and the file extension used was

.dcr. Flash also made use of this technology, and in order to differentiate between them, it became known

as Shockwave for Flash and used the .swf file extension. Flash Player is the technology that allows the

SWF to play through a user’s browser. Through a series of clever moves, Flash Player has become

ubiquitous on the Web. In fact, Adobe can rightfully claim that Flash Player, regardless of version, can be

found on 98 percent of all Internet-enabled computers on the planet. This means, in theory, that you can

assume your movies are readily available to anyone who wants to watch them. But the reality gets a bit

more complicated.

For you trivia buffs, the first couple of iterations of Shockwave for Director used a small

application named Afterburner to create the DCR files. When Director developers

prepared a presentation for the Web, they didn’t just create the DCR; the movie was

“shocked.” One of the authors happened to be around on the night Macromedia quietly

released Shockwave and Afterburner to the Director community. He still remembers the

excitement generated by members of the group as they posted circles that moved

across the page, and he remembers the “oohs” and “ahs” that followed as the circles

moved up and down.

Each new Flash Player version brings with it new functionality. Flash Player 8 introduced filter and blend

effects, which can’t be displayed in Flash Player 7. FLV video can’t be played in Flash Player 5. Any movie

you prepare using ActionScript 3.0 can be played only in Flash Player 9 or newer. Flash Player 9,0,115,0

was the first to display HD video content. The current version, 10.1, moves Flash onto practically any

device, including smartphones, home television systems, and game systems found on the planet. Though

you may initially think the Flash Player version is a nonissue, you would be making a gross miscalculation.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

785

Corporations, through their IT departments, have strict policies regarding the addition or installation of

software to corporate-owned computers. We personally know of one organization that isn’t budging, and

its Flash Player policy is Flash Player 6 or lower to this day. Shrewd Flash designers actually ask potential

clients which versions of Flash Player are to be targeted for the project. The last thing you need is to find

yourself rewriting every line of code and reworking the project, because you assumed the target was Flash

Player 9, but corporate policy dictates Flash Player 7 or older.

Flash Player 10 follows a tradition that each successive version of Flash Player will play

content faster than its predecessors. When Flash Player 9 was released, Adobe claimed

it provided a 75 percent speed increase over Flash Player 8, which was partly because

of the support for ActionScript 3.0 introduced in Flash Player 9. This sort of increase is

usually enough for most users to install the new version. Even so, in many instances,

actually downloading and installing the plug-in is becoming a thing of the past. Flash

Player has the ability to download and install in the background, but, as one of the

authors is quick to point out: “It takes a programmer to make it work.”

HTML

HTML is short for Hypertext Markup Language. Where HTML and ActionScript part company is that HTML

is a formatting language, whereas ActionScript is a scripting language. This means HTML is composed of

a set of specific instructions that tell the browser where content is placed on a web page and what it looks

like. ActionScript has nothing to do with the browser. It tells Flash how the movie is to perform.

The HTML instructions, or tags, are both its strength and its weakness. HTML was originally developed to

allow the presentation of text and simple graphics. As the Web matured, HTML found itself hard-pressed

to stay current with a community that was becoming bored with static content on pages. The emerging

version of HTML, HTML 5.0, deals with this in a rather fascinating manner, but it is still in its infancy, and

we don’t see it gaining broad adoption for a few more years.

The real problems with HTML start when you try to drop multimedia or interactive media into a web page.

HTML simply wasn’t designed for this sort of heavy lifting, which explains why JavaScript (a language that

shares roots with ActionScript) is now so widely used.

For a Flash designer, knowledge of how HTML works is critical, because it is an enabling technology: it

enables your movies to be played on the Web. Of course, this isn’t as difficult as it once was. Today,

through the use of Dreamweaver CS5 and even Flash, creating the HTML involves nothing more than a

couple of mouse clicks. You will still need to play with the HTML—you saw this in Chapter 10 when you

had to dig into the JavaScript code to enable full-screen playback of a Flash video—because your HTML

document can do things that Flash can’t. This would include such features as alt attributes for screen

readers and keywords used to attract search engines.

The other thing to stick in the back of your mind is that Flash-only web pages aren’t as common as they

once were. Web pages consisting solely of one SWF are still around, but Flash is also becoming a

medium of choice for the delivery of banner ads, videos, and other interactive content that are elements of

an HTML web page. To see an example of this, you need look no further than our beloved publisher. If you

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

786

hit the friends of ED home page at www.friendsofed.com, you will see a Flash banner at the top of the

home page (see Figure 15-20), while the rest of the page is composed of HTML.

Figure 15-20. A typical Flash/HTML hybrid page

Animated GIFs

Before there was Shockwave, there was the infamous animated GIF file. These files were the original web

animations, and you still can export your Flash movie as an animated GIF. Why would you want to do this

if Flash Player is so ubiquitous? Because users don’t need to install the Flash plug-in to view them. In fact,

it is a two-way street: you can import a GIF animation into a Flash movie, and you can export a Flash

movie as an animated GIF. In fact, it is not uncommon to encounter situations where the client wants both

the SWF and a backup GIF animation.

www.zshareall.com

http://www.friendsofed.com
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

787

Exporting as an animated GIF

Let’s reuse our now-familiar parrot to see how animated GIF exporting works:

1. Open the YawningParrot.fla file in this chapter’s Exercise folder. This is the file to be

exported as an animated GIF. Flash will convert each frame of the movie to a GIF image. There

are 355 frames in this animation, meaning you should prepare yourself to create 355 separate

GIF images.

OK, web-heads, settle down. Creating an animated GIF consisting of 355 frames is, as

our editor Ben Renow-Clarke would say, “Simply not done, old chap.” We know that, but

if you understand what happens—in a big way—you’ll be more cautious in your efforts.

Anyway, the parrot is pretty cool and makes for a rather interesting workout for

Fireworks CS5.

2. Select File ➤ Export ➤ Export Movie (press Ctrl+Alt+Shift+S on Windows or

Cmd+Option+Shift+S on a Mac) to open the Export Movie dialog box (see Figure 15-21).

Navigate to the Parrot folder in the Chapter 15 Exercise folder, and select GIF Sequence in

the Format drop-down menu. Then click Save.

Figure 15-21. Select GIF Sequence as the export format.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

788

3. In the Export GIF dialog box, specify these settings (see Figure 15-22):

 Dimensions: 570 550 pixels

 Colors: 256

 Smooth: Selected

Figure 15-22. Preparing to export the Flash timeline as a GIF animation

You may notice that when you change the dimension settings, there is a corresponding reduction in the

Resolution value. If you click the Match Screen button, you will be returned to the original settings for

this image. The physical reduction of each frame and its corresponding reduction in resolution have the net

effect of creating a rather small GIF image. In this case, you need to just ignore size. That can be dealt

with in Fireworks CS5.

4. Click the OK button. A progress bar will appear, showing you the progress of the export. This is a

fairly quick process and should take only a few seconds. When it finishes, the progress bar will

disappear, and you will be returned to the Flash stage.

At this point, you are now the proud owner of the 355 GIF images that will be used to create the animation.

We aren’t going to get into the nitty-gritty of creating the GIF animation in Fireworks CS5. The process is

fairly simple, and the next steps give you the general idea.

5. Launch Fireworks CS5, and then select File ➤ Batch Process. Navigate to the folder

containing the GIF images and import all of them.

6. Scale the images to a size of 113 109, and save the scaled images to a new folder.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

789

7. Still in Fireworks CS5, click the Open button on the Welcome screen, and navigate to the folder

containing your GIF images. Select all of them in the Open dialog box, and select Open as

animation, as shown in Figure 15-23. Then click the Open button.

8. When the animation appears on the Fireworks CS5 canvas, test it by clicking the Play button in

the bottom-right corner of the canvas.

Fireworks will create the animated GIF by putting each image in a frame. You can then do what you need

to do and export the file from Fireworks CS4 as an animated GIF.

Figure 15-23. Importing the GIF files into Fireworks. The key is to select Open as Animation.

Only the main timeline is considered when Flash content is converted to an animated

GIF. Nested movie clip timelines and ActionScript do not make it through the translation

process. The simple rule of thumb is that if you can see it move while you manually

scrub the timeline, the GIF can, too. If you can’t, it won’t show.

Yes, we set you up. In Flash, if you select File ➤ Export ➤ Export Movie, you can bypass the need

to restitch the GIF sequence in Fireworks by choosing Animated GIF from the Export Movie dialog

box. Still, it’s good to know where these things come from, how they are created, and your options!

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

790

Importing an animated GIF

Now that you know how to create a GIF animation in Flash, let’s look at the reverse process. Here’s how to

import a GIF animation into Flash:

1. Open a new Flash CS5 document, and select File ➤ Import ➤ Import to Library.

2. Navigate to the ParrotFW.gif file in the Exercise folder for this chapter, and click Import to

Library. When the process finishes, you will see that each image in the animation, along with a

movie clip, has been added to the Library.

3. Drag the movie clip to the stage, and test the movie. You have a low-resolution version of the

yawning parrot, as shown in Figure 15-24.

Figure 15-24. A yawning parrot in the GIF format

QuickTime

QuickTime is Apple’s Internet streaming video technology. As we have pointed out throughout this book,

QuickTime is losing its grip as the premiere web video technology. Even so, you have the ability to output

your Flash animations as QuickTime movies—File ➤ Export ➤ Export Movie ➤ QuickTime—and use

them in video projects. This isn’t as farfetched as it sounds. The rise of motion graphics on the Web makes

Flash an ideal tool for creating these things for web or broadcast. To prove it, Figure 15-25 is a screen

capture from a video one of the authors did for activetutsplus (http://active.tutsplus.com/
tutorials/screencasts/getting-to-grips-with-alpha-channel-video/), and you might recognize

our pal Grotto in the bottom-left corner. He was output as a QuickTime movie and added to an AfterEffects

project, which was then subsequently output as an F4V file.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://active.tutsplus.com/tutorials/screencasts/getting-to-grips-with-alpha-channel-video
http://active.tutsplus.com/tutorials/screencasts/getting-to-grips-with-alpha-channel-video
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

791

Figure 15-25. Flash animations can be output to video.

Flash is gaining ground as a broadcast animation technology, and no matter how you slice it, QuickTime is

the way to go with digital video. Up until the previous release of Flash, QuickTime and Flash have had a

rather uneasy relationship. It was extremely difficult to get Flash animations into QuickTime for editing in a

video-editing application. Why? Because you couldn’t use nested movie clips, nested timelines, or

ActionScript. These impediments have been removed, and publishing a Flash document as a QuickTime

movie is easier than it ever has been.

That raises this question: how do you publish a Flash movie for the Web?

It’s showtime!
Everything works as it should. You have sweated buckets to optimize the movie, and the client has finally

signed off on the project. It’s showtime. The Flash movie is ready to hit the Web and dazzle the audience.

Though you may think publishing a Flash movie involves nothing more than selecting Publish in the

File menu, you would be seriously mistaken. The process is as follows:

1. Open the Publish Settings window to determine how the movie will be published.

2. Publish the movie and preview the SWF.

3. Upload the SWF and any support files to your web server.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

792

Publish settings

We’ll start by exploring the publish settings. Open GardenFinal.fla in this chapter’s Exercise folder. It

struck us as somehow appropriate that you finish the book by working with the file you created when you

started the book.

We are going to concentrate on a movie headed for the Web and not a mobile device.

We discuss the mobile process in greater detail in Chapter 14.

Select File ➤ Publish Settings (Ctrl+Shift+F12 on Windows or Option+Shift+F12 on a Mac) to open

the Publish Settings dialog box, as shown in Figure 15-26.

Figure 15-26. The Publish Settings dialog box

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

793

You can also launch the Publish Settings dialog box by clicking the Edit button in

the Profile area of the Publish section in the Properties panel. The one thing you

don’t want to do, unless you have a lot of Flash experience, is to select File ➤

Publish. Selecting this will publish the movie using whatever default settings are in

place.

As you can see, this dialog box is divided into three distinct sections: Formats, Flash, and HTML. In fact,

that last tab (or tabs) will change depending on the format chosen. We’ll get to that in a minute. The five

buttons along the top, next to the drop-down menu, are the Profile buttons. These allow you to “tweak”

your settings and then save them for future use.

Formats

The file types are as follows:

 Flash (.swf): Select this, and you will create a SWF that uses the name in the File area

unless you specify otherwise.

 HTML (.html): The default publishing setting is that the Flash and HTML settings are both

selected. This does not mean your SWF will be converted to an HTML document. It means Flash

will generate the HTML file that will act as the wrapper for the SWF.

If you are a Dreamweaver CS5 user, you don’t need to select the HTML (.html)

option. Dreamweaver will write the necessary code for the SWF when it is imported into

the Dreamweaver CS5 document.

 GIF Image (.gif): Select this, and the Flash animation will be output as an animated GIF, or

the first frame of the movie will be output as a GIF image.

 JPEG Image (.jpg): The first frame of the Flash movie will be output as a JPEG image.

 PNG Image (.png): The first frame of the movie will be output as a PNG image. Be careful with

this one, because not all browsers can handle a PNG image.

 Windows Projector (.exe): Think of this as being a desktop SWF that is best suited to play

back from a Windows desktop or CD, not from the browser.

 Macintosh Projector: This is the same idea as the Windows projector. Just be aware that a

Mac projector won’t play on a Windows machine, and vice versa.

The Navigate buttons (they look like folders and are located beside each file type) allow you to navigate

to the folder where the SWF will be saved (see Figure 15-27). If you see a path, click the Use Default

Names button to strip out the path from the file name.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

794

Figure 15-27. Strip out any paths in the file name to avoid problems.

Select all of the types. Notice how each file type kicks out its own tab. Deselect everything but the Flash

(.swf) option before continuing.

Flash settings

Click the Flash tab to open the Flash settings, as shown in Figure 15-28.

Figure 15-28. The Flash settings in the Publish Settings dialog box

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

795

Let’s review each of the areas in this panel:

 Player: This drop-down menu allows you to choose any version of Flash Player from versions 1

to 10.1 (the current version), AIR 2, and any version of Flash Lite Player from versions 1 to 4.0. If

you have the Properties panel open, you will see the version chosen also appears there. It is

extremely important for you understand that if you change your Flash Player version and are

using features in the movie that aren’t supported by the chosen Flash Player version, you will be

greeted by the alert dialog box shown in Figure 15-29). In his case, we had used 3D tweens in

the GardenFinal file, and that feature is not supported in our target player: Flash Player 6.

Figure 15-29. Flash will let you know you can’t, when you try to do something that isn’t supported by the

version of Flash Player you have targeted.

 Script: There are three versions of the ActionScript language. If you are publishing to Flash

Player 9 or newer, you are safe selecting ActionScript 3.0, ActionScript 2.0, or

ActionScript 1.0 (we recommend ActionScript 3.0). If you are publishing to Flash

Player 8 through 6 or Flash Lite 2 or 2.1, ActionScript 2.0 is your choice, though

ActionScript 1.0 will work. Everything else uses the ActionScript 1.0 setting.

 Images and Sounds: This is where you control the compression of JPG images and sound

quality. Your choices are as follows:

 JPEG quality: This slider and text field combo specifies the amount of JPEG compression

applied to bitmapped artwork in your movie. The value you set here will be applied to all

settings in the Bitmap Properties area of the Library, unless you override it for

individual bitmaps on a per-image basis.

 Audio stream: Unless there is a compelling reason to do otherwise, leave this one alone.

The value shown is the one applied to the Stream option for audio in the Properties

panel.

 Audio event: This comes with the same warning as the previous choice but for event

sounds.

 Override sound settings: Click this, and any settings—Stream or Event—you set in

the Sound Properties area of the Library are, for all intents and purposes, gone.

 Export device sounds: Use this only if you are using Flash Lite and publishing to a

mobile device.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

796

 SWF Settings: Use this area to tell Flash how to create the SWF. The following options are

available:

 Compress movie: Even though Flash compresses the FLA’s assets when it creates the

SWF, selecting this allows Flash to compress the SWF itself—usually text-heavy or

ActionScript-heavy—to an even greater extent during the publish process. If you are

publishing to Flash Player 5 or older, you can’t use this option.

 Include hidden layers: This option falls squarely in the category of “it’s your call.” All

this means is that any timeline layer whose visibility icon is turned off will not be compiled

into the SWF. Designers often like to keep reference layers handy during authoring, but in

previous versions of Flash, such layers would show in the SWF, even if they were hidden in

the FLA. An old trick to “really” hide them was to convert such layers to guide layers—but

that can get tedious. If you really want those layers gone, just delete them. If you’re a little

lazy, use this feature instead. We tend to leave it unselected, but if there is a compelling

reason to include your hidden layers, select this option.

 Include XMP metadata: Select this option and click the File Info button, and the

dialog box shown in Figure 15-30 will appear. Any text entered here will be added to the

SWF’s metadata. As you can see, the amount of metadata you can add is quite extensive.

For more information about Extensible Metadata Platform (XMP), see www.adobe.com/
products/xmp/.

 Export SWC: Unless your name is Grant Skinner or you have been living and breathing Flash

for most of your natural life, leave this one alone. It is used to create a component for Flash.

 Password: This option works in conjunction with the Debugger workspace, but only for

ActionScript 2.0. If you add a password to this text-entry box, whoever opens the

ActionScript 2.0 Debugger panel will be prompted to enter the password if debugging the

SWF in a browser. If the plan is to test and debug your Flash application remotely, this is a

“must do.” Just remember, this only allows you debug your code. It won’t prevent people

from maliciously “ripping” your def and decompiling the code.

 Advanced: You have a number of options regarding the treatment of the SWF available to you:

 Generate size report: Select this, and Flash will generate a .txt document that shows

you where potential bandwidth issues may be located. The .txt file is generated when you

publish the SWF.

 Protect from import: When this option is selected, the user will be prevented from

opening your SWF in Flash.

www.zshareall.com

http://www.adobe.com
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

797

Figure 15-30. The ability to add metadata to a SWF is a major feature of practically every Adobe

application.

 Omit trace actions: Flash will ignore any appearances of the trace() function you may

have added to your ActionScript (they will actually be removed from the SWF). You use this

function to track the value of a variable and display that value in the Output window. Tracing is

great for debugging, but a ton of these common statements can affect performance.

 Permit debugging: Select this, and you have access to the Debugger workspace in

Flash, even if the file is being viewed in a web browser. You really should turn this off before

you make the movie public on the Web.

 Local playback security: The two options in this drop-down menu—Access local

files only and Access network only—permit you control the SWF’s network access.

The important one is the network choice. Access networks only protects information on

the user’s computer from being accidentally uploaded to the network.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

798

 Hardware Acceleration: This needs a bit of explanation because if you make the wrong

choice, your user is in for a really bad day. We’ll provide that explanation after the description

of the next, and last, item in the Flash panel.

 Script time limit: Sometimes your scripts will get into a loop, sort of like a dog chasing

its tail. This can go on for quite a long time before Flash sighs and gives up. Enter a value

here, and you are telling Flash exactly when to give up.

For the Hardware Acceleration option, you get three choices, as shown in Figure 15-31. These

choices are offered thanks to Flash Player 10.1 and its ability to do a lot more heavy-lifting than any Flash

Player in history. By using hardware acceleration, Flash will work with the user’s video card to render

graphics and video more smoothly.

Figure 15-31. Be very careful regarding what you choose.

The first choice (None) is self-explanatory. The next one, Level 1 – Direct, tells Flash to look for the

shortest path through the CPU from the video card to the screen. This mode is ideal for video.

The Level 2 – GPU option was introduced in Flash CS4. The best way of wrapping your mind around it

is to consider how movieclips are rendered. They are essentially drawn on the screen using software, but

they are rendered—think of the fly buzzing around the garden—with your graphics card, or GPU. Scaling

is a great example of this, and full-screen HD video rendering is also done this way.

You probably read that last sentence and thought, “Well shucks, I’ll do everything this way.” Not so fast,

bucko. As Flash engineer Tinic Uro points out in his blog (www.kaourantin.net/2008/05/what-does-
gpu-acceleration-mean.html), “Just because the Flash Player is using the video card for rendering

does not mean it will be faster. In the majority of cases your content will become slower.”

Essentially, the Level 2 – GPU choice requires a minimum DirectX 9 card. If you are a Vista user, for

example, and Aero Glass is a problem, you can bet that hardware rendering of Flash graphics will be

equally problematic, because Aero has the same hardware requirements as the GPU choice.

Also, frame rate will be an issue, because the frame rate will max out to the screen refresh rate. This

means if you have a Flash movie with a frame rate of 72 fps, you have exceeded the refresh rate of 60

times per second. In this case, your Flash movie’s frame rate will downshift to 60 fps or, more realistically,

50 to 55 fps, thanks to dropped frames.

The bottom line here is that either Hardware Acceleration choice will result in a serious memory hit

on the browser, to the point where the browser becomes either sluggish or unresponsive. If you must use

this feature, limit yourself to one SWF per HTML page, and use Level 1 – Direct as your first choice.

Both choices are tied directly to the video card manufacturers and their drivers. Over the next couple of

www.zshareall.com

http://www.kaourantin.net/2008/05/what-does-gpu-acceleration-mean.html
http://www.kaourantin.net/2008/05/what-does-gpu-acceleration-mean.html
http://www.kaourantin.net/2008/05/what-does-gpu-acceleration-mean.html
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

799

years, this feature will become critical as Flash starts appearing on screens ranging from smartphones to

your home entertainment unit.

HTML settings

Click the Formats tab, and select the HTML (.html) file type. When you do that, the Publish Settings

dialog box sprouts an HTML tab. Click the HTML tab to see the HTML settings shown in Figure 15-32.

If you are a Dreamweaver CS5 user or prefer to “roll your own” HTML code, it still won’t

hurt to review this section, but be aware that Dreamweaver CS5 does this job for you.

Figure 15-32. The HTML tab in the Publish Settings dialog box in Flash CS5

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

800

As we noted earlier, be aware that using this dialog box does not convert your SWF to HTML. The best

way to consider this option is like buying a hamburger at a large international chain. When the hamburger

is finally ready, it will be wrapped in paper or placed in a colored box that identifies the contents. For

example, you have ordered the MegaBurger, and the burger is wrapped in blue paper that has

“MegaBurger” printed on it. The HTML option performs the same job: it provides the wrapper that tells the

browser what’s inside.

If the Flash movie is to appear in a CSS-based layout, a lot of the options in this dialog

box will not be used by the coder. Still, the HTML page to be created is a good starting

point for a code jockey.

Let’s review the main features of this panel:

 Template: This drop-down menu contains 11 options, but they all specify the type of HTML

file in which you want the SWF to be embedded. The Info button will give you a brief

description of the selected template (see Figure 15-33). These templates can be found in

C:\Program Files\Adobe\Adobe Flash CS5\en\First Run\HTML on your Windows

machine or HD:/Applications/Adobe Flash CS5/First Run/HTML on your Mac. If you

are a hard-core coder and know exactly what you are doing, feel free to change them (but

only after you have made a backup of the files). Though there are a number of templates, the

Flash Only template will most likely be the one you use most often.

Figure 15-33. The Flash Only template description

 Detect Flash Version: This option determines whether the JavaScript code for this purpose

is added to the HTML. It checks to see whether the user’s Flash plug-in will work with the version

of Flash Player you have targeted. If the user has the version, life is a wonderful thing, and the

movie will play. If not, the user will see an explanatory message and a link to the location where

the latest plug-in can be found.

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

801

If you are a JavaScript wizard, feel free to customize the detection JavaScript to react

differently if the wrong plug-in version is detected. For instance, if the IT boys have

decreed “Thou shalt not add software to our machines,” you could rewrite the code to

load and play an alternate version of the SWF instead of suggesting the user do

something that is forbidden.

 Dimensions: You get three choices in this drop-down menu: Match Movie, Pixels, or

Percent. Select one of the last two options, and you can change the physical size of your movie.

If you choose Percent, you will discover the one circumstance that allows content positioned

outside the stage to possibly show.

 Playback: These four choices determine what happens when the movie starts playing:

 Paused at start: This means the user gets things going. This is very common with

banner ads, and you would need to provide a button to tell the playhead to start moving, or

the user would have to be smart enough to right-click and use the plug-in’s context menu to

select Play. Our advice? Go with the button.

 Display menu: This option is actually quite important. It has nothing to do with menus in

the movie and everything to do with Flash Player. If you test GardenFinal.fla and right-

click (Windows) or Control+click (Mac) the SWF, the menu shown in Figure 15-34 appears.

This menu allows the user to modify how Flash Player displays the movie. Many Flash

designers and developers turn this off because they don’t want people switching to low-

quality graphics or zooming in on the stage. Still, there is a very important use for this menu.

If your site requires users to use a web camera or a microphone, clicking the Settings

button will allow them to choose the devices to be used.

 Loop: When selected, this option plays the movie loop again from the beginning. If it’s not

selected, it plays the loop only once. The key point here is any stop() actions you may have

in your ActionScript will override this selection.

 Device font: This selection replaces any static text in your movie with a system font—

_sans, _serif, and _typewriter—which can result in a significant file-size reduction.

The downside to this choice is that you have absolutely no control over which font is used. If

the user doesn’t have the three fonts installed, the machine will use one that is closest to the

font, meaning the text may wrap or even change the look of your movie. Is this one of those

things that falls into the category of “things you should never do”? Not really. It is your movie,

and if you decide this is the way to go, you at least are aware of the potential hazards of the

choice.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

802

Figure 15-34. The Flash menu that is displayed at runtime

 Quality: This drop-down menu contains the six choices shown in Figure 15-35. These specify

the render quality at which your movie will play, and the choice you make determines the speed

at which your movie runs on the user’s machine or device. We suggest you start with Auto

High, which permits Flash to automatically drop the quality to maintain the frame rate and

synchronization if necessary. In many respects, this area is not one that should concern you,

because if Display menu is selected, the user can change this setting at runtime.

Figure 15-35. Try starting with the Auto High quality setting.

 Window Mode: The selection you make here will appear in the wmode settings in the

<object> and <embed> tags used in the HTML. If you are unsure as to what the choices do,

just leave the choice at the default, which is Window.

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

803

 HTML alignment: This selection allows you to specify the position of your movie window

inside the browser window. The default will place the SWF in the center of the browser

window.

 Scale: If you have changed the dimensions of the movie using the Dimensions option, the

choices in this drop-down menu determine how the movie is scaled to fit into the browser

window.

 Flash alignment: These two options permit you to set the Vertical and Horizontal

alignment of your movie in its window and how it will be cropped, if necessary.

 Show warning messages: If this box is selected, any errors discovered when the HTML

file is loaded—missing images is a common error—are displayed as browser warnings when

the user arrives on the page.

Publishing the butterfly garden

Now that we have reviewed the major points, let’s publish the butterfly garden and look at it in a browser.

Before you start, click the OK or Cancel button to close the Publish Settings dialog box and return to

the Flash stage. Save the GardenFinal.fla to the Garden folder in your Chapter 15 Exercise folder.

We’ll explain why in a moment. Now open the Publish Settings dialog box, and let’s get busy.

1. Click the Formats tab, and select the Flash and HTML formats.

2. Click the Flash tab, and specify these settings:

 Version: Flash Player 10

 Script: ActionScript 3.0

 Compress movie: Selected

 Include hidden layers: Deselected

3. Click the HTML tab, and specify these settings:

 Template: Flash Only

 Dimension: Match Movie

 Quality: Auto High

 Flash alignment: Center for both Horizontal and Vertical

4. Click the Formats tab. In this panel, click the Use Default Names button to strip off any paths

that might be associated with this movie.

5. Click the Publish button. You will see a progress bar that follows the publishing process. Click

OK to close the Publish Settings dialog box and return to your movie.

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

804

6. Minimize the Flash stage, and open the Garden folder in the Chapter 15 Exercise folder. You

will see that Flash has created three files: the FLA file, the SWF file, and an HTML file (see Figure

15-36). The only file that doesn’t need to get uploaded to the server is the FLA.

Figure 15-36. The results of publishing the Flash movie

7. Open the GardenFinal.html file in a browser. The movie starts playing (see Figure 15-37).

Congratulations!

Figure 15-37. Playing the movie in a browser

www.zshareall.com

http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

805

Hang on. How did the background color of the browser page turn blue? There was

nothing in the HTML settings for that one. If you publish a Flash movie and use the

HTML option, the background color of the HTML document will change to the stage

color of the Flash movie.

Before we move on, we would like to talk about another option on the Flash File menu. As shown in

Figure 15-38, the Publish Preview submenu contains the formats from the Publish Settings

dialog box. Selecting this will publish the movie, and if you selected Default - (HTML), you can launch

the results in a browser. This menu reflects the choices made in the Publishing Settings dialog box,

which explains why a lot of the options are grayed out. If you are a Dreamweaver CS5 or Fireworks CS5

user, this menu item is the same as being able to do a browser preview in both of those applications. In

fact, they all use the same key, F12, to launch the preview. The browser that opens will be the default

browser used by your computer’s operating system.

Figure 15-38. You can preview the movie in a browser without leaving the Flash interface.

Publishing Flash movies containing linked files

In Chapter 6 we showed you how to play a sound located outside of the SWF. Though you tested it locally,

nothing beats testing on a remote server. Another aspect of that exercise is playing content located in

another folder on the server. In the case of the MP3 files, this actually makes sense. Let’s assume you are

going to use the same MP3 soundtrack in five Flash movies over the coming year. If that MP3 is 5MB in

size, you will have used up 25MB of server space if the file is slipped into the folder for each project that

uses it. Doesn’t it make more sense to upload it once and have the movies call it into the SWF from a

single location?

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

806

In this example, we are going to assume the three audio files are located in a folder named Tunes in the

mythical domain of mySite.com.

1. Open the TinBangs.fla file located in the Exercise folder for this chapter.

2. Open the Actions panel, and scroll down to the loadSong() function in line 56 of the Script

pane.

3. The critical line in this function is line 47, which uses the load() method to get the song. Change

this line to the following:

req = new URLRequest("http://www.mySite.com/Tunes/" + file);

That’s all it takes. Of course, what you’re seeing is just a sample URL, so if you test the file, you won’t

actually hear any music. The point is that you can add fully qualified paths to your URLRequest instances.

Everything is straightforward if you use absolute paths. Absolute paths contain the full domain name,

which means they’re accessible from anywhere on the Internet. That’s both a plus and a minus. If you

hard-code all your file references as absolute paths, you know they’ll work—until you decide to change

your domain name or until you repurpose your content for another project in another folder structure

somewhere else. In cases like that, a relative path may suit your needs. Relative paths do not reference a

domain name, and because of that, they depend entirely on a very particular point of view: the physical

location of the file making the reference. (If this sounds familiar, that’s because we touched on it in

Chapter 10 in regard to video files. Consider this a recap.)

You would think that a SWF looking for MP3s (or any external files) would consider itself as the beginning

of the path—“Where is that file in relation to me?”—but that’s not how it works. When a SWF references

external files with relative paths, its point of view is actually that of the HTML document that contains it. If

the SWF and the HTML file are in the same folder, this is a moot point, but keep it in mind if you decide to

put all your SWFs in one folder and your HTML files in another.

To make matters even more interesting, there’s an exception: FLV files. If you are using the

FLVPlayback component, the path to the video, if it is a relative path, takes its cue from the location of

the SWF itself. The same thing goes for a video object using the NetStream class. That said, the

FLVPlayback component optionally uses skins, and skins are SWF files. If your movie uses relative

paths to reference an FLVPlayback skin, set your point of view to the HTML document that contains this

movie, but when referencing the FLV, set your point of view to the movie itself.

This “gotcha” often raises its ugly head if you have a custom controller or video skin or are using a server

that dynamically loads the content. Either make sure you understand the gotcha fully or enter the paths as

absolute paths (see Figure 15-39).

www.zshareall.com

http://www.mySite.com/Tunes
http://www.zshareall.com

 OPTIMIZING AND PUBLISHING FLASH MOVIES

807

Figure 15-39. You can save FLV skins to remote sites as well.

What you have learned
There wasn’t a lot of geeky or cool stuff in this chapter. Instead, the focus on this chapter was how to

optimize your Flash movies for web playback. We examined how the data in your Flash movie gets from

“here to there” and in what order. We reviewed several ways of using the Bandwidth Profiler, from

identifying content bottlenecks to actually emulating the download of a bloated Flash movie into a dial-up

modem. It wasn’t pleasant, but we then showed you a number of ways to fine-tune your Flash movies in

order to let you maximize that ”15-second window of opportunity” you get when a user hits your site. The

chapter wrapped up with a lengthy discussion about the publishing process. Along the way, you learned

the following:

 How Flash movies are streamed to a web page

 A couple of ways of turning the Bandwidth Profiler into your new best friend

 Tips and tricks for optimizing content for fast download

 How to prepare a SWF for web playback

 How to export a Flash movie as a GIF animation and how to import a GIF animation into Flash

 How to deal with remote content needed by the SWF

This chapter dealt with the “end game” in Flash. We think you are now aware that preparing your Flash

files for web output involves a lot more than simply selecting Publish in the File menu. There is a lot to

consider, and those considerations range from what format will be used to output the file to a number of

www.zshareall.com

http://www.zshareall.com

CHAPTER 15

808

very important options that need to be addressed. We also dealt with remote content and how the SWF

can grab it from elsewhere on your site and on the Web.

Speaking of the end game, we are at the end of this journey that started and ended at a garden filled with

butterflies and a pesky fly. We hope you had fun and that you are inspired to explore Flash CS5 even

further. As you do, you will discover a fundamental truth about this application: the amount of fun you can

have with it should be illegal. We’ll see you in jail.

www.zshareall.com

http://www.zshareall.com

809

Index

Special Characters and
Numbers
+ button

Flash Motion Editor panel, 444, 445

Flash Values dialog box, 621
3D

center point, 517–519
depth limitations, 520–522
overview, 495–498
parallax effect, 512–517
simulating photo cubes, 522–525
tools

Rotation, 501–506
Translation, 506–511

vanishing point, 498–501
3D Position and View area, Flash Properties

panel, 209, 506, 512, 515, 523
3D Position and View strip, Flash Properties

panel, 52
3D Position option, Flash, 510
3D Position property, Flash, 510

3D Position Z value, Flash, 524
3D Rotation area, Flash Transform panel, 209,

515, 523
3D Rotation tool, Flash, 70, 71, 499, 508, 516,

517, 518, 525
3D Rotation X value, Flash Properties panel,

524
3D Rotation Y value, Flash Properties panel,

524
3D Rotation Z value, Flash Properties panel,

525
3D Translation tool, Flash, 499, 521
3D Tween option, Flash, 518
3DCube.fla file, 523
9Scale movie clip, Flash, 163
9Slice2.swf file, 166

9Slice.fla file, 161
9SliceGotchas.fla file, 168

A
<a> tag, 586, 680, 681, 688, 694
AAC (Advanced Audio Coding), 281
actions layer, Flash, 39, 261, 269, 303, 342,

346, 420, 559, 702, 744

Actions menu option, Flash, 223
Actions toolbox, 217
ActionScript

Actions panel
Actions toolbox, 217
versus Behaviors panel, 219–220
overview, 216
panel context menu, 218
Script navigator, 217
Script pane, 217

Code snippets
adding into Code Snippets panel,

269–271
custom classes, 271–277
overview, 266–268

coding fundamentals
capitalization matters, 233–234
class files and document class, 251–253
commenting code, 235–237
conditional statements, 247–251

data types, 241–243
dot notation, 237–238
operators, 244–247
scope, 239–240
semicolons mark end of line, 234
syntax, 233, 253–257
variables, 240–241

copying motion as, 416–419

creating random motion using, 421–426
full-screen video, 574–576
objects

classes, 221–222
overview, 220
Properties, 222–225

overview, 213–216, 555–557
reading and Components Reference

Help, 258
overview, 257
search tactics, 259–260

setting properties via
events, 229–233
Methods, 226–229
overview, 225

snippets, 559–560
timeline

looping, 265
pausing, 261–264

www.zshareall.com

http://www.zshareall.com

INDEX

810

using movie clips to control, 266
and TLF, 341–345
using, 260–261

ActionScript 3.0

adjusting volume with code, 304–305
overview, 298–299
playing sound from Library, 298–300
playing sound from outside of Flash,

301–302
turning remote sound on and off, 302–304
using button to play sound, 300–301
visualizing audio, 309–313

ActionScript menu option, Flash, 228, 234
ActionScript panel, Flash, 744, 745
ActionScript section, Flash, 218
ActionScript Settings area, Flash, 252
ActionScript Settings menu option, Flash, 252
ActionScript tab, Flash Font Embedding dialog

box, 327, 691
:active pseudo-class, Flash, 689

:active tag, Flash, 688
Add a New Item to the Script button, Flash

Script pane, 217
Add Anchor Point option, Pen tool, 103
Add blend mode, Flash, 180
Add Classic Motion Guide context menu option,

Flash, 57, 411
Add Colors option, 117
Add Cue Point button, Adobe Media Encoder

Export Settings window, 588
Add Filter button, Flash, 50, 176
Add panels to sets option, Flash, 8
Add Parameter button

Adobe Media Encoder Export Settings
window, 588

Dreamweaver Parameters dialog box, 579
Add Shape Hint menu item, Flash, 374

Add Swatch option, 115
Add to Current frame button, Flash, 267, 268,

420, 559, 564
Add to Custom Colors button, 114
Add to swatches panel, 118
addASCuePoint() method, ActionScript, 583
addChild() method, ActionScript, 253, 351
addController() method, ActionScript, 341

addEventListener() method, ActionScript, 231,
262, 626, 630, 631, 725

Adjust Color filter, Flash, 175
Adobe AIR (Adobe Integrated Runtime), 750,

752–756
Adobe Community Help, 40

Adobe CoolType, 319–322
Adobe Extension Manager CS5, 751
Adobe Illustrator (AI) format, 124
Adobe Media Encoder

audio settings, 538
cropping videos, 539
overview, 532–533
previewing and trimming, 534–535
rendering process, 540–541
settings, 535–537

Adobe Sound Document (ASND), 281
Adobe TV link, 4

ADPCM compression option, Flash Sound
Properties dialog box, 286

Advanced ActionScript 3.0 Settings panel, Flash
Publish Settings dialog box, 252

Advanced Audio Coding (AAC), 281
Advanced button

Flash Convert to Symbol dialog box, 153
Flash Sound Properties dialog box, 59, 298

Advanced Character options area, Flash
Properties panel, 349

Advanced Character properties, 334–335, 340
Advanced options, Flash Symbol Properties

dialog box, 357
Advanced Options menu, 93
Advanced section

Flash Sound Properties dialog box, 298
Publish Settings dialog box, 796

Advanced Smooth dialog box, 779
Advanced Sound Properties dialog box, Flash,

300
Afterburner application, 784
AI (Adobe Illustrator) format, 124
AI File Importer, 145
AIFF (Audio Interchange File Format), 281
AIR (Adobe Integrated Runtime), 750, 752–756

AirForAndroid folder, 751, 754
AirheadMailAnimated.fla file, 522
AirheadMail.fla file, 520
Alert box, Dreamweaver, 592
align attribute, 587
Align Center option, Flash Paragraph properties,

336
Align Justify option, Flash Paragraph properties,

336
Align Left option, Flash Paragraph properties, 336
Align panel, Flash, 192–193, 456, 457, 523, 561
Align Right option, Flash Paragraph properties,

336
Align to stage button, Flash Align panel, 192

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

INDEX

811

Align to stage check box, Flash Align panel, 193
Align to stage feature, Flash, 193
Align Top Edge button, Flash Align panel, 194

Align Vertical Center button, Flash Alignment
panel, 561

aligning objects
aligning with guides, 188
overview, 186
snapping in guide layer and to pixels, 189
snapping to grid, 187

AlignPanel.fla file, 193

Allow smoothing option, Bitmap Properties
dialog box, 133

allowFullScreen attribute, HTML, 577
AllowFullScreen parameter, Dreamweaver

Parameters dialog box, 579
allowMultipleSelection parameter, Flash List

component, 624
allowMultipleSelections check box, Flash

Properties panel, 625

Alpha blend mode, Flash, 180
Alpha property, Flash Color panel, 378
alpha video, 572–574, 593–596
AlphaEx.fla file, 574
Alpha.mov file, 573
Alsop, Will, 522
Always Show Markers option, Flash Timeline

panel, 398, 399

Always update before publishing option, Flash
Convert to Symbol dialog box, 154

Amsterdam.fla file, 500, 506
Anchor Onion option, Flash Timeline panel, 399
anchor points

altering shapes, 371
easing, 391–393
shape IK and, 485–487

Android AIR apps, 750–756
Angle property, Flash bonex, 464
Angular setting, Flash Properties panel, 369
animated GIFs

exporting, 787–789
importing, 790
overview, 786

animation

classic tweening
deforming, 382–384
easing, 384–387, 395
properties, 381–382
rotation, 379–381
scaling, 382–384
stretching, 382–384

inspiration for, 492–493
inverse kinematics (IK)

Bone tool, 459–468

example, 487–492
overview, 458
Spring option for bones, 468, 492

modifying multiple frames, 400–402
Motion Editor panel

easing with graphs, 437–445
moving, 430–437
overview, 428–429

scaling, 430–437
motion guides, 408–411
motion paths

advanced, 453–454
manipulating, 450–454
properties, 454–455

motion presets, 455–458
onion skinning, 397–399
overview, 361

programmatic
copying motion as ActionScript, 416–419
creating random motion using

ActionScript, 421–426
overview, 415
using keyboard to control motion,

419–421
property keyframes, 445–450

shape tweening
altering gradients, 377–378
altering shapes, 369–373
modifying, 368–369
scaling, 363–368
shape hints, 373–377
stretching, 363–368

Timeline panel, 395–396

timelines, combining
graphic symbols as mini-libraries,

406–407
movie clip timelines versus graphic

symbol timelines, 402–404
nesting symbols, 404–406

tweening filter effects, 413–414
tweening masks

animating masks, 411–412
using motion guides with masks, 412–

413
Animation category, Flash New Document

dialog box, 422
Animation codec, Flash, 572
Animation folder, 269, 420

www.zshareall.com

http://www.zshareall.com

INDEX

812

Animation property, Flash Anti-alias drop-down
menu, 333

antenna1 layer, Flash, 372
Ant.fla file, 372

Anti-alias menu, Flash, 323, 324, 325
Anti-alias property, Flash Properties panel, 333
anti-aliasing, 320
API (application programming interface), 217,

315
APK file, 756
Apparition.flv file, 580
Application & Installer Settings dialog box,

Adobe AIR, 752
application programming interface (API), 217,

315
Apply Block Comment button, Flash Script pane,

218
Apply Line Comment button

Flash Actions panel, 228
Flash Script pane, 218

Armature_1 layer, Flash, 459, 468
Armature_2 layer, Flash, 462, 464
Arrange menu, Flash, 190
array access operator, ActionScript, 652, 654
Array class, ActionScript, 241, 706
Array.length property, ActionScript, 626
Array.push() method, ActionScript, 706
arrow class, ActionScript, 357
arrow movie clip, Flash, 356, 358

arrowLeft symbol, Flash, 170
arrows layer, Flash, 716
AS2Syntax.fla file, 253, 255
AS3Syntax.fla file, 254, 255
ASCuePoints.fla file, 562
ASND (Adobe Sound Document), 281
Aspect ratio drop-down menu, Adobe AIR, 753
assets, Library, 713–714

assignment operator (=), ActionScript, 606
at symbol (@), 650–654
attachSound() method, ActionScript 2.0, 300
attribute nodes, XML, 647
audio

adding to button, 296–298
adding to Flash movie, 59
adjusting volume and pan, 293–296

choosing sound type, 288–291
controlling with ActionScript 3.0, 308

adjusting volume with code, 304–305
code snippet, 309–313
playing sound from Library, 298–300

playing sound from outside of Flash,
301–302

turning remote sound on and off,
302–304

using button to play sound, 300–301
formats

bit depth, 281–283
MP3, 283–284
overview, 280
sample rates, 281–283

importing, 284
loopy, 291

overview, 279
removing file from timeline, 291
setting sound properties, 285–288
using in Flash, 288–296

Audio and Video folder, 564
Audio event option, Publish Settings dialog box,

287, 795
Audio folder, Flash, 43, 44

Audio Interchange File Format (AIFF), 281
Audio layer, Flash, 59, 60, 157, 289, 291, 293,

297, 519
Audio pane, Adobe Media Encoder Export

Settings window, 538
Audio stream area, Flash Publish Settings

panel, 287
Audio stream option, Publish Settings dialog

box, 287, 795

Audio tab, Adobe Media Encoder Export
Settings window, 537, 544, 573, 588

Audio Video Interleave (AVI), 530
Audio Visualizer snippet, Flash, 310
audio2 layer, Flash, 290
AudioPlayer.ai Assets folder, 714
AudioVisualization.fla file, 309
<author> elements, XML, 653, 655, 658

authortime feature, Flash, 187
Auto Format button, Flash Script pane, 218
Auto High quality setting, 802
Auto kern property, Flash Properties panel, 333
Auto Set Transformation Point option, Flash,

476, 477, 489
Auto-Collapse Icon Panels option, Flash

Preferences dialog box, 31

Auto-fill button, Flash Create New Code Snippet
dialog box, 269, 311

autoLayout parameter, Flash Properties panel,
570, 571

automatic class import feature, Flash CS5, 262

www.zshareall.com

http://www.zshareall.com

INDEX

813

autoPlay parameter, Flash Properties panel,
553, 554

AVI (Audio Video Interleave), 530

B
 tag

Flash, 684
HTML, 586, 683

Background Color chip, Flash Properties panel,
27

Background color option, Flash Document
Settings dialog box, 11

background image layer, Flash, 719
Background layer, Flash, 50, 51, 53, 54, 56,

500, 574
backgroundColor parameter, XML, 585
BackgroundImage layer, 148
Backlight slider, Device Central Display tab, 749
badBinding.fla file, 480
Balkan, Aral, 496

ball layer, Flash, 416
Balladore, Guilia, 782
bandwidth, 760–762
Bandwidth Profiler

pinpointing problem content, 769–770
reports, 770–771
simulating download, 765–769

bang.fla file, 291

BannerEx.fla file, 149
Banner.png image, 138
bar layer, Flash, 718
BaseButton class, ActionScript, 606, 607
Baseline Shift setting, Flash Advanced character

properties, 336
Basic Motion area, Flash Motion Editor panel,

21, 22, 54

Basic motion twirlie, Flash, 442
Basic Settings area, Adobe Media Encoder

Export Settings window, 535
batch encoding, 541–542
Bateman, Rob, 496
Baumann, Pascal, 702
Behavior drop-down menu, Flash Properties

panel, 338, 570
Behaviors panel, 219–220

Beijing art district, 704–711
betterBinding.fla file, 481
Bevel filter, Flash, 175, 595
Bezier curves, 102

Bind tool
overview, 480–484
shape IK and anchor points, 485–487

shape IK and fills, 485
Bind.fla file, 481, 485
bit depth, 281–283
Bit rate setting, Flash Sound Properties dialog

box, 286
Bitmap image with editable layer styles option,

148
bitmap images

GIF files
animations, 136
images, 135
overview, 134

importing Fireworks CS5 documents,
137–139

importing Illustrator CS5 documents,
140–145

importing Photoshop CS5 documents,

146–150
JPEG files, 131–132
overview, 123–124, 125
tracing, 127–130

Bitmap Properties dialog box, Flash, 132, 697,
700

Bitmaps object, Flash, 69
Bitrate [kbps] menu, Adobe Media Encoder

Export Settings window, 537, 538
Bitrate Encoding area, Adobe Media Encoder

Export Settings window, 537
Bitrate Encoding value, Adobe Media Encoder

Export Settings window, 544
Bitrate Settings, Adobe Media Encoder Export

Settings window, 537, 538, 573, 588
Bitrate value, Adobe Media Encoder Export

Settings window, 544, 588
Black Borders option, Adobe Media Encoder,

539
Blam button, Flash Library panel, 297
Blam class, ActionScript, 300, 301
Blank Keyframe option, Flash, 17, 228, 230, 363
_blank setting, Flash Advanced character

properties, 334

Blend menu, Flash Properties panel, 181, 369
Blend.fla file, 181
Blending drop-down menu, Flash Properties

panel, 182, 582, 596
Blending option, Flash Properties panel, 581
blends, 180–181
BlobEffect.fla file, 582

www.zshareall.com

http://www.zshareall.com

INDEX

814

Blobs movie clip, Flash Library panel, 582
block elements, styling, 680–682
blockindent parameter, 587
Blossoms clip, 75

BlowUp button, Flash, 157
Blue layer, Flash, 451, 452
Blue Springs layer, Flash, 196
BlueMoon.fla file, 413
Blur filter, Flash, 50, 51, 56, 175
Blur pop-up menu option, Flash, 50
Blur property, Flash, 54
Body layer, Flash, 45, 410

Body movie clip, Flash, 45, 47
<body> tag, 681, 682, 687
bone chain, 459
Bone tool

constraining joint rotation, 465–468
deleting bones, 468
overview, 459–461
properties, 462–465

Bones.fla file, 465, 468
BonesRigged.fla file, 475
<book> elements, XML, 645, 651, 652, 654,

656, 657, 658
Boswell, Phoebe, 529, 571
BottomFlower movie clip, Flash, 49
Bounce context menu item, Flash, 441
Bounce ease, Flash, 442
bounce-smoosh preset, Flash, 455

Box layer, XML, 664
box.addEventListener method, ActionScript, 231

 tag, HTML, 586
Break Apart menu item, Flash, 744
Break setting, Flash Advanced character

properties, 336
Bring Forward menu item, Flash, 190
Bring to Front option, Flash, 190, 524

Bringhurst, Robert, 315
Brown, Robert, 421
Browse button

Adobe Media Encoder Import Video wizard,
546

Device Central, 738
Browse for Folder dialog box, Adobe Media

Encoder, 541

Browse for source file dialog box, Flash, 555
Brush Mode option, Brush tool, 87
Brush Shape option, Brush tool, 87
Brush Size option, Brush tool, 87
Brush tool, Flash, 71, 85–88
btnMute button, ActionScript, 305

btnPlay button, ActionScript, 301
btnPlay movie clip, Flash, 724, 725
Building Size value, 96
BunnyCharacter movie clip, Flash, 747

BunnyGraphics folder, 743, 747
Burns, Ken, 512
Butcher, Robbie, 711
Butterfly asset, Flash, 410
Butterfly button, Flash Symbol Editor, 45
Butterfly movie clip, 36, 37, 39, 47, 49
Button class, ActionScript, 609, 612
Button component

adding button events, 606–608
changing appearance

skinning, 610–611
styling components, 612–615

considering component weight, 609
referencing components in event handlers,

608–609
using, 603–606

button events, 606–608, 726–728
button layer, Flash, 605
Button symbol, Flash, 157
Button01.fla file, 606
Button02.fla file, 606
buttonMode() method, ActionScript, 303
buttonMode property, ActionScript, 250
ButtonSound01.fla file, 298
ButtonSymbol.fla file, 157

ButtonTarget.fla file, 609
ByteArray() class, ActionScript, 311
bytesloaded>=bytestotal parameter,

ActionScript, 700

C
Cab layer, Flash, 478
Cambridge movie clip, Flash, 268

campfire graphic example
campfire movie, 108
pine needles, 107
pine tree, 106
tree trunk, 104

CanadaFlag.fxg file, 666
CanoeBurnside.jpg file, 125
capitalization, ActionScript, 233–234
caption layer, Flash, 704

caption property, ActionScript, 706, 707
Captioning component, Dreamweaver, 592
Captioning component, Flash, 571

www.zshareall.com

http://www.zshareall.com

INDEX

815

CaptioningVideo folder, 569
captions, adding, 567–571
Captions layer, Flash, 570

captionTargetName parameter, Flash Properties
panel, 570, 571

Car graphic symbol, Flash, 158
car1 movie clip, 266
car2 movie clip, 266
carRace.fla file, 266
Carter, Matthew, 324
Cascading Style Sheets. See CSS

Case drop-down menu, Flash, 335
Case setting, Flash Advanced character

properties, 335
casting, ActionScript, 243, 649
Catalina Island example

adding clouds, 206–207
clouds in motion, 208–211

Category area, Flash Preferences dialog box, 9,
475, 488

CBR (constant bitrate), 537
CCW (counterclockwise), 454
CellRenderer class, ActionScript, 623
Center Frame button, Flash Timeline panel, 396,

398
Center point, 79, 517–519
Change Output Size option, Adobe Media

Encoder, 539

changeHandler() function, ActionScript, 621,
626, 638, 722, 723

changePicture() function, ActionScript, 706,
707, 708, 710

Character area, Flash, 332, 340
Character properties, Flash, 332–334, 339, 358
Character range field, Flash Font Embedding

dialog box, 326

Check Spelling dialog box, Flash, 354
Check Spelling option, Flash, 354
Check Syntax button

Flash Actions panel toolbar, 234, 253, 257
Flash Script pane, 217, 218, 253

CheckBox component, Flash, 606, 613,
615–616

CheckBox.fla file, 616

checkHammer function, ActionScript, 749
Checking options area, Flash Spelling Setup

dialog box, 352
checking spelling, 352–354
checkPolicyFile attribute, 587
checkScore() function, ActionScript, 747
China.fxg file, 666

Chomyn, Jerry, 302
Circle movie clip, Flash, 160, 248
<citrus> tag, Flash, 685

Class area
Flash Sound Properties dialog box, 300
Flash Symbol Properties dialog box, 357

class attributes, 587, 683, 689
Class field, Flash Properties panel, 252
class files, ActionScript, 251–253
Classic Text option

Flash Properties panel, 321

Flash Text Engine drop-down menu, 328
Flash Text Types drop-down menu, 330

classic tweening
deforming, 382–384
easing

anchor points, 391–393
multiple properties, 393–395
overview, 384–390

properties, 381–382

rotation, 379–381
scaling, 382–384
stretching, 382–384

Classic Type text engine, Flash Properties
panel, 570

ClassSelectors.fla file, 683
Clear button, Flash Properties panel, 24
Clear Guides menu item, Flash, 188

Clear Keyframe menu item, Flash, 363, 446
CLICK event, ActionScript, 566
Click to Go to Next Frame and Stop snippet,

Flash, 269
Click to Seek to Cue Point snippet, Flash Code

Snippets panel, 564
clickHandler() function, ActionScript, 231, 233,

301, 608, 609, 722, 726

clickHandler1() function, ActionScript, 609
clickHandler2() function, ActionScript, 609
clickHandler3() function, ActionScript, 609
clockwise (CW), 454
close() method, ActionScript, 559
Close option, Flash, 8
Close panels option, Flash, 8
Clouds layer, Flash, 206, 207, 208, 209

Clouds movie clip, Flash, 208, 209, 210
CloudsMask layer, Flash, 207
CMS (content management systems), 551
Code area, Flash Create New Code Snippet

dialog box, 269
Code snippets

adding into Code Snippets panel, 269–271

www.zshareall.com

http://www.zshareall.com

INDEX

816

custom classes, 271–277
overview, 266–268

Code Snippets button
ActionScript, 267

Flash toolbar, 455
Code Snippets menu option, Flash, 267
Code Snippets panel

ActionScript, 267
Flash, 268, 269, 270, 271, 310, 311, 420,

559, 564, 598
CodeButtonSound.fla file, 300
Codec area, Adobe Media Encoder Export

Settings window, 536
CodeHint.fla file, 272
CodeSnippet folder, 309
coding fundamentals, ActionScript

capitalization, 233–234
class files and document class, 251–253

Collapse panels option, Flash, 6
color

anti-aliasing, 320
creating persistent custom colors, 115–117
kuler color picker, 117–118
overview, 110–111

color attribute, 586
Color chip, Flash filter, 414
Color Chip panel, ActionScript, 77
Color Effect area

Flash Motion Editor panel, 21

Flash Properties panel, 519
Color effect drop-down menu, Flash, 414
Color Effect properties, Flash Transform panel,

511
Color Matrix filter, ActionScript, 175
Color Modification grouping, Flash, 70, 71
Color palette, 112–114, 116
Color panels, Flash, 70, 378

Color Picker, 27, 112–114, 119, 414
Color Picker chip, Flash Properties panel, 27
Color property, Flash Properties panel, 332
Color Sliders button, 114
Color threshold setting, 128
Color window, 113
ColorPicker component, 617–618
ColorPicker.colors property, ActionScript, 618

ColorPicker.fla file, 617
ColorPicker.selectedColor property,

ActionScript, 618
Colors area, Flash Tools panel, 29
Colors strip, Flash Motion Editor panel, 23
Columns category, Flash Properties panel, 338

CombineTimeline.fla file, 403
ComboBox component, 619–622, 624, 637, 704,

713, 723, 728, 737
ComboBox.dataProvider property, ActionScript,

708, 713
ComboBox.fla file, 620
ComboBox.selectedItem property, ActionScript,

621
commenting code, ActionScript, 235–237
comparison operator (==), ActionScript, 606
Compiler Errors panel

ActionScript, 240

Flash, 253, 254, 256, 257, 725
Compiler Errors tab, Flash Properties panel, 243
Compiler panel, Flash, 348
Complete folder, 348, 377, 387, 492, 500, 522,

609, 692, 693, 711
Completed status, Adobe Media Encoder, 541
completeHandler() function, ActionScript, 629,

649, 677, 707, 710, 713, 736, 737

Complete/MP3Player folder, 726
Component Assets folder, Flash, 604, 609, 619
Component Inspector panel, Flash, 562, 633,

636, 639
Component Parameters area, Flash Properties

panel, 606, 621, 622, 623, 624, 626,
632, 634, 637, 639

Component Parameters option, Flash Properties
panel, 570

Component Parameters tab, Flash Properties
panel, 606, 616, 618, 620, 631, 635

components
FLVPlayback, 552–555, 560–561
FLVPlaybackCaptioning, adding captions

with, 567–571
slide shows with,and XML, 703–711

Components button, Flash toolbar, 604, 704

Components menu option, Flash, 355
Components panel, Flash, 355, 548, 552, 560,

604, 704
Components Reference

Help, 258
overview, 257
search tactics, 259–260

Compress movie option, Publish Settings dialog

box, 796
Compression drop-down menu

Bitmap Properties dialog box, 133
Flash Sound Properties dialog box, 286

computeSpectrum() method, ActionScript, 312
concatenation, ActionScript, 245

www.zshareall.com

http://www.zshareall.com

INDEX

817

conditional statements, ActionScript, 247–251
Configuration class, ActionScript, 341, 357
connecting rod symbol, Flash, 471

Constrain option
Flash Properties panel, 465, 466, 490
Flash Transform panel, 491

Constrain property, Flash, 464
Container and Flow options, Flash, 337, 339
ContainerController class, ActionScript, 357
containers, 337–338, 341
Containers.fla file, 337

content layer, Flash, 223
content management systems (CMS), 551
Content Path dialog box, Flash, 553, 554, 555
contents, loading, 697–703
Contents option, Flash Document Properties

dialog box, 306
Contents radio button

Flash Document Properties dialog box, 205
Flash Document Settings dialog box, 10

Context menu, Flash, 219, 258, 365
Continue button

Adobe Media Encoder Import Video wizard,
549

Flash Import Vider wizard, 580
Controls layer, Flash, 561
controls, MP3 players with XML

button events, 726–728

improving, 715–719
programming sliders, 728–734

Controls.fla file, 560, 717
controls.fla Library, Flash, 717, 718
Convert Anchor Point option, Pen tool, 103
Convert layers, 143
Convert to Symbol dialog box, Flash, 153, 155,

160

Convert to Symbol menu item, Flash, 153, 634
Convert To Symbol option, 105
Convolution filter, ActionScript, 175
Copy Frames context menu item, Flash, 177,

445, 716
Copy Motion context menu item, Flash, 457
copying motion

as ActionScript, 416–419

as XML command, 659
CopyMotion.fla file, 660
CopyMotion.xml file, 659
Corijn, Laurens, 497
Corner threshold setting, 128
counterclockwise (CCW), 454
Counterforce clip, 136

Counterforce.gif file, 136
crank movie clip, Flash, 474
crashing text, 333

Create a NetStream Video menu item, Flash,
559

Create area, Kuler panel, 118
Create Classic Tween context option, Flash, 18,

58, 367, 379
Create from Template category, 3
Create Motion Tween context option, Flash, 53,

199, 202, 227, 367, 431, 454

Create Motion Tween option, Flash, 208, 518
Create movie clip for this layer option, 148
Create movie clip option, 143
Create New area, 4, 5
Create New Code Snippet dialog box, Flash,

269, 310
Create New Code Snippet option, Flash, 269,

310
Create New Mobile section, Device Central, 738

Create New Symbol dialog box, Flash, 45, 47
Create Shape Tween context menu item, Flash,

365
Create video for use in Flash link, Flash Help

panel, 41
Create Watch Folder menu item, Adobe Media

Encoder, 541
CreateMotionAS3.fla file, 416

Creator category, Device Central, 738
Crop Proportions drop-down list, Adobe Media

Encoder, 539
Crop Setting option, Adobe Media Encoder, 539
Crop tool, Adobe Media Encoder, 539
cropping videos, 539
crosshead bearing symbol, Flash, 471
CSS (Cascading Style Sheets)

external, loading
block element styling, 680–682
custom tags, 684–686
embedded fonts, 690–692
inline element styling, 683–684
overview, 676–679
Selectors vs. Properties panel, 692–694
style inheritance, 686–688

styling hyperlinks, 688–690
overview, 669–670
styling with, 671–676

cue points
creating XML captions, 588–592
overview, 562–566
XML format, 583–587

www.zshareall.com

http://www.zshareall.com

INDEX

818

Cue Points area
Dreamweaver Properties panel, 592
Flash Component Inspector panel, 562
Flash Properties panel, 562, 584

Cue Points tab, Adobe Media Encoder, 583
<CuePoint> tag, XML, 585
CuePoints.xml file, 584, 591, 592
CuriousRabbit.fla file, 397
Current Frame area, Flash, 18
Current frame as movie clip option, 139
Current Frame indicator, Flash Timeline panel,

396

currentSong variable, ActionScript, 723
Curtis, Hillman, 760
Curve fit setting, 128
custom classes, Code snippets, 271–277
Custom Color boxes, 114
Custom context menu item, 444
Custom Download Settings dialog box, 769
Custom Ease In/Ease Out dialog box, Flash,

387, 388, 391, 395, 437
Custom Ease In/Ease Out editor, Flash, 384
Custom folder, Flash Code Snippets panel, 270
Custom graph, Flash Motion Editor panel, 444
Custom Presets folder, 456
Custom Skin URL setting, Flash, 551, 552
custom tags, 684–686
CustomEasingComparison.fla file, 388
CW (clockwise), 454

Cycle layer, Flash, 195, 196

D
Damping property, Flash bones, 464, 468
Damping value, Flash bones, 468
Dancing Fool symbol, Flash, 455, 456, 457, 458
DancingFool layer, Flash, 198, 199
DancingFool movie clip, Flash, 198

Darken blend mode, Flash, 180
Darling, Philip, 711
data parameter, Flash ComboBox component,

621
data property

ActionScript, 677, 707, 708
Flash ComboBox component, 621, 637

data types, ActionScript, 241–243
DataGrid component, 622–623

dataProvider area, Flash Properties panel, 625
DataProvider class, ActionScript, 706

dataProvider parameter
Flash ComboBox component, 637
Flash List component, 624, 626
Flash Properties panel, 620

Flash TileList component, 637
dataProvider row, Flash Properties panel, 625
DatatypeError.fla file, 242
Date class, ActionScript, 255
Davis, Joshua, 159
De Boer, Weyert, 653
Debug Options button, Flash Script pane, 218
Decision button, Flash Properties panel, 564

Deco tool, 88–97, 109
Deco02.fla file, 92
Deco03.fla file, 95
DecoCow.fla file, 91
DecoCow.swf file, 91
Deco.fla file, 89
Decorative drawing tools Group, Flash, 96
Default Presets folder, 455

Default Shape property, Spray Brush tool, 99
deforming classic tweening, 382–384
Delete Anchor Point option, Pen tool, 103
Delete Code Snippet menu option, Flash, 271
deleting bones, 468
Deployment panel, Adobe AIR, 754
Deployment tab, Adobe AIR, 753
depth limitations, 520–522
DeRaud, Cris, 520

descendant accessor (.), ActionScript, 657–658
descendants() method, ActionScript, 654, 655
Design View, Dreamweaver, 578
Destination layer, Flash, 181, 182, 183
Detect Flash Version option, 800
Device Central, 737–750
Device font option, 801
device fonts, 322–323

device Library, Device Central, 740
Device Profiles section, Device Central, 738
Device sound input field, Flash Sound

Properties dialog box, 286
Dias, Tiago, 579
Difference blend mode, Flash, 180, 184
Digit Case setting, Flash Advanced character

properties, 335

Digit Width setting, Flash Advanced character
properties, 335

Dimensions drop-down menu, 801
Dimensions input area, Flash Document

Settings dialog box, 10

www.zshareall.com

http://www.zshareall.com

INDEX

819

Dimensions setting, Flash Document Settings
dialog box, 11

direction data, Bezier curve, 102

direction parameter, Flash Slider component, 634
Direction property, Flash Properties panel, 454
Displacement Map filter, ActionScript, 175
Display area, Flash Properties panel, 182, 596
Display icon, Flash Player dialog box, 597
Display menu option, 801
Display option, Flash Properties panel, 596
display property, 671

Display tab, Device Central, 749
displayAsPassword parameter, Flash TextInput

component, 636
DisplayObject class, ActionScript, 222, 224, 629
DisplayObjectContainer class, ActionScript, 253
DisplayObject.localToGlobal() method,

ActionScript, 474
Distort option, Flash, 365, 382, 501, 502
Distribute Horizontal Center button, Flash Align

panel, 194
Distribute to Layers option, Flash, 37, 191, 192,

719
Distribute Top Edge button, Flash Align panel, 193
Distributive setting, Flash Properties panel, 369
document class, ActionScript, 251–253
Document menu option, Flash, 10
Document options area, Flash Spelling Setup

dialog box, 352
Document Preferences, 9–10
Document Properties dialog box, Flash, 205,

306, 550
Document Settings, 10–11
document tab, Flash, 64
DOMDocument.xml file, 64, 662, 664, 666
Door Left layer, Flash, 517, 518

Door Right layer, Flash, 517, 518
dot layer, Flash, 412, 413
dot notation, ActionScript, 237–238
dots (.), 650–654
Down area, Flash Audio layer, 297
Down frame, Flash button component, 603
Download AIR for Android Extension for Flash

CS5 link, Adobe web site, 751

Download Settings option
Bandwidth Profiler, 769
Flash, 629

Download Software link, Adobe web site, 751
downScroller function, ActionScript, 359
dragDude() function, ActionScript, 607
drawers, Flash, 7

Drawing category, 85
Drawing Effect area, 90, 92
Drawing Effect menu, 93, 95, 109

Drawing grouping, Flash, 70
Drawing objects, Flash, 69
Drawing option, Flash Preferences dialog box,

475, 488
Drawing section, Flash Preferences dialog box,

477
drawRect() method, ActionScript, 313
Dreamweaver CS5, 578–579

Drop Shadow filter
applying, 175–177
Flash, 178, 179, 596
Symbol Editor Properties panel, 594

Dunlay, Bryan, 711
Duplicate Window menu option, Flash, 13
Dura, Josh, 496
Dynamic Text text type, Flash Properties panel,

570

E
E4X syntax

descendant accessor (.), 657–658
dots (.), 650–654
filtering, 656–657
namespaces, 659–661
node types, 654–655

overview, 649
at symbol (@), 650–654
XFL, 661–666

Ease hot text, Flash Properties panel, 368, 369,
385

Ease option, Flash Properties panel, 368
Ease property, Flash, 381, 388, 394, 454
Ease twirlie, Flash Properties panel, 436, 462

Eases area, Flash Motion Editor panel, 21, 22,
441, 442, 444, 445

Eases strip, Flash Motion Editor panel, 23
easing

anchor points, 391–393
custom, 387–390
with graphs

applying multiple eases, 444–445
built-in eases, 438–443

custom eases, 444
overview, 437

multiple properties, 393–395
overview, 384–387

www.zshareall.com

http://www.zshareall.com

INDEX

820

ECMA (European Computer Manufacturers
Association), 650

Ecma International, 650
ECMA-262 specification, 215

ECMAScript Language Specification, 650
Edit button

Flash ActionScript Settings area, 252
Flash Properties panel, 205, 293, 387, 388,

389, 391, 394
Edit Document menu item, Flash, 611, 627
Edit Envelope dialog box, Flash, 293, 294, 295
Edit Export Settings option, Adobe Media

Encoder, 533
Edit Guides menu item, Flash, 188
Edit menu, Flash, 38
Edit Multiple Frames button, Flash Timeline

panel, 396, 400
Edit Multiple Frames workflow, 457
Edit property, Flash Properties panel, 381
Edit stroke style button, 107, 108

Edit This Theme option, 118
Edit With option, Flash, 126
Editable text option, 147
Effect drop-down menu

Flash Edit Envelope dialog box, 295
Flash Properties panel, 293

Effect field, Flash Edit Envelope dialog box, 294
effects, parallax, 512–517
Elapsed Time area, Flash, 18

Elapsed Time indicator, Flash Timeline panel,
396, 397, 398

elements
block, 680–682
inline, 683–684

ElementSelectors.fla file, 680, 683
Embed button, Flash Font Embedding dialog

box, 325

Embed FLV in SWF and play in timeline option
Adobe Media Encoder Import Video wizard,

547
Flash Import Video dialog box, 306

Embed video in SWF and play in timeline option,
Flash Import Vider wizard, 580

<embed> tag, HTML, 577
Embeddable category, Font Book, 327

embedded fonts, 690–692
embeddedArial variable, ActionScript, 694
embedding

fonts, 324–327
video, 579–583

Embedding options, Flash Import Video dialog
box, 306, 307

Embedding page, Flash Import Vider wizard,
580

Emulate Flash option, Device Central, 741
Enable check box, Flash Properties panel, 465,

469, 472
Enable guides for 9-slice scaling option

Flash Convert to Symbol dialog box, 154
Symbol Properties dialog box, 164

Enable hardware acceleration option, Flash
Player dialog box, 597

Enable property, Flash bones, 464, 465
Enable Simple Buttons menu option, Flash, 157,

297
Enabled option, Flash Properties panel, 490
Encapsulated PostScript (EPS) format, 124
Encode Alpha Channel option, Adobe Media

Encoder Export Settings window, 536,
573

Encoding Passes area, Adobe Media Encoder
Export Settings window, 537, 544

end user license agreement (EULA), 327
endTime field, Adobe Media Encoder Export

Settings window, 588
endTime property, XML, 585
engine layer, Flash, 473
Envelope option, Flash, 365, 382
EPS (Encapsulated PostScript) format, 124

EQ (equalization), 296
Erase blend mode, Flash, 180
Eraser Faucet modifier, Eraser tool, 101
Eraser Mode modifier, Eraser tool, 101
Eraser Shape modifier, Eraser tool, 101
Eraser tool, 71, 90, 91, 93, 100, 101
Errors dialog box, Adobe Media Encoder, 540
Essentials workspace, Flash, 8

Estimated glyphs total, Flash Font Embedding
dialog box, 326

EULA (end user license agreement), 327
European Computer Manufacturers Association

(ECMA), 650
Event class, ActionScript, 230, 609, 677, 700,

736
event handlers

ActionScript, 229
referencing components in, 608–609

Event keyframe, Flash, 297
event sound, Flash, 288
Event.CHANGE event, ActionScript, 618, 621,

626, 631, 634, 636, 708, 710

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

INDEX

821

Event.COMPLETE event, ActionScript, 629,
649, 677, 710, 713, 725

Event.ENTER_FRAME event, ActionScript, 474,

724, 731
Event.fla file, 231
Event.ID3 event, ActionScript, 725, 734
Event.OPEN event, ActionScript, 725
events, 229–233, 288–291, 726–728
Events heading, ActionScript 3.0 Language and

Components Reference, 607
Events.fla file, 230

Event.SOUND_COMPLETE event, ActionScript,
736

evt parameter, ActionScript, 233, 649
evt:MouseEvent expression, ActionScript, 232
evt.target expression, ActionScript, 609
evt.target.data expression, ActionScript, 649,

677
Exercise/MP3Player folder, 712, 717
Exercise/Preloader folder, 697

Exercise/Slideshow folder, 704
Exercise/YourTurn folder, 584
Existing folder radio button, Flash Move to folder

dialog box, 154
Expand All button, Flash Script pane, 218
Expand timeline if needed check box, Flash

Import Vider wizard, 580
Expanded Graph Size hot text, Flash, 436

Expanded Graph Size value, Flash, 22
Export for ActionScript option, Flash, 300, 357,

697
Export for runtime sharing option, Flash Symbol

Properties dialog box, 171
Export formats available box, Adobe Media

Encoder, 544
Export Settings window, Adobe Media Encoder,

533, 535, 539, 543, 544, 573, 588
Export SWC option, 796
exporting animated GIFs, 787–789
Extend link, 4
Extend option, Gradient Overflow tool, 120
Extensible Markup Language. See XML
external CSS, loading

block element styling, 680–682

custom tags, 684–686
embedded fonts, 690–692
inline element styling, 683–684
overview, 676–679
Selectors vs. Properties panel, 692–694
style inheritance, 686–688
styling hyperlinks, 688–690

external playlists, setting up, 712–713
Eyedropper tool, 117, 123

F
F4V files, creating, 542–544
f4v option, Adobe Media Encoder Export

Settings dialog box, 543
face attribute, 586
Fade In a Movie Clip snippet, Flash, 269
Family drop-down menu, Flash, 335
Family property, Flash Properties panel, 332
FastForward folder, 714

FastForward movie clip, Flash, 714
FFTMode parameter, ActionScript

computeSpectrum() method, 312
Figurine clip, 100
Figurine.jpg image, 503
Figurines image, 135
FigurineSmall.jpg file, 502
FigurinesNoTrans file, 135

File path area, Adobe Media Encoder Import
Video wizard, 546

files
F4V, creating, 542–544
paths of, 551–552

Fill color chip, 78, 80, 115, 338
Fill color, Flash Properties panel, 338
Fill Color option, Flash Tools panel, 48

Fill property, Flash Properties panel, 346
fills, shape IK and, 485
FilmTV.mov file, 575
filter effects, tweening, 413–414
Filter layer, Flash, 203, 204
Filter.fla file, 175
filtering E4X, 656–657
filters

applying, 174–177
facts regarding, 179
perspective, 177–179

Filters area
Flash Motion Editor panel, 21, 23
Flash Properties panel, 177, 179, 596
Symbol Editor Properties panel, 594

Filters drop-down menu, Flash Properties panel,
176

Filters properties, Flash Properties panel, 394
Filters strip

Flash Motion Editor panel, 23
Flash Properties panel, 50

www.zshareall.com

http://www.zshareall.com

INDEX

822

Filters twirlie, Flash Properties panel, 175, 176
Find button, Flash Script pane, 217
Finish button

Adobe Media Encoder Import Video wizard,

549
Flash Import Vider wizard, 580

Finish Video Import dialog box, Flash, 308
Finish Video Import page

Adobe Media Encoder Import Video wizard,
549

Flash Import Video dialog box, 307
Flash Import Vider wizard, 580

Fir layer, 106
Fire Animation Deco brush, 110
Fire Animation option, 109
Fire layer, 108, 109
Fireworks CS5, 137–139, 516–517
Fireworks import dialog box, 139
Fireworks Objects folder, 140, 513
Fireworks PNG Import Settings dialog box, 139

Fireworks, rapid prototyping for Rich Internet
Applications, 774–775

First field, Flash Properties panel, 156, 403, 407
First input field, Flash Properties panel, 403
fl_NS_2.play method, ActionScript, 560
.fla file extension, 64
.fla format, 62
Flag layer, XML, 666
Flash (.swf) file format, 793

Flash alignment options, 803
Flash Color Set file, 117
Flash CS4 Document (*.fla) option, 63
Flash CS5 Document (*.fla) option, 63
Flash CS5, playing FLV in. See also full-screen

video
ActionScript, 555–560
alpha channel video, 572–574

cue points, 562–566
FLVPlayback component, 552–555,

560–561
FLVPlaybackCaptioning component,

567–571
snippets, 559–560
using wizard, 546–552

Flash CS5 Uncompressed Document (*xfl)

option, 63
Flash documentation, 218
Flash Help menu option, Flash, 40, 258
Flash keyframes, 143
Flash movie

adding audio, 59

animated fly project, 55–57
creating illusion of depth, 48–53
drawing fly, 47
nesting movie clips, 45

overview, 42–46
testing and saving, 61–65

Flash Only: Allow Full Screen HTML template,
598

Flash Only-Allow Full Screen option, Flash
Publish Settings dialog box, 576

Flash option, Flash Publish Settings dialog box,
575

Flash Player dialog box, 597
Flash settings, publishing Flash movies,

794–799
Flash tab

Adobe AIR, 752
Flash Publish Options dialog box, 169

Flash Video (FLV). See FLV
<flashbooks> tag, XML, 646, 651

flashBooks.xml file, 649, 656
flashx.textLayout.elements.Configuration class,

ActionScript, 342
fl.containers package, ActionScript, 614
fl.controls package, ActionScript, 614
Fleischer, Max, 588
Flick, Chris, 176
FliesBuzzing.mp3 file, 44, 59
fl.ik package, ActionScript, 473

"fl.motion.*" parameter, ActionScript, 661
flow, container and, 337–338
Flow icon, Flash, 338, 339
flutter by (motion guide) layer, Flash, 453
flutter by layer, 408, 454
FLV (Flash Video)

encoding, 532–544. See also Adobe Media
Encoder

playing in Flash CS5. See also full-screen
video

ActionScript, 555–560
alpha channel video, 572–574
cue points, 562–566
FLVPlayback component, 552–555,

560–561
FLVPlaybackCaptioning component,

567–571
snippets, 559–560
using wizard, 546–552

FLV radio button, Adobe Media Encoder Export
Settings window, 535

<FLVCoreCuePoints> tag, XML, 585

www.zshareall.com

http://www.zshareall.com

INDEX

823

FLVPlayback component, 552–555, 560–561
FLVPlaybackCaptioning component, adding

captions with, 567–571

flvPlaybackname parameter, Flash Properties
panel, 570

Fly layer, Flash, 56, 57, 58
Fly movie clip, Flash, 48, 56, 57, 58
Fly symbol, Flash, 47
FogMask layer, Flash, 206
Folder 1 folder, 40
Folder field, Flash Convert to Symbol dialog box,

154
Folder icon, Flash Layers panel, 40
Folder layer mode, Flash, 33
Font drop-down list, Flash, 332
Font Embedding dialog box, Flash, 325, 326,

327, 690, 691
font smoothing, 320
Font Symbol Properties dialog box, Flash, 690
 tag, HTML, 586, 674

fontFamily property, 671, 691
Font.fontName property, ActionScript, 692
fonts

device, 322–323
embedded, 690–692
embedding, 324–327
and typefaces, 316–318

fontSize property, 671, 679

fontStyle property, 671
fontWeight property, 671, 687
for constant bitrate (CBR), 537
for each.in statement, ActionScript, 657
for variable bitrate (VBR), 537
for.in statement, ActionScript, 657
Format drop-down menu

Adobe Media Encoder, 533

Flash, 63, 663
Format tab, Adobe Media Encoder Export

Settings window, 535, 543, 573
formats

audio
bit depth, 281–283
MP3, 283–284
sample rates, 281–283

video, 530–532
XML, 584–587

fps (frames per second), 16, 537
Frame input field, Flash, 455
Frame menu item, Flash, 410
Frame movie clip, 164

Frame option, Flash Properties panel, 455
Frame Rate area, Adobe Media Encoder Export

Settings window, 537

frame rate, Flash, 11, 16
Frame Rate indicator, Flash Timeline panel, 396
Frame Rate value, Adobe Media Encoder Export

Settings dialog box, 544
frames, 5, 16–18
Frames button, Flash Edit Envelope dialog box,

294
frames per second (fps), 16, 537

Free Transform tool, Flash, 75–77, 165, 178,
365, 382, 410, 452, 477

FreeTransform.fla file, 75
FrogLoop.fla file, 292
FrogPan.fla file, 293
Front movie clip, Flash, 49, 51
FrontGarden layer, Flash, 49, 53, 59
Frutiger, Adrian, 324
Full Screen button

Browser, 576, 578
Dreamweaver, 579

FULL_SCREEN constant, ActionScript, 234
FullScreen folder, 574, 578
full-screen video

ActionScript/HTML, 574–576
Dreamweaver CS5, 578–579
HD, 597–598

fullScreenRect.fla file, 598
fullScreenRect.html page, 598
FullScreenSkin.fla file, 575
Function class, ActionScript, 239
FutureSplash tool, 68

G
GameGraphics folder, 746

games, package as Android AIR apps, 750–756
Garden folder, 64
Garden layer, Flash, 34, 35, 37
Garden.fla file, 43, 49, 63
Garden.xfl file, 64
Gaussian Blur filter, Flash, 181
General category, Flash Preferences dialog box,

31
General option, Flash Preferences dialog box, 9

Generate size report option, 796
Georgenes, Chris, 404, 407, 408
ghost handle movie clip, Flash, 467, 468
ghost handle symbol, Flash, 467

www.zshareall.com

http://www.zshareall.com

INDEX

824

GIF (Graphic Interchange Format)
animated

exporting, 787–789
importing, 790

overview, 786
animations, 136
images, 135
overview, 134

Glow effect, Flash, 220
Glow filter, Flash, 175, 413
goFullScreen function, ActionScript, 598
gotoAndPlay method, ActionScript, 229, 747

Grabber Hand tool, Flash, 71
Gradient Bevel filter, Flash, 175
Gradient Glow filter, Flash, 175, 204
Gradient Transform tool, 72, 77–80, 119, 121,

122, 377, 378
gradientHalf symbol, Flash, 697, 698
gradients, altering, 377–378
Graph Size hot text, Flash, 436

Graph Size value, Flash, 22
Graphic Interchange Format. See GIF
graphics

bitmap images
GIF files, 134–136
importing Fireworks CS5 documents,

137–139
importing Illustrator CS5 documents,

140–145

importing Photoshop CS5 documents,
146–150

JPEG files, 131–132
overview, 123–125
tracing, 127–130

campfire example
campfire movie, 108
pine needles, 107

pine tree, 106
tree trunk, 104

color
Color palette, 112–114
Color Picker, 112–114
creating persistent custom colors, 115–

117
kuler color picker, 117–118

overview, 110–111
drawing

Brush tool, 85–88
Deco tool, 88–97
Eraser tool, 101
overview, 83–84

Pen tool, 102–104
Pencil tool, 83–84
Spray Brush tool, 98–100

overview, 67–69

symbols
as mini-libraries, 406–407
nesting, 404–406
swapping, 401–402
timelines, movie clip timelines versus,

402–404
Tools panel

Free Transform tool, 75–77

Gradient Transform tool, 77–80
Object Drawing mode, 80–82
overview, 70–71
Selection tool, 72–75
Subselection tool, 72–75

graphs, easing with
applying multiple eases, 444–445
built-in eases, 438–443

custom eases, 444
overview, 437

Grden, John, 497
Green layer, Flash, 451, 452
Green, Tom, 579, 756
greensock-as3.zip file, 272
Grid area, Flash Custom Ease In/Ease Out

dialog box, 388
Grid dialog box, Flash, 187, 188

Grid Fill option, 91, 95
Grid Fill properties, Deco tool, 90
Grid panel, Flash, 188
Grid Translation option, 93, 94
grotto movie clip icon, Flash, 406
grotto symbol, Flash, 406
grotto timeline, Flash, 406
Grotto.fla file, 404

groupName parameter, RadioButton
component, 631

Guide context menu item, Flash, 408, 411, 453
Guide dialog box, Flash, 188
Guide layer mode, Flash, 34
guide mask layer, Flash, 413
Guide:Fly layer, Flash, 57, 58, 59
Guides dialog box, Flash, 188

guinness movie clip, Flash, 223, 224
Guinness symbol, 223
Guinness.jpg image, 223
Gutter Width field, Flash Properties panel, 338

www.zshareall.com

http://www.zshareall.com

INDEX

825

H
H (Height) property, Flash Properties panel, 454
hand symbol, Flash, 459, 476

handle symbol, Flash, 488, 492
Hanna, William, 302, 529
Hard Light blend mode, Flash, 180
Hardware Acceleration option, 798
Hauwert, Ralph, 497
HD (high-definition) video, 597–598
Head layer, 142
Head3 graphic symbol, Flash, 402
Head4 graphic symbol, Flash, 401, 402

Height (H) property, Flash Properties panel, 454
height attribute, 586
Height property, Flash Transform panel, 452
Height value, Symbol Editor Properties panel, 594
Help button

Flash Actions panel, 258
Flash Script pane, 218

Help feature, 40–42, 258

Help menu
ActionScript, 175, 612
Flash, 40, 258

Help panel, Flash, 40, 41, 243, 257
Henry, Kristin, 252
hertz, audio, 283
Hex edit box, 112
hexadecimal model, Flash, 111

Hide Object option, Flash, 178
high-definition (HD) video, 597–598
Highlight color list, Flash, 10
Highlight Color property, Flash Properties panel,

332
hit area layer, Flash, 715, 716
Hit frame

button component, 603

Flash, 715
hitTestPoint() method, ActionScript, 746
Hogue, David, 517, 772, 775
HornyToads class, 692, 693
HornyToadsItalic class, 692
Hosea, Birgitta, 529, 571
Household Door Wood Door Squeak 01.mp3

file, 519
:hover pseudo-class, Flash, 689

:hover tag, Flash, 688
href attribute

Flash, 688
HTML, 586

HSB model, Flash, 110

hspace attribute, 587
HTML (HyperText Markup Language)

full-screen video, 574–576

settings, publishing Flash movies, 799–803
SWFs and, 783
tags, 586–587
web formats, 785–786

HTML option, Flash Publish Settings dialog box,
575

HTML tab, Flash Publish Settings dialog box,
550, 576, 799

hyperlinks
styling, 688–690
and TLF, 349–352

HyperText Markup Language. See HTML

I
<i> tag

HTML, 587, 683
XML, 585

Icons tab, Adobe AIR, 754
id attribute, 586
Identifier field, Flash Sound Properties dialog

box, 299
if () statement, ActionScript, 700
IFlowComposer() class, ActionScript, 341
IglooVillage.psd document, 146
IK (inverse kinematics)

Bone tool
constraining joint rotation, 465–468
deleting bones, 468
overview, 459–461
properties, 462–465

overview, 458
Spring option for bones

animating IK poses, 478–479

applying joint translation, 470–475
Bind tool, 480–487
overview, 468–469
preferences, 475–477

IK Bone symbol, Flash Properties panel, 472
IK Bone tool check box, Flash Preferences

dialog box, 477
IK Bone tool: Flash Preferences dialog box, 475
IK Bone tool preference setting, Flash, 477

IK chain, 459
IK Node symbol, Flash Properties panel, 472
IK_Poses.fla file, 478
IKArmature class, ActionScript, 474

www.zshareall.com

http://www.zshareall.com

INDEX

826

IKBone class, ActionScript, 474
IKJoint class, ActionScript, 474
IKManager class, ActionScript, 474
IKMover class, ActionScript, 473, 474

Illustrator CS5 documents, importing, 140–145
Image layer, Flash, 305, 306, 517
imageData array, ActionScript, 707, 708, 710,

711
imageData variable, ActionScript, 706
imageData[pict] array, ActionScript, 707
ImageFill.fla file, 122
Images and Sounds settings, Flash Publish

Settings panel, 287, 288, 795
Images layer, Flash, 267
IMG_0098.jpg symbol, Flash, 697
 tag

HTML, 586
XML, 647

Impact class, ActionScript, 692
Import ActionScript Cue Points button,

Dreamweaver Properties panel, 592
Import as a single flattened bitmap option,

Fireworks import dialog box, 139
Import Bitmap dialog box, 133
Import button

Bitmap Properties dialog box, 133
Flash, 286, 400

Import dialog box, Flash, 125, 142, 143, 145,
306, 581

Import option, Fireworks import dialog box, 139
Import to Library button, Flash, 44
Import to Library dialog box, 122
Import to Library menu option, Flash, 44
Import to Stage menu item, Flash, 490, 581
Import to Stage option, Flash, 284
Import unused symbols option, 143
Import Video dialog box, Flash, 306, 307

Import Video feature, Flash CS5, 308
Import Video menu option

Adobe Media Encoder, 546
Flash, 306

Import Video wizard
Adobe Media Encoder, 546
Flash, 579, 581

Imported JPEG Data check box, 133

importing
animated GIFs, 790
audio, 284
Fireworks CS5 documents, 137–139
Illustrator CS5 documents, 140–145
Photoshop CS5 documents, 146–150

In point, Adobe Media Encoder, 534, 535
Include audio check box, Flash Import Vider

wizard, 580
Include hidden layers option, 796

Include XMP metadata option, 796
Indent option, Flash Paragraph properties, 337
indent parameter, 587
inheritance, 682, 686–688
Inheritance.fla file, 686
init() function, ActionScript, 745
Ink Bottle tool, Flash, 71
Ink mode, Pencil tool, 84

inline elements, styling, 683–684
Inner shadow option, Flash, 179
<inner> tag, Flash, 687
Input Text type, Flash, 242
Insert a Target Path button, Flash Script pane,

217
Insert Frame context menu item, Flash, 478, 491
Insert Keyframe menu option, Flash, 17, 50, 446

Insert Pose context menu item, Flash, 478
Instance Name field, Flash Properties panel,

604
Instance3.fla file, 225
Instance4.fla file, 226
Instance.fla file, 223
InteractiveObject class, ActionScript, 222
interface

creating new document, 5–6

Document Preferences, 9–10
Document Settings, 10–11
Flash movie

adding audio, 59
animated fly project, 55–57
creating illusion of depth, 48–53
drawing fly, 47
nesting movie clips, 45

overview, 42–44
testing and saving, 61–65

layers
adding content to, 36–37
creating, 34
grouping, 40
Help feature, 40–42
overview, 32

properties, 33
showing/hiding and locking, 38–39

Library panel, 31
managing workspace, 6–8
overview, 2–4
Properties panel, 23–26

www.zshareall.com

http://www.zshareall.com

INDEX

827

timeline
frames, 16–18
Motion Editor panel, 19–23

overview, 14–15
Tools panel, 29–31
zooming stage, 11–13

International Standardization Organization
(ISO), 531

Internet, optimizing and publishing Flash
movies, 759

Internet Protocol (IP), 759

Internet Protocol suite, 759
Into option, Fireworks import dialog box, 139
Intro folder, Flash Library panel, 743
inverse kinematics. See IK
Invert blend mode, Flash, 180
IP (Internet Protocol), 759
IP address, 759
isNaN() function, ActionScript, 731, 732
ISO (International Standardization

Organization), 531

J
jaggies, 319
Jeremiah, Andre, 301
Jespers, Serge, 756
jog controller, Adobe Media Encoder, 534
Joint Photographic Experts Group (JPEG), 124,

131–132
Joint: Rotation area, Flash Properties panel,

465, 466, 472, 490
joint rotation, constraining, 465–468
Joint: Rotation constraint, Flash, 466
Joint: Rotation property, Flash, 464, 467
joint translation, applying, 470–475
Joint: X and Y Translation property, Flash

bones, 464
Joint: X Translation area, Flash Properties

panel, 472
Jones, Tim, 493
JPEG (Joint Photographic Experts Group), 124,

131–132
JPEG quality option, 795
JPG Quality slider, 131
JPGCompression2.fla file, 132

JPGCompression.fla file, 131
JPGCompression.swf file, 132

K
kaboom.mp3 file, 289, 291, 296, 300
Kelly, Barry, 493

kerning property, 333, 671
Key frame interval area, Adobe Media Encoder

Export Settings window, 537
Key frame placement selection, Adobe Media

Encoder Export Settings window, 537
keyboard, using to control motion, 419–421
KeyboardControl.fla file, 419
Keyframe menu item, Flash, 363, 385
keyframes, Flash, 17, 143

keywords, ActionScript, 234
kilohertz, audio, 283
Knip, Tim, 497
knob layer, Flash, 717, 718
Kricfalusi, John, 424
kuler color picker, 117–118
Kuler panel, 118
kumimoji, 333

L
Label component, 624
label parameters

Flash Button components, 608
Flash ComboBox component, 621

label property
ActionScript, 708
Flash CheckBox component, 616

Flash ComboBox component, 637
Flash TileList component, 637

LabelButton.icon style
ActionScript, 615
Flash, 612

labelPlacement property, Flash CheckBox
component, 616

Lasso tool, Flash, 70, 71

Layer 1 layer, Flash, 35, 36, 45, 191, 223, 239,
242, 248, 253, 254

Layer 2 layer, Flash, 35
Layer 3 layer, Flash, 35
Layer 7 folder, Flash, 714
Layer blend mode, Flash, 180
Layer context menu, Flash, 195
Layer height drop-down menu, Flash, 289

Layer Properties dialog box, Flash, 39, 289
Layer Visibility icon, Flash, 38, 39
Layer1 layer, Flash, 35

www.zshareall.com

http://www.zshareall.com

INDEX

828

layers
adding content to, 36–37
creating, 34
grouping, 40

Help feature, 40–42
overview, 32
properties, 33
showing/hiding and locking, 38–39

Layers panel, Flash, 40
Layers.fla document, 34
LCD (liquid crystal display), 320
leading parameter, 587

Leading property
ActionScript, 671, 679
Flash Properties panel, 332, 358

Leaf layer, Flash, 16, 17, 19
Leaf.fla file, 16
Learn area, 4
Left Align button, Flash Align panel, 193
leftmargin parameter, 587

Leftwing layer, Flash, 45, 410
length() method, ActionScript, 652
Length property, Flash bones, 464
letter spacing option, Flash Paragraph

properties, 333, 337
letterSpacing property, 672
 elements, Flash, 692
 SWF tag, 684
 tag

Flash, 694
HTML, 587, 674, 681, 682

Library assets, Flash, renaming, 713–714
Library drop-down menu

Flash, 172, 555
Symbol Editor, 594

LIBRARY folder, 663, 664, 666
Library icon, Flash, 31

Library menu option, Flash, 43
Library panel, 31, 122, 160, 763
Library Preview pane, 117
Library root link, Flash Convert to Symbol dialog

box, 154
Library tab, Flash, 31
LibrarySound.fla file, 300
Ligature options, Flash Advanced character

properties, 336
Ligatures drop-down menu, Flash, 335
Ligatures setting, Flash Advanced character

properties, 335
Lighten blend mode, Flash, 180, 183

Line Numbers context menu option, Flash
Actions panel, 219

Line tool, Flash, 106, 500
Link and Target areas, Flash Properties panel,

340
Link field, Flash Advanced character properties,

334
Link icon, Flash Properties panel, 338
Link property, Flash Advanced Character

options, 349
Link setting

Flash Advanced character properties, 334

Flash Properties panel, 586
:link tag, Flash, 688
Linkage area

Flash Advanced properties panel, 298
Flash Font Embedding dialog box, 327
Flash Symbol Properties dialog box, 171,

609
Linkage check boxes, Flash Convert to Symbol

dialog box, 154
linkage class, ActionScript, 615
Linkage Properties dialog box, Flash, 171, 300
linked files, publishing Flash movies containing,

805–806
linkHoverFormat property, ActionScript

TextFormat class, 347
Lip Synch menu item, Flash, 406
liquid crystal display (LCD), 320

List component, 619, 624–626, 638
List element, Flash, 619
liveDragging parameter, Flash Slider

component, 634
Load Cue Points File dialog box, Adobe Media

Encoder, 589
Load external video with playback component

radio button, 546

load() method, ActionScript, 302
Loader class, ActionScript, 639, 677
loader layer, Flash, 704
loader variable, ActionScript, 677
loaderAnim movie clip, Flash, 697, 698
Loader.load() method, ActionScript, 707
loading XML files, 648–649
LoadingDisplay movie clip, Flash, 717

LoadingDisplay symbol
ActionScript, 734
Flash, 717, 719, 725

loadSong() function, ActionScript, 723, 724,
725, 728, 737

LoadXML-E4XBonusRound.fla file, 657

www.zshareall.com

http://www.zshareall.com

INDEX

829

LoadXML.fla file, 648, 650
Local area, Flash Help panel, 40
Local playback security drop-down menu, 797

Locale setting, Flash Advanced character
properties, 336

Location area, Device Central, 738
Lock Fill option, Brush tool, 87
Lock icon, Flash, 38, 196, 339
Log button, Flash Properties panel, 24
Log symbol, 105
LogoMorph.fla file, 377

LogoMorphNoHints.fla file, 373
Logs layer, 108, 109
loneliestNumber value, ActionScript, 240
Loop drop-down option, Flash, 455
Loop option

Flash Properties panel, 407, 455
HTML tab, Publish Settings dialog box, 801

Looping area, Flash Properties panel, 156, 292,
403, 455

Looping parameter, Flash Properties panel, 407
Looping properties, Flash, 404
looping timeline, 265
LoopTimeline.fla file, 265
looseChange variable, ActionScript, 246
Luminance slider, 113

M
Macintosh Projector file format, 793
Magnification drop-down menu, Flash, 12
Magnify.fla file, 13
Magnifying Glass tool, Flash, 47, 198, 478
MainArm symbol, Flash, 478
maintainAspectRatio parameter, Flash UILoader

component, 639
maintainAspectRatio value, Flash Properties

panel, 553
mallet movie clip, Flash, 746
MalletNoEasing.fla file, 384
MalletNormalEase.fla file, 387
mallet.x property, 747, 749
mallet.y property, 747, 749
Manage Workspaces menu option, Flash, 8
Mao symbol, Flash Library panel, 156
marginLeft property, 672

marginRight property, 672
Margins option

Flash Paragraph properties, 336
Flash Properties panel, 356

<markup> tag, XML, 666
Mascot layer, Flash, 457
Mascot symbol, Flash, 433

Mascot.ai file, 141, 142, 145
Mascot.ai.Assets folder, 145
MascotCustomEasing.fla file, 444
MascotMultipleEasing.fla file, 444
Mask context menu item, Flash, 195, 199, 412,

413
Mask layer, Flash, 33, 195, 196, 412, 718
Mask movie clip, Flash, 198, 199

Masked (or Mask) layer option, Flash, 196
Masked layer mode, Flash, 33
masks

animating, 411–412
simple, 194–199
using motion guides with, 412–413
using text as, 201–203

MaskTweenk.fla file, 413
MaskTweenMotionGuide.fla file, 413

Match area, Flash Document Settings dialog
box, 10

Match source dimensions check box
Flash Content Path dialog box, 555
Flash Properties panel, 570

Math.round() method, ActionScript, 232, 423
Max hot text, Flash Properties panel, 466
Max property, Flash bones, 464

Max value, Flash Properties panel, 473
maximum parameter, Flash Slider component,

634
McCreedy, Shauna, 301
mercury movie clip, Flash, 628
Merge Layers button, 147
META-INF folder, 663
methods, 221, 226–229

<mid> tag, Flash, 687
MiddleGarden layer, Flash, 49, 54
Milbourne, Paul, 313
Min hot text, Flash Properties panel, 466
Min property, Flash bones, 464
Min value, Flash Properties panel, 473
MinimaFlatCustomColorPlayBackSeek.Counter

Volume.swf file, 549

Minimize panels option, Flash, 7
Minimum area setting, 128
mobile devices

Device Central, 737–750
package games as Android AIR apps,

750–756
Modification grouping, Flash, 70, 71

www.zshareall.com

http://www.zshareall.com

INDEX

830

Modify a Document option, Flash Library panel,
306

Modify Onion Markers button, Flash Timeline
panel, 396, 398

Modify Onion Markers menu, Flash Timeline
panel, 398, 399

More Font Info button, Flash Font Embedding
dialog box, 327

motion, copying
as ActionScript, 416–419
as XML command, 659

Motion Editor panel

animating with, 428–430
easing with graphs

applying multiple eases, 444–445
built-in eases, 438–443
custom eases, 444
overview, 437

moving, 430–437
overview, 19–23

scaling, 430–437
motion guides

overview, 408–411
using with masks, 412–413

motion paths
advanced, 453–454
manipulating, 450–454
properties, 454–455

motion presets, 455–458

Motion Presets panel
Device Central, 741
Flash, 455, 456, 457, 458

Motion Presets tab, Flash toolbar, 455
Motion Tween menu item, Flash, 431
motion tweens, 18, 430
<Motion> element, XML, 659
MotionGuide.fla file, 408

MotionGuideSimple.fla file, 451
MotionPreset.fla file, 455
MOUSE_MOVE handler, ActionScript, 733
MOUSE_UP event, ActionScript, 731
MouseEvent class, ActionScript, 609, 736
MouseEvent parameter, ActionScript, 735
MouseEvent.CLICK event, ActionScript, 231,

234, 301, 305, 607, 609, 708, 736

MouseEvent.MOUSE_DOWN event,
ActionScript, 250, 607, 729

MouseEvent.MOUSE_MOVE event,
ActionScript, 250

MouseEvent.MOUSE_OUT event, ActionScript,
231

MouseEvent.MOUSE_OVER event,
ActionScript, 231

MouseEvent.MOUSE_UP event, ActionScript,
250, 607, 730, 733

Mouse.hide() function, ActionScript, 745, 749
mouseMoveHandler() function, ActionScript,

250
mouseOutHandler function, ActionScript, 231
mouseOverHandler function, ActionScript, 231,

232
mouseUpHandler() function, ActionScript, 301
mouth symbol, Flash, 405, 406, 407

Move to folder dialog box, Flash, 154
Move with Keyboard Arrows option, Animation

folder, 420
moveAmount variable, ActionScript, 423
moveTo() method, ActionScript, 313
movie clip icon, 148
Movie Clip option, Flash Create New Symbol

dialog box, 45

movie clips
embedding video as, 581
timelines, graphic symbol timelines versus,

402–404
MovieClip class, ActionScript, 221, 224, 225,

226, 234, 238, 239, 556, 629
MovieClip method, ActionScript, 227, 238
MovieClip properties, ActionScript, 225, 227
MovieClip.alpha property, ActionScript, 250

MovieClip.buttonMode properties, 608, 726
MovieClip.currentFrame property, ActionScript,

233
MovieClip.gotoAndPlay() method, ActionScript,

229
MovieClip.height property, ActionScript, 628
MovieClipLoader class, ActionScript, 226
MovieClip.mouseX property, ActionScript, 225

Movieclip.parent property, ActionScript, 238, 658
MovieClip.play() method, ActionScript, 263,

629, 725
MovieClip.rotation property, ActionScript, 474
MovieClips folder, Flash, 43, 45, 47, 48, 49
MovieClip.startDrag() method, ActionScript,

250, 607, 730
MovieClip.stop() method, ActionScript, 229,

230, 238, 263, 629
MovieClip.stopDrag() function, ActionScript, 730
MovieClip.totalFrames property, ActionScript,

225
MovieClip.x property, ActionScript, 224, 729
MovieClip.x value, ActionScript, 731

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

INDEX

831

MovieClip.y property, ActionScript, 224
Moving Pictures Expert Group (MPEG), 530,

531

MP3 compression option, Flash Sound
Properties dialog box, 286

MP3 players
with Flash, 283–284
with XML. See also controls, MP3 players

with XML
evaluating and improving, 735–737
overview, 711

renaming Library assets, 713–714
setting up external playlists, 712–713

MPEG (Moving Pictures Expert Group), 530,
531

Multiply blend mode, Flash, 180, 182, 183
muteSound() function, ActionScript, 305
My Devices folder, 740
myFirstSet.clr file, 117

N
Name area

Adobe Media Encoder Export Settings
window, 588

Bitmap Properties dialog box, 132
Flash Convert to Symbol dialog box, 153
Flash Create New Symbol dialog box, 45

Name drop-down menu, Flash Properties panel,

291
name qualifier operator (::), ActionScript, 660
<Name> tag, XML, 585
Namespace class, ActionScript, 660
namespaces, 659–661
Napierski, Steve, 487
nav layer, Flash, 704
Navigate button, Adobe Media Encoder Export

Settings window, 589
Needles layer, 107
nesting

graphic symbols, 404–406
movie clips, 45

NetConnection class, ActionScript, 557
NetStream class, ActionScript, 557
NetStream.play() method, ActionScript, 558
New Document dialog box, Flash, 422

New Document panel, Device Central, 738, 741
New Folder icon, Flash Library panel, 43
New folder radio button, Flash Move to folder

dialog box, 154

New from Template dialog box, 3
New Layer button, Flash, 35, 56
New Symbol button, Flash Library panel, 45, 47

New Symbol dialog box, 104
New Symbol menu option, Flash, 47
New Video, Flash Library panel, 555
New Workspace menu option, Flash, 8
Next button

ActionScript, 723, 727, 736
Adobe Media Encoder Import Video wizard,

547

Flash, 726
Next symbol, Flash, 716
nextFrame() method, ActionScript, 745
nextHandler() function, ActionScript, 728, 729,

736
node types, 654–655
NONE constant, ActionScript, 347
Normal blend mode, Flash, 180, 182, 183
NORMAL constant, ActionScript, 234

Normal layer mode, Flash, 33, 196
NoSpring layer, Flash, 469
ns variable, ActionScript, 660
Number() function, ActionScript, 243
Number of Sides field, Flash Tool Settings

dialog box, 346
Numeric column, Flash DataGrid component,

623

NumericStepper component, 626–628, 633
NumericStepper.fla file, 627
NuttyProfessor.fla file, 186

O
O1_Complete folder, 16
Object class, ActionScript, 673, 706
Object Drawing button

ActionScript, 72
Flash, 500, 501

Object Drawing mode, 80–82, 83, 87
Object Drawing option, Brush tool, 87
Object() statement, ActionScript, 706
Object Windows Library (OWL), 5
<object> tag, HTML, 577
ObjectDrawing.fla file, 82
objects

classes, 221–222
overview, 220
properties, 222–225

Objects option, Fireworks import dialog box, 139

www.zshareall.com

http://www.zshareall.com

INDEX

832

OliverSeller.jpg file, 665, 666
Olives.fla file, 164, 166
Olsson, Richard, 496
O'Meara, Robert, 529

Omit trace actions option, 797
on() function, ActionScript, 219
On2 VP6 codec

Adobe Media Encoder, 536, 573
Flash, 572

onClipEvent function, ActionScript, 219
Onion All option, Flash Timeline panel, 399
Onion Skin button, Flash Timeline panel, 396,

398, 399
Onion Skin Outlines button, Flash Timeline

panel, 396, 399
onion skinning, 386, 397–399
Online area, Flash Help panel, 40
Open a Recent Item category, 4
Open and close drawers option, Flash, 7
Open button, Adobe Media Encoder, 532

Open Code Snippets button, Flash Script pane,
218

Open dialog box, 126, 169, 532
Open External Library menu item, Flash, 169
Open for Testing section, Device Central, 738
Open in Device Central area, Adobe Media

Encoder, 544
Open New Library buttons, Flash, 170
operators, ActionScript, 244–247

Optimize Curves dialog box, 130, 780
optimizing Flash movies

bandwidth, 760–762
Bandwidth Profiler

pinpointing problem content, 769–770
reports, 770–771
simulating download, 765–769

distributing weight, 776–777

Internet, 759
optimizing elements in movie, 778–782
planning project, 771–777
streaming, 763–765
users, 762–763
World Wide Web, 760

Options area
ActionScript, 72

Flash Font Embedding dialog box, 326
Flash Properties panel, 156, 473
Flash Tools panel, 29

Options button
Flash Code Snippets panel, 310
Flash Properties panel, 248

Flash Snippets panel, 269
Flash Tool Settings, 346

Options drop-down menu, Flash Properties
panel, 403

Options grouping, Flash, 70, 71
Options twirlie, Flash Properties panel, 462
Orient to path check box, Flash Properties

panel, 382, 409, 454
Orient to path option, Flash Properties panel,

454
Out point, Adobe Media Encoder, 534, 535
<outer> tag, Flash, 687

Outline format area, Flash Font Embedding
dialog box, 327

Outline method, Flash Font Embedding dialog
box, 327

Output Channels field, Adobe Media Encoder
Export Settings window, 538

Output Channels option, Adobe Media Encoder
Export Settings window, 573, 588

Output folder, Adobe Media Encoder, 542
Output Name field, Adobe Media Encoder

Export Settings window, 535
Output pane

Adobe Media Encoder, 539
Flash Properties panel, 24

Output tab
Adobe Media Encoder, 539
Flash, 224

outPutArray parameter, ActionScript
computeSpectrum() method, 312

Oval tool
ActionScript, 77
Flash, 82, 230, 248, 488

Over frame, Flash button component, 603
Over skin, Flash Button component, 619
Overlay mode, Flash, 180, 210, 583

Override sound settings, 287, 795
OWL (Object Windows Library), 5

P
<p> tag, 587, 675, 681, 687, 694
Package heading, ActionScript 3.0 Language

and Components Reference, 614
packaging games, as Android AIR apps,

750–756

Padding area, Flash Properties panel, 338, 339
Padding option, Flash Properties panel, 356
pageCount attribute, XML, 656, 657

www.zshareall.com

http://www.zshareall.com

INDEX

833

pageCount attributes, flashBooks.xml file, 656
Pages feature, Fireworks, 517
Paint Behind modifier, 87

Paint Bucket tool, 48, 71, 78, 79, 105, 106, 107,
122, 123, 198, 206

Paint Fills modifier, 87
Paint Inside mode, 105
Paint Inside modifier, 87
Paint Normal modifier, 87
Paint Selection modifier, 87
pan, audio, 293–296

panel collapse process, Flash, 6
panel context menu, 218
panel set, Flash, 8
Panel tab, Flash, 6
Panels area, Flash, 6
Panels layer, Flash, 198, 199
panels, Selectors vs. Properties, 692–694
Paragraph properties, 336
Paragraph settings, Flash, 339, 570

parallax effect, 512–517
Parameters button, Dreamweaver, 578
Parameters dialog box, Dreamweaver, 578, 579
Parameters tab, Flash Component Inspector

panel, 633, 636, 639, 640
parent() method, XML, 657, 658
_parent setting, Flash Advanced character

properties, 334

Particle Movie Clip symbol, Flash, 422
Password option, 796
paste command, Flash, 38
Paste Frames context menu item, 177, 445, 716
Paste in Center command, Flash, 38
Paste in Place menu option, Flash, 37, 38, 177,

203, 454
Paste menu option, Flash, 354, 418

Paste Motion context menu item, Flash, 457
Paste using AI File Importer preferences choice,

144
Path, date, dimensions, Bitmap Properties

dialog box, 132
Path options, Flash, 452
Pause and Loop exercise, 267
Pause button, Flash Library panel, 561

pause label, Flash Timeline panel, 724
pause() method, ActionScript, 559
Paused at start option, 801
Pause/Play button

ActionScript, 724
Flash, 726

pauseSong() function, ActionScript, 723, 724,
725, 726, 727

PauseTimeline.fla file, 262

pausing timeline, 261–264
PBS (Public Broadcasting Service), 512
PDF (Portable Document Format) format, 124
peaks, audio, 281
Pen tool, Flash, 102–104, 198, 206, 413, 444,

701
Pencil icon, Flash, 38
Pencil tool, Flash, 47, 57, 58, 83–84, 108

PepperShape.fla file, 369, 379
PepperSymbol.fla file, 379, 382
Permit debugging option, Publish Settings dialog

box, 797
perspective, 177–179
Perspective Angle value, Flash, 510, 525
perspective layer, Flash, 500
Peters, Keith, 313, 415, 496, 654, 657, 658
Phillips, Adam, 492, 493

photo cubes, simulating, 522–525
Photo layer, XML, 665
Photoshop CS5 documents, importing, 146–150
Photoshop Drawing (PSD) format, 124
PICT format, 124
pict parameter, ActionScript, 706, 707
piston rod symbol, Flash, 471
pistonRod bone, Flash, 472

PixelDisposal.fla file, 445, 449, 450
Place instance on stage option, Flash Import

Video dialog box, 307, 580
Place layers at original position option, 146
Play button

ActionScript, 304
Flash, 550, 562
Flash component, 563

Flash Edit Envelope dialog box, 294
Flash Library panel, 284, 561

play label, Flash Timeline panel, 725
play() method, ActionScript, 300
Play Once option, Flash Properties panel, 455
Play Once setting, Flash Timeline panel, 403
Play symbol, Flash, 715
Playback options, 801

player background layer, Flash, 719
Player drop-down menu

Adobe AIR, 752
Publish Settings dialog box, 795

Player layer, Flash, 714, 717, 718, 719
playHandler() function, ActionScript, 726, 727
playhead, Flash, 6

www.zshareall.com

http://www.zshareall.com

INDEX

834

playlists, setting up external, 712–713
playlist.xml file, 713
Play/Pause button, Flash, 720
PlayPauseButton, Flash Library panel, 561, 726

playSong() function, ActionScript, 723, 724,
725, 726, 727, 731, 735, 736

Plocek, Mischa, 141
PNG (Portable Network Graphic) format, 124,

793
Point class, ActionScript, 473
Polystar tool, Flash, 248, 346
Poplar Tree option, 97

Portable Document Format (PDF) format, 124
Portable Network Graphic (PNG) format, 124,

793
pos variable, ActionScript, 731
Pose layers, Flash, 478, 490, 491, 492
Position and Size strip, Flash Properties panel,

46
Position area, Flash Properties panel, 28

Position context menu item, 445
Position properties

ActionScript, 474
Flash Properties panel, 394
Flash text field, 331

Position X property, Flash, 464
Position Y property, Flash, 464
Powers, David, 670
PreachersAndThieves.aif file, 284

PreachersandThieves.mp3 file, 285, 290, 298
Preferences area, Flash, 8
Preferences context menu, Flash Actions panel,

234
Preferences dialog box, 9, 10, 72, 145, 475, 477
Preferences menu option, Flash, 9, 31, 475, 488
Preload setting, Bandwidth Profiler, 768
Preload value, Bandwidth Profiler, 768

preloader1.fla file, 697
preloader2.fla file, 701
preloaders, 701–703
preloading function, ActionScript, 700
Preprocessing area, Flash Sound Properties

dialog box, 286
Preset area, Adobe Media Encoder, 533
Preset drop-down list, Adobe Media Encoder,

534
Prev button

ActionScript, 723, 727
Flash, 726

Prev symbol, Flash, 714, 716
prevHandler() function, ActionScript, 727

Preview area, Flash Custom Ease In/Ease Out
dialog box, 388

Preview button, 128, 129
preview parameter, Flash Properties panel, 553

Preview play button, Flash, 393, 395
Primitive tool, Tools panel, 69
Primitives object, Flash, 69
procedural modeling, 89
Professor layer, Flash, 185
Professor movie clip, Flash, 185
ProgessBar component, Flash, 640
programmatic animation

copying motion as ActionScript, 416–419
creating random motion using ActionScript,

421–426
overview, 415
using keyboard to control motion, 419–421

programming sliders, 728–734
progress bar layer, Flash, 704
ProgressBar component, 628–630, 640, 704

ProgressBar.fla file, 629
ProgressBar.source property, ActionScript, 629
ProgressEvent.PROGRESS event, ActionScript,

630
prompt parameter, Flash ComboBox

component, 622
Properties area, Flash, 8, 10
Properties context menu option

Arrow movie clip, 356

Flash, 33, 160, 164, 196, 289, 298, 400, 463,
531, 609

Properties dialog box, Flash, 160, 531
Properties inspector, Flash, 692
Properties menu item, Flash, 172
Properties panel, 5, 6, 10, 23–26, 77, 578, 592,

593, 594, 692–694
properties, setting via ActionScript

events, 229–233
methods, 226–229
overview, 225

Properties tab, Flash, 51
Properties.fla file, 26, 31
Property area, Flash Custom Ease In/Ease Out

dialog box, 388
Property drop-down menu, Flash Properties

panel, 394
Property Inspector, Flash, 19, 692
property keyframes

changing duration nonproportionally, 450
changing duration proportionally, 449–450
overview, 445–448

www.zshareall.com

http://www.zshareall.com

INDEX

835

Property panel, Flash, 52
Protect from import option, Publish Settings

dialog box, 796

prototyping, rapid for Rich Internet Applications,
774–775

PSD (Photoshop Drawing) format, 124
PSD File Importer, 146
pseudo-classes, 688
pt variable, ActionScript, 473
Public Broadcasting Service (PBS), 512
Publish area, Flash, 10, 252

Publish button
Adobe AIR, 755
Flash Publish Settings dialog box, 576

Publish dialog box, 132
Publish Options menu item, Flash, 169
Publish Settings dialog box, 252, 550, 575, 755,

792, 794
Publish Settings menu option, 287, 598, 752
publishing Flash movies

bandwidth, 760–762
containing linked files, 805–806
Flash settings, 794–799
formats, 793–794
HTML settings, 799–803
Internet, 759
publishing butterfly garden, 803–805
streaming, 763–765

users, 762–763
web formats

animated GIFs, 786–790
Flash, 784–785
HTML, 785–786
overview, 783
QuickTime, 790–791

World Wide Web, 760

Pukaskwa.jpg file, 305

Q
Quality drop-down menu

Flash Blur filter parameters, 50
Flash Sound Properties dialog box, 287
HTML tab, Publish Settings dialog box, 802

Quality option, Bitmap Properties dialog box,
133

Quality setting, Flash Sound Properties dialog
box, 286

Quality value, Adobe Media Encoder Export
Settings dialog box, 544

quickTest() function, ActionScript, 239, 240
QuickTime, 281, 790–791

R
Rabbit movie clip, 397
Rabbit symbol, Flash, 403
rabbitAnim movie clip, Flash, 743, 746, 747
Rabbit.flv file, 546
Rabbit.mov file, 532
RabbitSwap.fla file, 401
Race movie clip, Flash, 158, 159
RadioButton class, ActionScript, 631

RadioButton component, 606, 630–632
RadioButton.fla file, 631
Radius handle control, 80
Rain layer, Flash, 305, 308
Rainfall.fla file, 581
Rain.flv file, 306, 308, 581
ramping technique, Flash, 19
randNum variable, ActionScript, 747

Random Building option, 96
Random Movement Brownian template, Flash

New Document dialog box, 422
Random Rotation property, Spray Brush tool, 99
Random scaling property, Spray Brush tool, 99
randomBunnyDisplay function, ActionScript, 746
rapid prototyping, for Rich Internet Applications,

774–775

Raw compression option, Flash Sound
Properties dialog box, 286

Read Only text field, Flash, 333
Readability Anti-alias option, Flash, 324, 355
Readability option, Flash Anti-alias drop-down

menu, 325
Readability property, Flash Anti-alias drop-down

menu, 333

Read-only text properties
advanced character properties, 334–335
character properties, 332–334
overview, 331
Paragraph properties, 336

Rear movie clip, Flash, 158
Recognize shapes menu, 85
Rectangle menu, ActionScript, 77
Rectangle tool

ActionScript, 72
Flash, 80, 157, 196, 248, 346, 501, 715, 716
Tools panel, 69

Red cube symbol, Flash, 446

www.zshareall.com

http://www.zshareall.com

INDEX

836

Reflect Across Line option, 92, 93
Reflect Across Point option, 93
Reflect option, Gradient Overflow tool, 120
Reflection setting, Device Central Display tab,

750
Reflections drop-down, Device Central Display

tab, 749
Registration field, Flash Convert to Symbol

dialog box, 153
relative paths, 806
RemoteSound2.fla file, 302
RemoteSound3.fla file, 304

RemoteSound.fla file, 301
Remove Armature context menu item, Flash,

468
Remove button, Adobe Media Encoder, 541
Remove Comment button, Flash Script pane,

218
Remove Cue Point button, Adobe Media

Encoder Export Settings window, 589

Remove Frames menu item, Flash, 391
Remove Transform button, Flash, 383, 505, 512
Remove Transform menu item, Flash, 381, 383
Remove Tween context menu item, Flash, 367,

432, 453
Remove Tween menu item, Flash, 368
removeEventListener() reference, ActionScript,

725
removing transformations, 77

renaming Library assets, 713–714
Render Queue, Adobe Media Encoder, 543
rendering videos, 540–541
Repeat drop-down list, Flash Properties panel,

292
Repeat option, Gradient Overflow tool, 120
Repeat property, Flash Properties panel, 292
req variable, ActionScript, 649, 677, 706, 707

reserved words, ActionScript, 234
Reset button, Flash Properties panel, 506, 512
Reset Essentials menu item, Flash, 8
Reset Status menu item, Adobe Media Encoder,

540, 541, 583
Reset Values button, Flash, 22
Resize handle control, 79
Resize values, Flash Transform panel, 508

Resize Video option, Adobe Media Encoder
Export Settings window, 536, 588

resume() method, ActionScript, 559
Reverse Keyframes context menu item, 445
Revert button, Flash, 468, 477

Revert menu option, Flash, 36, 338, 468, 477
Rewind symbol, Flash, 714
Rewis, Greg, 517
RGB model, Flash, 110

RGB Sliders option, 114
Rich Internet Applications, rapid prototyping for,

774–775
Richard layer, Flash, 488, 490
Richard.fla file, 487, 492
Richardson, Darren, 313
rightmargin parameter, 587
RightWing layer, Flash, 45, 410

root element, XML, 645
root.loaderInfo reference, ActionScript, 629
Rosson, Allan, 493
Rotate [x] time(s) + [y]° property, Flash

Properties panel, 454
Rotate and Skew option, Flash Tools panel, 383
Rotate area, Flash Transform panel, 386
Rotate Around option, 94

Rotate drop-down menu, Flash, 380, 454
Rotate handle control, 80
Rotate property, Flash, 381, 382
Rotate symbol property, Spray Brush tool, 99
Rotation area, Flash Transform panel, 386
rotation, classic tweening, 379–381
Rotation property

Flash bones, 465
Flash Properties panel, 333, 394

Rotation settings, Flash, 209, 382
Rotation tool, 501–506
Rotation Z graph, Flash Motion Editor panel,

441, 448
Rotation Z setting, Flash Motion Edior panel,

449
round-tripping feature, 126
routers, 759

rowCount parameter, Flash ComboBox
component, 622

RSL (runtime shared library), 345
Rulers menu item, Flash, 188
runnerAnimation movie clip, Flash, 701
runtime shared library (RSL), 345

S
sample, audio, 281

sample rate, audio, 281
_sans font category, 322
Save As button, Flash, 64

www.zshareall.com

http://www.zshareall.com

INDEX

837

Save As dialog box
Adobe Media Encoder, 535
Flash, 63, 64, 663

Save As menu option, Flash, 63, 663
Save Colors option, 116
Save selection as preset button, Flash, 456
Save Theme button, 118
saving Flash movie, 61–65
Scale check box, Flash Properties panel, 382
Scale height property, Spray Brush tool, 99
Scale menu item, Flash, 202

Scale option, 803
Scale property, Flash Properties panel, 394
Scale setting, Flash Publish Settings dialog box,

550
Scale To Fit option, Adobe Media Encoder, 539
Scale width property, Spray Brush tool, 99
scaleContent parameter, Flash UILoader

component, 639
scaleMode parameter, Flash Properties panel,

553
scaling

classic tweening, 382–384
Motion Editor panel, 430–437
shape tweening, 363–368

Scene 1 link, Flash, 47, 48, 157, 160, 199, 230,
515, 611, 699, 719

scope, ActionScript, 239–240

Screen blend mode, Flash, 180
Screen Mode setting, Device Central Display

tab, 750
Script Assist feature

Flash Actions panel, 257
Flash Script pane, 218

Script drop-down menu
Flash Publish dialog box, 169

Publish Settings dialog box, 795
Script navigator, 217
script navigator area, Flash Actions panel, 216
Script pane, 217
Script pane buttons, Flash, 218
Script pane, Flash Actions panel, 216, 217, 258,

311, 418
Script time limit option, Publish Settings dialog

box, 798
scripts layer, Flash, 230, 239, 254, 265, 301,

473, 680, 681, 704, 705
scrollable text

rolling scroller, 356–360
UIScrollBar component, 355

ScrollBar component, ActionScript, 355

ScrollComponent.fla file, 355
ScrollPane component, 614, 632–633, 637
ScrollPane.fla file, 633

Scrubber button, Flash, 550
scrubbing technique, Flash, 6, 18, 21
scumSuckingPig variable, ActionScript, 241
Search and Replace feature, Dreamweaver, 592
Search button, Flash Help panel, 41
search tactics, 259–260
Seasons02.fla file, 203
Seasons.fla file, 201

second stop() method, ActionScript, 629
Seconds button, Flash Edit Envelope dialog box,

294
Seek control, Flash, 561
SeekBar symbol

ActionScript, 731
Flash, 714, 718, 719, 728, 729

seekBar.width parameter, ActionScript, 729
seekBar.width property, ActionScript, 729

seekBar.x parameter, ActionScript, 729
seekBar.x property, ActionScript, 729
SeekKnob symbol

ActionScript, 731
Flash, 714, 716, 717, 719, 724, 725, 728,

729
seekKnobUpdate() function, ActionScript, 724,

725, 732

seekKnob.y parameter, ActionScript, 729
seekStartDrag() function, ActionScript, 729
seekStopDrag() function, ActionScript, 730
seekToCuePoint function, ActionScript, 566
Select All menu item, Flash, 464, 490
Select Skin dialog box, Flash, 553
Select Swf dialog box, Dreamweaver, 578
Select Symbol dialog box, Deco tool, 90

Select Video page, Flash Import Vider wizard,
580

<select> element, HTML, 619
selectable text, 340
Selectable TLF text field, Flash, 719
selected property, Flash CheckBox component,

616
selectedColor property, Flash Properties panel,

618
selectedItems property, Flash List component,

626
Selecting grouping, Flash, 70
Selection tool, 72–75, 84, 105, 106, 491, 506,

509
Selectors panel, vs. Properties panel, 692–694

www.zshareall.com

http://www.zshareall.com

INDEX

838

_self setting, Flash Advanced character
properties, 334

semicolons, ActionScript, 234
Send Backward menu item, Flash, 190, 521

Send to Back menu item, Flash, 190, 466
_serif font category, 322
Set button, Flash Publish Settings panel, 288
Set Key Frame Distance area, Adobe Media

Encoder Export Settings window, 537
Set stage to same size as Photoshop canvas

option, 146
setDate() method, ActionScript, 255

setFullYear() method, ActionScript, 255
setMillennium() method, ActionScript, 255, 256
setMilliseconds() method, ActionScript, 255
setStyle() method, ActionScript, 673, 683, 685,

690
Settings area, Bandwidth Profiler, 768
Settings button, Adobe Media Encoder, 541, 543
Settings ... option, Adobe Media Encoder, 573

shape hints, 373–377
shape IK

anchor points and, 485–487
fills and, 485

Shape Tween menu item, Flash, 368
shape tweening

altering gradients, 377–378
altering shapes

anchor points, 371

overview, 369–370
shape changing, 372–373

modifying, 368–369
scaling, 363–368
shape hints, 373–377
stretching, 363–368

Shapes object, Flash, 69
SharedLibrary.fla file, 169, 170

Sharing area, Flash Convert to Symbol dialog
box, 154

shiftKey property, ActionScript, 233
Shiman, Jennifer, 173
Shovelarm symbol, Flash, 478
Show All Layers As Outlines icon, Flash, 38, 39
Show Code Hint button, Flash Script pane, 218
Show collapsed panels as icons only option,

Flash, 7
Show Font Info option, Font Book, 327
Show Guides menu item, Flash, 188
Show Info menu item, Flash, 530
Show Inherited Styles hyperlink, 607, 612
Show over objects option, Flash CS4, 188

Show Shape Hints menu item, Flash, 377
Show warning messages box, 803
showCaptions parameter, Flash Properties

panel, 570, 571

Show/Hide Toolbox button, Flash Script pane,
218

showTextField parameter, Flash Properties
panel, 618

Shroeder, Dave, 295
Sign Up link, Adobe web site, 751
Simple (Slow) ease, Flash, 22, 442, 444, 454
Simple (Slow) graph, Flash Motion Editor panel,

442
SimpleButton class, ActionScript, 612
simpleFormatting parameter, Flash Properties

panel, 570
SimpleMask.fla file, 195
Simulate Download option

Bandwidth Profiler, 767
Flash, 629, 640, 700, 701, 703

Single Frame option
Flash Properties panel, 455
Flash Timeline panel, 403

Size area, Flash Properties panel, 28
size attribute, 586
Size property

Flash Properties panel, 332
Flash text field, 331

Skew property, Flash Transform panel, 452

Skew radio button, Flash Transform panel, 384
Skin drop-down menu, Adobe Media Encoder

Import Video wizard, 547, 548, 549
skin parameter

Flash FLVPlayback component, 575
Flash Properties panel, 552, 553, 560, 570,

574
skinAutoHide parameter

Flash FLVPlayback component, 575
Flash Properties panel, 548, 553

skinBackgroundAlpha parameter, Flash
Properties panel, 553

skinBackgroundColor parameter
Flash FLVPlayback component, 575
Flash Properties panel, 553, 554

SkinButton.fla file, 611

skinning, 610–611
Skinning page, Adobe Media Encoder Import

Video wizard, 547
SkinOverAllNoCaption.swf file, 575
SkinUnderAllNoFullScreen.swf file, 591
SkinUnderAll.swf file, 548, 570

www.zshareall.com

http://www.zshareall.com

INDEX

839

Skip Intro button, Flash page, 214, 758
Skip status, Adobe Media Encoder, 540, 541
sky stuff layer, Flash, 248

slide shows, with components and XML,
703–711

Slider component, 633–634
Slider.fla file, 633
sliders, programming, 728–734
Slideshow.fla file, 704, 708
SlideshowXML.fla file, 709, 711
Smooth button, Tools panel, 85

Smooth mode, Pencil tool, 84, 85, 104
Smoothing button, Flash, 57
Smoothing option, 87
Smoothing slider, 130
Snap accuracy drop-down menu

Flash Grid dialog box, 187
Flash Guides dialog box, 188

Snap Align feature, Flash, 186, 187
Snap check box, Flash Properties panel, 382

Snap setting, Flash Properties panel, 409
Snap to Objects option, Flash, 189, 374, 489
snapInterval parameter, Flash Slider

component, 634
snapping

to grid, 187
in guide layer, 189
to pixels, 189

Snippet.fla file, 267
snippets, 559–560
Snippets panel, Flash, 269
Solid Color type, 115
song variable, ActionScript, 724
<song> elements, ActionScript, 711, 727, 728,

737
songData text field, ActionScript, 734

song.id3.artist property, ActionScript, 734
song.id3.songName property, ActionScript, 734
song.id3.year property, ActionScript, 734
songList variable, ActionScript, 712
songsCB combo box, ActionScript, 713
Sorenson Spark codec, Adobe Media Encoder,

536
Sound class, ActionScript, 300

sound on/off button, Flash pages, 296
Sound Properties dialog box, Flash, 59, 285,

287, 288, 298
Sound properties, Flash, 61
Sound twirlie, Flash, 61
Sound.attachSound() method, ActionScript, 298
SoundChannel class, ActionScript, 304

SoundChannel.position property, ActionScript,
727

SoundChannel.soundTransform property,

ActionScript, 305
soundCompleteHandler() function, ActionScript,

725
Sound.id3 property, ActionScript, 734
Sound.load() method, ActionScript, 724
SoundMixer() class, ActionScript, 312
soundOpenHandler() function, ActionScript, 725
Sound.play() method, ActionScript, 301, 305

SoundTransform class, ActionScript, 305
SoundTransform.volume property, ActionScript,

733
Source area

Flash Convert to Symbol dialog box, 154
Flash Properties panel, 553

Source folder, Adobe Media Encoder, 542
Source layer, Flash, 181, 182, 183, 184
Source pane, Adobe Media Encoder, 539

source parameter
Flash Component Inspector panel, 633
Flash FLVPlayback component, 575
Flash ProgressBar component, 640
Flash Properties panel, 554, 560, 570, 571,

574, 591
Flash UILoader component, 639

source property, Flash TileList component, 637

source row, Flash Component Inspector panel,
633, 639

<Source> element, XML, 659, 660, 661
Space options, Flash Align panel, 193
SpaceComposition movie clip, Fireworks

Objects folder, 513
SpaceFinal.png image, 513
Space.fla file, 513

Spacing option, Flash Paragraph properties, 337
 tag

Flash, 687, 688
HTML, 587

Speech compression option, Flash Sound
Properties dialog box, 286

speed data, Bezier curve, 102
Speed property, Flash bones, 464

Spelling Setup dialog box, Flash, 352, 353
SpellItOut.txt file, 354
spin() function, ActionScript, 474
spiral-3D preset, Device Central Motion Presets

panel, 741
Spray Brush tool, 98–100, 108
SprayBrush.fla file, 98

www.zshareall.com

http://www.zshareall.com

INDEX

840

Spring ease, Flash, 445
Spring option

animating IK poses, 478–479
applying joint translation, 470–475

Bind tool, 480–487
overview, 468–469
preferences, 475–477

Spring property, Flash bones, 464, 465
Springs.fla file, 468
Sprite class, ActionScript, 226, 252
Square layer, Flash, 196
src attribute, 586

stacking order, 189–193
Stacks.fla file, 189
stage area, Flash, 5
stage color (Stage) property, Flash, 11
StageDisplayState class, ActionScript, 234
stamp layer, Flash, 521
star asset, Flash, 615
Star layer, Flash, 345, 346

star movie clip, Flash, 248, 346
StarCircle.fla file, 371
Start button

ActionScript, 302, 303
Device Central, 750
Flash, 745

Start page, 2, 3, 4, 5, 738
Start Queue button, Adobe Media Encoder, 540,

542, 544, 574, 591

startDrag() method, ActionScript, 733
StartingOut cue point, Flash, 563
StartScreen layer, Flash, 743
Static Text option, Flash Properties panel, 321
Status area, Adobe Media Encoder, 540, 541
SteamEngine.fla file, 470
Stiller, David, 214, 424, 679
Stop and Start (Medium) ease, Flash, 444, 445

Stop at this Frame snippet, Flash, 268
Stop button

ActionScript, 302, 303, 304
Flash Edit Envelope dialog box, 294
Flash Sound Properties dialog box, 286

Stop keyframe, Flash, 291, 292
stop() method, ActionScript, 266, 304, 629, 664
Stop Queue button, Adobe Media Encoder, 540

Stories.f4v file, 570
str variable, ActionScript, 626
Straighten mode, Pencil tool, 84
Stream mode, Flash audio, 289
Stream option, Flash Sync drop-down menu, 61
Stream setting, Bandwidth Profiler, 770

Stream syncing, Flash Sound properties, 61
streaming, 763–765
Strength property, Flash bones, 464, 468
Strength value, Flash bones, 468

stretchFactor parameter, ActionScript
computeSpectrum() method, 312

stretching
classic tweening, 382–384
shape tweening, 363–368

Strikethrough property, Flash Properties panel,
333

String data type, ActionScript, 243

Stroke color area, Flash Tools panel, 47
Stroke color chip, 107, 338
Stroke color, Flash Properties panel, 338
Stroke panel, ActionScript, 77
Stroke property, Flash Properties panel, 346
Stroke Style dialog box, 107
strong element selector, Flash, 691
strong selector, ActionScript, 679

 tag
Flash, 685, 692
HTML, 586

Style drop-down menu, Flash, 248, 332, 339,
340, 346, 462, 511, 519, 692

Style property, Flash Properties panel, 332
style variable, ActionScript, 673
StyleComponents.fla file, 613
StyleManager class, ActionScript, 614

StyleManager.setComponentStyle() method,
ActionScript, 614, 615

StyleManager.setStyle() method, 614, 615
Styles heading, ActionScript 3.0 Language and

Components Reference, 612
styles.css file, 677, 679
StyleSheet class, ActionScript, 673
StyleSheet.parseCSS() method, ActionScript,

677
StyleSheet.setStyle() method, 673
styling

block elements, 680–682
components, 612–615
with CSS, 671–676
hyperlinks, 688–690
inheritance, 686–688

inline elements, 683–684
Styling01.fla file, 672, 684
Styling02.fla file, 675
Styling03.fla file, 684
Styling04.fla file, 685
StylingEmbeddedFonts01.fla file, 690

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

INDEX

841

StylingEmbeddedFonts02.fla file, 692
StylingEmbeddedFonts03.fla file, 693
StylingExternal.fla file, 676

StylingExternal.swf file, 679
subpixels, 320
Subscript property, Flash Properties panel, 333
Subselection tool, 72–75, 87, 104, 370, 372,

456, 482
Subtract blend mode, Flash, 180, 210
SupermanNoCuePoints.flv file, 592
Superman.xml file, 592

Superscript property, Flash Properties panel,
333

svg folder, 89
Swap button, Flash, 407
Swap Symbol dialog box, Flash, 401
swapping graphic symbols, 401–402
Swatches panel, 116, 117, 118
SWF History area, 24, 25, 771
SWF Settings section, 796

swingDoors.fla file, 519
Switch To Output toggle button, Adobe Media

Encoder, 539
.swz file, 345
Symbol Editor, Flash, 45, 156, 158, 160, 164,

172, 198, 297, 582, 717
Symbol Properties dialog box, Flash, 164, 171,

356, 463, 609

Symbol Type drop-down menu, Flash Import
Video wizard, 307, 580, 581

SymbolEdit.fla file, 160
symbols

9-slice scaling
function of, 161–163
issues with, 166–169
olive seller frame example, 163–166

overview, 160
blends, 180–181
Catalina Island example

adding clouds, 206–207
clouds in motion, 208–211

content management on stage
Align panel, 192–193
aligning objects, 186–189

overview, 184–185
stacking order, 189–193

editing, 159–160
filters

applying, 174–177
and blend modes, 174–181

facts regarding, 179
perspective, 177–179

masks and masking

simple mask, 194–199
using text as mask, 201–203

overview, 152–153
sharing

angryalien.com, 173
overview, 169–170
shared libraries, 171–173

types of

button symbols, 156–157
graphic symbols, 155–156
movie clip symbols, 158

Symmetry Brush option, Deco tool, 92
Sync area, Flash Properties panel, 290, 292
Sync drop-down menu, Flash, 61, 290, 297
Sync graphic symbols property, Flash Properteis

panel, 454
Sync property

Flash audio2 layer, 290, 291
Flash Properties panel, 291, 292, 293, 382

Sync setting, Flash Properties panel, 290
syntax, ActionScript, 233, 253–257

T
tabstops parameter, 587
Tagged Image File Format (TIFF), 124

tags
custom, 684–686
HTML, 586–587, 785

tailJoint property, ActionScript, 474
TalkingPanda.fla file, 406
Tarbell, Jared, 421
Target field, Flash Advanced character

properties, 334

target layer, Flash, 36
Target property

ActionScript Event class, 677
Flash Advanced Character options, 349

Target setting
Flash Advanced character properties, 334
Flash Properties panel, 586
HTML, 586

Tayler, Benjamin, 711

TCP (Transmission Control Protocol), 759
Template drop-down menu

Flash Publish Settings dialog box, 576
HTML tab, Publish Settings dialog box, 800

www.zshareall.com

http://www.zshareall.com

INDEX

842

Template list, 138
Templates area, Flash New Document dialog

box, 422
Templates button, 138, 422

Test button, Flash Sound Properties dialog box,
59, 60, 286, 287

Test Devices panel, Device Central, 740
Test Movie menu option, Flash, 62, 254, 377
testing, Flash movie, 61–65
text

Adobe CoolType, 319–322
checking spelling, 352–354

Classic text engine, 328–330
container and flow, 337–338
device fonts, 322–323
editable text, 340
embedding fonts, 324–327
fonts, 316–318
hyperlinks and TLF, 349–352
overview, 315

Read-only text properties
advanced character properties, 334–335
character properties, 332–334
overview, 331
Paragraph properties, 336

scrollable
rolling your own scroller, 356–360
using the UIScrollBar component, 355

selectable, 340

TLF and ActionScript
creating column of text with ActionScript,

342–343
import statements for this exercise, 344–

345
overview, 341

TLF text engine, 328–330
typefaces, 316–318

using as mask, 201–203
using TLF text as a button, 345–349

Text Engine drop-down menu, Flash, 324, 328
Text Engine option, Flash Properties panel, 570
text field layer, Flash, 242
Text Justify options, Flash Paragraph properties,

337
Text layer, Flash, 201, 202, 203, 560, 570, 582

Text Layout Framework. See TLF
Text option, Fireworks import dialog box, 139
text parameter, Flash TextArea component, 635
Text tool, Device Central, 741
Text tool, Flash, 201, 242, 321, 332, 333, 354,

570, 582, 704, 719

Text Type drop-down menu, Flash, 201, 324,
330, 570

Text type field, Flash Properties panel, 333, 340
textAlign property, 672

TextArea component, 635, 636
<textarea> element, HTML, 635
TextArea.fla file, 635
TextDecoration class, ActionScript, 347
textDecoration property, 672
TextDecoration.UNDERLINE constant,

ActionScript, 347
TextField class, ActionScript, 226, 234

TextField.embedFonts property, ActionScript,
692

TextField.htmlText property, ActionScript text
field, 672

TextField.text property, ActionScript, 243, 626
TextFlow() class, ActionScript, 341
textFlow container, ActionScript, 351
textFlowInitialFormat property, ActionScript

Configuration class, 341
TextFormat class, ActionScript, 347, 587, 614
textFormat style, ActionScript, 614
<textformat> tag, HTML, 587, 674
TextFormat.color property, ActionScript, 618
textIndent property, 672
TextInput component, 619, 627, 636
TextInput.fla file, 636
textLayout_X.X.X.XXX.swz file, 345

TextLayoutFormat() class, ActionScript, 341,
342

theGreatStoneFace variable, ActionScript, 241
thermometer movie clip, 627
thermometer.mercury reference, ActionScript,

628
Thomas, Adam, 245
ThroughADoor.flv file, 555, 560

TIFF (Tagged Image File Format), 124
TileList component, 637–638
TileList.fla file, 637
Time area, Adobe Media Encoder Export

Settings window, 590
Time parameter, Flash Properties panel, 562
<Time> tag, XML, 585
Timed Text (TT), 567

Timeline Navigation folder, 268, 269
Timeline panel, Flash, 5, 224, 395–396, 406,

433, 445, 449, 472
Timeline tab, Flash, 33, 54, 203
timelinePause variable, ActionScript, 262
timelinePause.start method, ActionScript, 263

www.zshareall.com

http://www.zshareall.com

INDEX

843

timelines
combining

graphic symbols as mini-libraries, 406–

407
movie clip timelines versus graphic

symbol timelines, 402–404
nesting symbols, 404–406

frames, 16–18
looping, 265
Motion Editor panel, 19–23
overview, 14–15

pausing, 261–264
removing audio file, 291
using movie clips to control, 266

Timeline.swf file, 16
timeout setting, Device Central Display tab, 749
Timer class, ActionScript, 262
Timer.delay property, ActionScript, 264
TimerEvent.TIMER event, ActionScript, 262
timerHandler function, ActionScript, 262, 263

Timer.start method, ActionScript, 263
TinBangs.fla file, 712, 714, 717
TinBangs.fla Library, Flash, 717, 718
TinBangsMilestone.fla file, 726
Tinted Frames option, Flash Timeline panel, 366
Title area, Flash Create New Code Snippet

dialog box, 269
title attribute, XML, 657

title movie clip, Flash, 743
<title> tags, XML, 646
TLF (Text Layout Framework)

and ActionScript, 341–345
and hyperlinks, 349–352
text engine, 328–330
text, using as button, 345–349

TLF Text option, 324, 328, 330, 333

TLF text Read Only format, Device Central Text
tool, 741

TLF Text Selectable text container, Flash, 704
TLF_eventLink_AS.fla file, 345, 348
TLF_Hyperlink_AS.fla file, 350
TLF_scrollable_AS.fla file, 356
To stage option, Flash Alignment panel, 561
toggle parameter, Flash Properties panel, 605,

606
Tom.jpg file, 665
Tool Settings dialog box, Flash, 248, 346
Tool Settings, Flash, 346
tools

Rotation, 501–506
Translation, 506–511

Tools panel
Free Transform tool, 75–77
Gradient Transform tool, 77–80

Object Drawing mode, 80–82
overview, 29–31
Selection tool, 72–75
Subselection tool, 72–75

Tooltip area, Flash Create New Code Snippet
dialog box, 269, 310

tooltips, 72
_top setting, Flash Advanced character

properties, 334
TopPage folder, 672
torso symbol, Flash, 489
toXMLString() method, ActionScript, 653, 654,

657
Trace Bitmap dialog box, 127, 128, 129
trace() function, ActionScript, 224, 241, 650,

651, 653, 656, 660
Trace Image text, 127

Trace.fla file, 127
trace(theGreatStoneFace) function, ActionScript,

241
Tracking property, Flash Properties panel, 333
Transform menu item, Flash, 208, 383
Transform panel, Flash, 162, 209, 429, 491,

505, 511, 515, 518, 524, 699
Transform tool, Flash, 365

Transformation area, Flash Motion Editor panel,
21

transformation point, 365
Transformation twirlie, Flash, 442
transformations, removing, 77
Translation property, Flash bones, 465
Translation tool, 506–511
Transmission Control Protocol (TCP), 759

Trash Can icon, Flash, 35, 40, 179, 368
Trees layer, 108
Trees symbol, 108
trimming videos, 534–535
True parameter, ActionScript, 746
TT (Timed Text), 567
Tune class, ActionScript, 300
Turtle movie clip, Flash, 430

Turtle symbol, Flash, 458
Tween class, ActionScript, 348
tweening

classic
deforming, 382–384
easing, 384–387, 395
properties, 381–382

www.zshareall.com

http://www.zshareall.com

INDEX

844

rotation, 379–381
scaling, 382–384
stretching, 382–384

filter effects, 413–414

masks
animating, 411–412
using motion guides with, 412–413

shape
altering gradients, 377–378
altering shapes, 369–373
modifying, 368–369
scaling, 363–368

shape hints, 373–377
stretching, 363–368

Tweening area, Flash Properties panel, 380,
381, 385, 387, 388, 391, 409

TweenMax class, ActionScript, 272, 273, 274,
275

TweenMax folder, 272
TweenMax.as file, 272

twinkie.fla file, 238
twirlies, After Effects, 20
Type drop-down menu

Flash Create New Symbol dialog box, 45
Flash Properties panel, 462, 464, 473

Type field, Flash Convert to Symbol dialog box,
153

Type property, Flash Symbol Properties dialog
box, 463

<Type> tag, XML, 585, 592
_typewriter font category, 322

U
<u> tag, HTML, 587
UI components

Button component
adding button events, 606–608

changing appearance, 610–615
considering component weight, 609
overview, 603–605
referencing components in event

handlers, 608–609
using, 603–606

CheckBox component, 615–616
ColorPicker component, 617–618
ComboBox component, 619–622

DataGrid component, 622–623
Label component, 624

List component, 624–626
NumericStepper component, 626–628
overview, 601–602
ProgressBar component, 628–630

RadioButton component, 630–632
ScrollPane component, 632–633
Slider component, 633–634
TextArea component, 635
TextInput component, 636
TileList component, 637–638
UILoader component, 638–640
UIScrollBar component, 641

what you have learned, 641
UIComponent.setStyle() method, ActionScript,

615
UIComponent.textFormat style, Flash, 612
UILoader component, 638–640, 704, 710
UILoader.fla file, 639
UIScrollBar component, 355–356, 635, 641
 tag, 676, 681, 682, 684, 686

Ulloa, Carlos, 497
UNDERLINE constant, ActionScript, 351
Underline property, Flash Properties panel, 333
Undo Create Motion Tween menu item, Flash,

367
Undo Scale menu item, Flash, 364
Uniform Resource Locator (URL), 760
unmuteSound() function, ActionScript, 305
Untitled document, Flash, 422

Up frame, Flash button component, 603
up skin, Flash Button component, 610, 611, 619
Update button

Bitmap Properties dialog box, 133
Flash, 172, 286

Update context menu item, Flash, 172, 400
Update Library Items dialog box, Flash, 172
Update menu item, Flash, 172

updateSong() function, ActionScript, 728
upScroller function, ActionScript, 359
URL (Uniform Resource Locator), 760
URLLoader class, ActionScript, 648, 649, 677
URLLoader.load() method, ActionScript, 649,

677
URLRequest class, ActionScript, 302, 649, 677,

706

URLRequest.url property, ActionScript, 707
Use device fonts Anti-alias option, Flash, 355
Use Device Fonts option, Flash Anti-alias drop-

down menu, 323, 324
Use device fonts property, Flash Anti-alias drop-

down menu, 333

www.zshareall.com

http://www.zshareall.com

INDEX

845

Use Imported JPEG data option, Bitmap
Properties dialog box, 133

Use one setting for all properties check box,

Flash Properties panel, 394, 395
Use one setting for all properties option, Flash

Custom Ease In/Ease Out dialog box,
388

Use Pressure option, Brush tool, 87
Use Tilt option, Brush tool, 87
User Interface components, Flash Components

panel, 355

users, 762–763

V
Value area, Adobe Media Encoder Export

Settings window, 588
value property, Flash Slider component, 634
Values dialog box, Flash, 621, 625
vanishing point, 498–501, 506, 512, 525
var keyword, ActionScript, 240

variables, ActionScript, 240–241
VBR (for variable bitrate), 537
VBR option, Adobe Media Encoder Export

Settings window, 537
Vector images, 68
vectors, 778
Vertical Spacing button, Flash Align panel, 193
verticalScrollPosition property, ActionScript, 359

video
adding cue points

creating XML captions, 588–592
HTML tags, 586–587
overview, 583
XML format, 584–587

alpha video, 593–596
embedding, 579–583

FLV encoding. See also Adobe Media
Encoder

Adobe Media Encoder, 532–540
batch encoding, 541–542
creating F4V files, 542–544

formats, 530–532
full-screen video, HD, 597–598
overview, 527–529
playing FLV in Flash CS5. See also full-

screen video
ActionScript, 555–560
alpha channel video, 572–574
cue points, 562–566

FLVPlayback component, 552–555,
560–561

FLVPlaybackCaptioning component,

567–571
snippets, 559–560
using wizard, 546–552

on web, 529
Video area, Flash Components panel, 548
Video category, Flash Components panel, 552
Video class, ActionScript, 556
Video components area, Flash Components

panel, 560
Video Import dialog box, Flash, 567
Video layer

Flash, 560, 570, 574, 581
Symbol Editor, 594

Video pane, Adobe Media Encoder Export
Settings window, 536

Video Properties dialog box
Flash, 555

Symbol Editor, 594
Video section, Flash Components panel, 552
Video tab, Adobe Media Encoder Export

Settings window, 535, 543, 573, 588
VideoJam.fla file, 593
View ä Bandwidth Profiler option, Flash, 322
View area, Flash Tools panel, 29
View option, Flash, 510

View property, Flash, 510
Viewable Frames hot text, Flash, 436, 440
Viewable Frames value, Flash, 22
Viewing grouping, Flash, 70, 71
viking movie clip, Flash, 606
Virtual Reality Modeling Language (VRML), 495
:visited pseudo-class, Flash, 688
volume, audio, 293–296

volume icon graphic symbol, Flash, 718
volume parameter, Flash Properties panel, 553
volume property

ActionScript, 305
xform variable, 734

volumeAdjust() function, ActionScript, 733, 735,
736

VolumeBar symbol

ActionScript, 733, 734
Flash, 714, 718, 719

VolumeKnob symbol
ActionScript, 733
Flash, 718, 719

VolumeSlider movie clip, Flash, 719
VolumeSlider symbol, Flash, 714, 718, 719

www.zshareall.com

http://www.zshareall.com

INDEX

846

volumeStartDrag() function, ActionScript, 732
volumeStopDrag() function, ActionScript, 733
VRML (Virtual Reality Modeling Language), 495
vspace attribute, 587

Vultures.fla file, 555
Vultures.mp4 file, 543, 544

W
W (Width) property, Flash Properties panel, 454
W3C (World Wide Web Consortium), 216, 669
Wall.fla file, 198
WatchMe folder, 541
WAV format, 280

WaveAmerican.fla file, 486
waveform, audio, 281
WaveSwiss.fla file, 485
web formats

animated GIFs
exporting, 787–789
importing, 790
overview, 786

Flash, 784–785
HTML, 785–786
overview, 783
QuickTime, 790–791

web, video on, 529
Webster, Steve, 655
Weird Viking layer, Flash, 606
Welcome screen, Flash, 4, 9

WhackABunny folder, 751
whackabunnyAndroid.air file, 753, 755
whackabunnyAndroid.fla file, 751
whackabunny.fla file, 743, 751
What's new in Adobe Flash professional link,

Flash Help panel, 41
wheel symbol, Flash, 474
wheel.crank.x property, ActionScript, 474

white dot, Free Transform tool, 76
widgets, 309
Width (W) property, Flash Properties panel, 454
width attribute, 586
Width property, Flash Transform panel, 452
Width value, Symbol Editor Properties panel,

594
Window menu, Flash, 8
Window Mode selelction, 802

Windows Media Video (WMV), 530
Windows Projector (.exe) file format, 793
WingL movie clip, Flash, 45, 46

WingR movie clip, Flash, 45
wings symbols, Flash, 410
WMV (Windows Media Video), 530
Wolfe, David, 493

word spacing option, Flash Paragraph
properties, 337

workspace, managing, 6–8
World Wide Web Consortium (W3C), 216, 669

X
X [number] property, Flash Properties panel,

382
X property, Flash Properties panel, 454

.xfl file extension, 64
XFL file format, 64, 661–666
XFL folder, 662
XFL_Example folder, 63
XFLexercise.fla file, 662
xform variable, ActionScript, 305, 723, 733, 736
XML (Extensible Markup Language)

captions, creating, 588–592

E4X syntax
descendant accessor (.), 657–658
dots (.), 650–654
filtering, 656–657
namespaces, 659–661
node types, 654–655
overview, 649
at symbol (@), 650–654

XFL, 661–666
formats, 584–587
loading files, 648–649
MP3 players with. See also controls, MP3

players with XML
evaluating and improving, 735–737
overview, 711
renaming Library assets, 713–714

setting up external playlists, 712–713
overview, 643–647
slide shows with components and, 703–711
writing, 645–648

XML class, ActionScript, 648, 649
XML_Example folder, 64
xmlCompleteHandler() function, ActionScript,

710, 711
XMLConnector component, Flash, 650

xmlDoc variable, ActionScript, 649
xmlDoc.author subexpression, ActionScript, 658
xmlDoc.book class, ActionScript, 654, 657

www.zshareall.com

http://www.zshareall.com

INDEX

847

xmlDoc.book.authors expression, ActionScript,
655

xmlDoc.book.length() - 1 expression,

ActionScript, 652
XMLList class, ActionScript, 652
XMLList method, ActionScript, 652, 653, 654
XMLList.toXMLString() method, ActionScript,

657
XML.namespace() method, XML, 661
xmlns attributes, XML, 659, 661
XML.parent() method, XML, 658

Y
Y property, Flash Properties panel, 454
Y Translation arm, Flash, 509
Y Translation arrow, Flash, 509
YourTurn folder, 591

Z
Zhang, John, 703
Zhou, Zhong, 703

Zoom drop-down menu, Flash Symbol Editor, 47
Zoom In menu option, Flash, 12
Zoom Out button, Flash Edit Envelope dialog

box, 294
Zoom Out menu option, Flash, 12
Zoom tool, 71, 104, 108, 482
zooming stage, 11–13
zooming technique, Flash, 11
Zupko, Andy, 497

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

T
hi

s
bo

ok
 w

as
 p

ur
ch

as
ed

 b
y

fla
sh

fa
st

1@
gm

ai
l.c

om

www.zshareall.com

http://www.zshareall.com

www.zshareall.com

http://www.zshareall.com

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Preface
	Learning the Flash CS5 Professional Interface
	Document preferences
	Document settings
	Zooming the stage
	The timeline
	Frames
	Using the Motion Editor panel

	The Properties panel
	The Tools panel
	The Library panel
	Layer properties
	Creating layers
	Adding content to layers
	Showing/hiding and locking layers
	Grouping layers
	Where to get help
	Nesting movie clips
	Drawing the fly
	Creating the illusion of depth with Flash
	Creating an animated fly
	Using a motion guide

	Adding audio
	Testing and saving Flash files

	Graphics in Flash CS5
	The Selection and Subselection tools
	The Free Transform tool
	The Gradient Transform tool
	Object Drawing mode
	The Pencil tool
	The Brush tool
	The Deco tool
	The Spray Brush tool
	The Eraser tool
	The Pen tool
	Drawing the tree trunk
	Drawing the pine tree
	Adding pine needles
	Build the campfire movie
	The Color palette and the Color Picker
	Creating persistent custom colors
	The kuler Color Picker
	Your turn: playing with color
	Working with bitmaps in Flash
	Your turn: tracing bitmaps in Flash
	Tracing an image
	Optimizing the drawing

	JPEG files and Flash
	Using GIF files in Flash CS5
	Working with GIF images
	Working with GIF animations

	Importing Fireworks CS5 documents into Flash CS5
	Importing Illustrator CS5 documents into Flash CS5
	Importing Photoshop CS5 documents into Flash CS5

	Symbols and Libraries
	Graphic symbols
	Button symbols
	Movie clip symbols
	Editing symbols
	How 9-slice scaling works
	Your turn: frames for an olive seller
	The 9-slice “gotchas”
	Sharing libraries
	Applying filters
	Applying a Drop Shadow filter
	Adding perspective
	Some filter facts

	Playing with blends
	Aligning objects on the stage
	Snapping to the grid
	Aligning with guides
	Snapping in a guide layer and to pixels

	Stacking order and using the Align panel
	Using the Align panel

	A simple mask
	Creating a masked animation

	Using text as a mask
	Adding the clouds
	Getting the clouds in motion
	Bonus round

	ActionScript Basics
	Actions panel components
	Actions toolbox
	Script navigator
	Script pane
	Panel context menu

	The Actions panel vs. the Behaviors panel
	Classes
	Properties
	Using instance names

	Methods
	Events
	Syntax
	Capitalization matters
	Semicolons mark the end of a line
	Mind your keywords

	Commenting code
	Dot notation
	Scope
	Variables
	Data types
	Operators
	Conditional statements
	Class files and the document class
	On migrating to ActionScript 3.0: the pain and the joy

	Syntax checking
	Getting help
	Search tactics
	Pausing a timeline
	Looping the Timeline
	Using movie clips to control the timeline
	Using Code Snippets
	Adding a snippet into the Code Snippets panel
	Code completion for custom classes

	Audio in Flash CS5
	Bit depth and sample rates
	Flash and MP3
	Importing an audio file
	Setting sound properties
	Choosing a sound type: event or streaming
	Removing an audio file from the timeline
	Getting loopy
	Adjusting volume and pan
	A note from a master

	Playing a sound from the Library
	Using a button to play a sound
	Playing a sound from outside of Flash
	Turning a remote sound on and off
	Adjusting volume with code
	Your turn: storm over Lake Superior
	Code snippet: visualize audio

	Text
	CoolType to the rescue
	Typefaces and fonts
	Read-only text properties
	Character properties
	Advanced character properties
	Paragraph properties

	Container and flow
	Selectable and editable text
	TLF and ActionScript
	Creating a column of text with ActionScript
	Import statements for this exercise

	Using TLF text as a button
	Import statements for this exercise

	Using ActionScript to add hyperlinks to TLF text
	Import statements used for this exercise

	Using the UIScrollBar component
	Rolling your own scroller
	Import statements used for this exercise

	Animation, Part 1
	Scaling and stretching
	Modifying shape tweens
	Altering shapes
	Examining anchor points
	Shape changing

	Shape hints
	Altering gradients
	Rotation
	Classic tween properties
	Scaling, stretching, and deforming
	Easing
	Custom easing
	Adding anchor points
	Easing multiple properties

	A closer look at the Timeline panel
	Onion skinning
	Modifying multiple frames
	Swapping graphic symbols

	Combining timelines
	Movie clip timelines vs. graphic symbol timelines
	Nesting symbols
	Graphic symbols as mini-libraries

	Motion guides
	Tweening a mask
	Animating a mask
	Using motion guides with masks

	Tweening Filter Effects
	Copying motion as ActionScript
	Using the keyboard to control motion
	Creating random motion using ActionScript
	Brownian bonus round

	Animation, Part 2
	Getting acquainted: scaling and moving
	Easing with graphs
	Built-in eases
	Creating custom eases
	Applying multiple eases
	Changing duration proportionally
	Changing duration nonproportionally

	Manipulating motion paths
	Using advanced motion paths

	Motion tween properties
	Using the Bone tool
	Bone tool properties
	Constraining joint rotation
	Deleting bones
	Applying joint translation
	A note about bone preferences

	Animating IK Poses
	Using the Bind tool
	Shape IK and fills
	Shape IK and anchor points

	Your turn: animate a fully rigged IK model

	Flash Has a Third Dimension
	The 3D Rotation tool
	Old-school 3D rotation
	Using 3D rotation

	The 3D Translation tool
	The parallax effect: traveling through space
	Use the 3D center point to your advantage
	Be aware of depth limitations

	Video
	Using the Adobe Media Encoder
	Previewing and trimming video
	Video settings
	Audio settings
	Cropping video
	Running the render process

	Batch encoding
	Creating an F4V file
	More Media Encoder Goodness
	Using the wizard
	A word about file paths

	Using the FLVPlayback component
	Playing video using ActionScript
	There’s a snippet for that

	Using the FLVPlayback control components
	Navigating through video using cue points
	Adding captions with the FLVPlaybackCaptioning component
	Preparing and using alpha channel video
	Going full-screen with video
	Full-screen video the ActionScript/HTML way
	Full-screen video using Dreamweaver CS5

	Embedding video as a movie clip
	Interacting with video content
	An alternate XML format for cue points
	Your turn: create XML captions for video
	Bonus round

	Building Interfaces with the UI Components
	Using the Button component
	Adding button events
	Referencing components in event handlers
	Considering UI component weight

	Changing the Button component’s appearance
	Skinning
	Styling components

	XML (Dynamic Data)
	Dots and @s
	Node types
	E4X filtering
	Double dots and more
	Namespaces
	Your turn: time to explore XFL
	What is XFL?
	XFL bonus round

	CSS
	Block element styling
	Inline element styling
	Custom tags
	Style inheritance
	Styling hyperlinks
	Embedded fonts
	Selectors vs. the Properties panel

	Building Stuff
	Are we there yet?
	Somebody stole my preloader
	A tour of the Beijing art district
	Extending the tour

	Setting up the external playlist
	Polishing up the symbols
	Renaming Library assets
	Improving the controls

	Wiring up the MP3 player controls
	Handling the button events
	Programming the sliders
	Finishing up the controls

	Evaluating and improving the MP3 player
	A quick tour of Device Central
	“Wiring up” the game
	Testing the game in Device Central

	Package the game as an Android AIR app
	From Flash to AIR to Android

	Build more stuff

	Optimizing and Publishing Flash Movies
	This “Internet” thing
	Enter the World Wide Web
	Bandwidth
	So, who are these folks we call users?
	Simulating a download
	Pinpointing problem content
	Can I get that in writing?
	Planning your project
	Distributing the weight
	Optimizing elements in the movie
	Flash
	HTML
	Animated GIFs
	Exporting as an animated GIF
	Importing an animated GIF

	QuickTime
	Publish settings
	Formats
	Flash settings
	HTML settings

	Publishing the butterfly garden
	Publishing Flash movies containing linked files

	Index
	Special Characters and
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	J L
	M
	N
	O
	P
	R
	Q
	S
	T
	U
	V
	W
	X
	Z
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

